The Annals of Mathematical Statistics
1970, Vol. 41, No. 2, 353-362

ON A CLASS OF INFINITE GAMES RELATED TO LIAR DICE!

By THOMAS S. FERGUSON

University of California at Los Angeles

1. Introduction and summary. In John Christopher’s novel [2], the fate of the
whole world is involved in the outcome of a game of Liar Dice. This paper presents
a mathematical analysis of a class of zero-sum two-person games related to Liar
Dice as described formally in Bell [1]. Karlin [4] provides the necessary background
to the theory of games.

Player I receives a number x chosen at random from a uniform distribution on
the interval (0, 1). He then chooses a number y in (0, 1) and claims that the number
x he received is at least y. Player II, not being informed of x, must accept or
challenge I's claim. If he accepts I’s claim, he loses an amount b(x, y), a given func-
tion of x and y. If he challenges I’s claim, he wins one if in fact x < y, and loses one
ifx=y.

The function b(x, y) may be understood to represent player II’s expected loss in
some other game that is played after II accepts I’s claim. For example, if when I/
accepts I’s claim, he must draw a number z from the uniform distribution on (0, 1)
and win one if z > y and lose one if z < y, then II’s expected loss is b(x, y) = 2y —1.
As another example, if when 17 accepts I’s claim he must draw a number z from the
uniform distribution on (x,1), and win or lose one according as z >y or z < y,

then II’s expected loss is

b(x,y) = —1 if X2y
=gl_.-x——:.l lf xSy
1—x -

These two examples are taken later to illustrate the general theory. The use of a
general b(x,y) allows treatment of situations wherein the basic game is played
again whenever I7 accepts I’s claim, with the roles of the players reversed and with
the distribution of the future x dependent upon the past x and y.

Our solution to the general problem (Theorem 2) requires rather strong condi-
tions on b(x, y). The general problem is therefore not to be considered completely
solved. However, when b(x, y) is independent of the variable x, a complete solution
is possible under the sole requirement that b(y) (no longer a function of x) be non-
decreasing in y. This is presented in Theorem 1 and the subsequent remarks.

2. The case b(x,y) independent of x. We first consider the case b(x,y) independent
of x, and denote this function simply by b(y).

A behavioral strategy for I may be represented by a transition function F(y | x),
with the interpretation that if I receives x, he states that he received at least y where
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y is chosen at random in the interval (0, 1) according to the distribution function
F(y|x). A behavioral strategy for II may be represented by a (measurable) function
p(») on [0, 1]into [0, 1], with the interpretation that if [ tells II he received y at least,
IT accepts the statement with probability p(y), and challenges the statement with
probability 1—p(y). With a choice of F by I and g by II, II’s expected loss is

M L(F, p) = o Jo {p(nb»)+(1 = p(»)Q2I(x Z y)—1)} dF(y | x) dx,

where I(x Z y) represents the indicator function of the set {(x,y):x = y}. (I(x = y)
is one if x = y and zero if x < y.)

THEOREM 1. Assume that b(y) is nondecreasing, and —1<b(y)<+1 for
0 < y £ 1. There exists a unique number c, 0 < ¢ < 1, such that

12
2 —— dy=1.
@ J o)™
The value of the game exists and is equal to 1 —2c. The strategy
3) F(-|x) degenerateat x if x=c¢
1[Y1-b(2) .
F =-| —= ’ j
|x) CL 1+b(z)dz, ye(e,1) if x<c

is minimax for 1. The strategy

@ p(y) =1 if y=Zec
_1+b(c) .
STregy 7Y

is minimax for II.

Proor. Since 2[1(1+5b(y))~'dy is decreasing and continuous in x, with value
zero at x =1, and value 2[5(1+b(y))"'dy 2 1 (since b(y) <1) at x =0, the
existence and uniqueness of ¢, 0 < ¢ < 1, satisfying (2) is clear.

Suppose I uses the strategy: if x = ¢, choose y = x; if x < ¢, choose ye(c, 1)
according to the distribution with density f(y). For this strategy,

() LEF,p) =[5 (pOW)+1)—1}f(y)dydx+ [ {1—p(x)(1-b(x))} dx
= 1=2c+[2 p(){e(b()+ DS (1)~ (1~ b(»))} dy.
If ¢ =0, then b(y) =1, so that L(F,p)=1—2c=1. If ¢#0, L(F,p) will be a

constant 1—2c for all strategies p for II provided

11-b(y)
6 = - -
() f») c1750)
This is, in fact, a probability density if ¢ is chosen to satisfy (2). Thus the lower

value of the game is at least 1 —2¢, this being attained by the strategy (3).

c<y<l.
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Now suppose p(y) is known to I. He would choose for given x the distribution
F(y[x) to give all its mass to those y for which the integrand in (1) achieves its
maximum. This maximum is

(N M(x) = max(sup, <, {1 - p(y)(1 - b(y))}, sup,» . {P(¥)(1 + b(y)) - 1}).

II must choose p(y) to minimize the integral of this expression with respect to x
over (0,1). If p(y) is given by (4), 1 —p(y)(1—5b(y)) is nondecreasing in y so that

® supy<x {1 = p((L=b(y))} = 1 - p(x)(1 - b(x)),

a nondecreasing function of x. For p(y) given by (4), p(»)(1+b(y))—1 is non-
decreasing in y for y < ¢, and constant equal to b(c) for y > c. Thus, for all x,

® supys . {P(V)(1 +b(y))—1} = b(c).
Since (8) and (9) are equal at x = c,
M(x) = b(c) for x=Zc¢

= 1—p(x)(1—-b(x)) for x>c.
II’s maximum expected loss using (2) and (4) is
fo M(x)dx = cb(c)+ [ {1 — p(x)(1—b(x))} dx
=1-2c.
This, being equal to a value attainable by 7, is thus the value of the game, complet-
ing the proof.

REMARK 1. The totality of II’s optimal strategies may be found as follows. Let
—1 = a = b(1). We first find II’s optimal strategies subject to the restriction

(10 SUPo<y<1 1P(MA+b(y))—1} = .

Let B be any number, 0 < 8 < 1, such that b(y) = a for y > f and b(y) < « for
¥ < B. Subject to (10), M(x) defined by (7) is bounded below:

(11) M)z« for xZp

_(1+a)(1-b(x))
1+ b(x)

and this bound is attainable by, say, p(y) = (1+a)/(1+b(y)) for y > f, and
p(y)=1for y < B. We search for all p which achieve this lower bound for almost
all x.

For the upper inequality of (11) to be valid with equality for almost all x < , it
must be true that sup, ., {1 —p(y)(1 —b(»))} < « for almost all x < B, which in turn
implies

Mx)z=1 for x>0,

1—

o
for all < B.
1=50) y<#

(12) p(y) 2
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For the lower inequality in (11) to hold with equality for almost all x > f, it must
be true that sup, ., {1—p()(1—5b())} £ 1—(a+ 1)(1 —b(x))/(1+b(x)) for almost
all x > f, which in turn implies

1—b(x)

Uy (1= PONI b))} < 1=(et D

This implies at points y > f of continuity of b(y) that p(y) = (1+a)/(1+5(y)). But
more generally we have

for almostall x > B.

—b(y+0) 1+« 1+
(13) 1 ) 1+b(y+0)_ p(y )_m forall y> B,
and at the point y = f itself we must have

1-b(f+0) 1+« +a
(14) I—b(p)  1+bp+0)=PP= ( 1+b(p))

Conversely, any p satisfying (12), (13) and (14) is easily seen to attain the bound in
(11) for almost all x.
The maximum loss guaranteed by any such rule is

fM(x)dx-oz/i’+f (1 (1+) zgx;)

12
= 1—2ﬁ+(1+a)[1 —L T+b(x)dx]'

This exceeds the value of the game, 1—2c, by

_ b o —b(x)
2(c— ﬁ)+(1+a)f 3509 ) 2L I+b(x)dx
This is zero if and only if
(15) b(c—0) =< a < b(c+0).

In summary, II’s optimal strategies are given in (12), (13) and (14) with « satisfying
(15) and B any number such that &(y) < « for y < f and b(y) = « for y > S.

REMARK 2. The game still has a value and optimal strategies under the sole
condition that b(y) be nondecreasing. We state the value and describe the optimal
strategies without proof.

If b(y) < —1 for all y, the game is trivial with value b(1) (I always claims y = 1,
and II always accepts). Similarly, if b(y) = + 1 for all y, the game is trivial with
value +1 (I always tells the truth, and II always challenges). We assume hence-
forth that for some value of y, —1 < b(y) < +1.

Let

ap =inf{y:b(y) > —1}

a; =sup{y:b(y) < +1}.
We distinguish two cases.
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Case 1. [3:2/(1+b(y))dy > a,. This case is much like Theorem 1. There is a
unique ¢, a, < ¢ < ay, such that

ay 2
——dy =a,.
L 1+o() " ="

The value of the game is 1 —2¢. An optimal strategy for I is: let F(y | x) be degener-
ate at x if x > ¢, whereas if x <¢, let F(y[x) be the distribution on (c, a;) with
density f(y) = (1—-b(»))/[c(1+b(»))], ¢ <y < a;. An optimal strategy for II is:
challenge if y =a,; accept if y<c; if ¢<y=<a,, accept with probability

(1+5(0)/(1+5())-

Case 2. j§;2/(1+b(x))dx < a,. The value of the game is 1—2a,. An optimal
strategy for [ is: let F(y]x) be degenerate at x if x > a,, whereas if x < a,, let
F(y|x) be the distribution on (ao,a;) with density f(y) =(1—b(»))/lco(1+b(»))],
a, <y <a,, where c¢o=[a(1—b(y))/(1+b(y))dy. Optimal for II is simply:
accept if y < a,, and challenge if y = a,.

ExaMpLE. If b(y) =2y—1, then equation (2) gives c =e ' =.36788---. The
value of the game is 1 —2e¢~! = .26424---. Thus, the game is in I’s favor by about
26 cents of a dollar bet. Optimal for [ is: if x > e Y, call y=x, and if x< e !
choose y at random from the distribution with density

l

1
f(y)=e(;—1) el<y<l1
=0 otherwise.

Thus, if x < e~ !, numbers y just above e~ ! are much more likely to be called than
numbers y just below 1. Optimal for II is: accept I’s claim if y < e !, and if
y > e~ !, accept I’s claim with probability e~ */y.

The theory of the next section shows that there is an optimal pure strategy for
player I.

3. The general case. The solution to the general case given here requires rather
strong regularity conditions on b(x,y). These conditions are imposed mainly to
insure that player I have an optimal strategy in a certain class of pure strategies.

A pure strategy for I may be represented by a measurable function f(x) on [0, 1]
into [0, 1], the interpretation being that if I receives x, he claims y = f(x). The
payoft is

(16)  L(£, p) = [ [p(f ())b(x.f (3)) + (1= p(f (3)))2U(x 2 f (x))— 1)] dx

where p(»), as in Section 2, represents the probability that II accepts a claim of y
by I
We consider here strategies of the following form. For some ,0< <1,

(i) f(x) = x for x > B, and
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(ii) for x < B, f(x) is absolutely continuous and increasing, with f(0) = p and
f(B) = 1. If I uses a strategy of this form, the payoff is

(17)  L(f, p) = [6 [p(f ()1 +bCx,f (%)) = 1] dx + 5 [1 = p(x)(1 = b(x, x) )] dx.

If we let g(y) represent the inverse function to f(x) for x€[0,8], f(g(»)) =y,
S'(g(»))g’(y) = 1 and make the change of variable z = f(x) in the first integral of
(17), we obtain

(18)  L(f,9) = 1=2B+[; p([(1+b(9(2), 2))g'(2) ~ (1 = b(z, 2) )] dz.

Now, if g(z) and f are chosen to satisfy the differential equation with boundary
conditions,

, 1-b(z,2)
@) Y= b))
for almost all z > B, then the payoff to I is the constant 1 —28, no matter what
strategy is used by II. We investigate conditions placed on b(x, y) that, first of all,
insure the existence of solutions to (19), and second, entail the existence of a strategy
for II that guarantees him a loss not exceeding 1—2p.
We list the conditions below. Let T'denote the triangle 7= {(x, y):0 S x < y < 1}.

Al. =1 =Zb(x,y) = +1 for all x=<y
b(x,y) >—1 for all x<y
b(x,x) <1 for all x<l1.
A2. b(x,x) is nondecreasing in x.
A3. b(x,y) is continuous on T.
A4. b(x, y) is nonincreasing in x for fixed y = x.
AS. b(x,y) is nondecreasing in y for fixed x.
A6. b,y(x,y) = (0/0y)b(x,y) exists in T and b,(x, y)/(1+b(x,y)) is nondecreasing
in x for fixed y > x.

g9(B) =0,g(1) = B,

Note that the only restrictions that are placed on b(x,y) for x > y occur in AS5.
If b(x, y) depends only on y, conditions A2 through A6 reduce to the condition that
the derivative of b with respect to y exist on the interval [0, 1] and be nonnegative.

LeEMMA. Under assumptions Al, A2, A3 and A4, there exists a unique number
¢, 0 < ¢ <1, and a unique absolutely continuous solution of the equation

won . 1=b(», )
@0) IO TG00

such that g(1) = ¢ and g(c) = 0.

Proor. Let H(x,y) = (1—b(y,y))/(1+b(x,y)). Then H is continuous in x for
each fixed y and measurable in y for each x, on the set 7= {(x,y):0<x <y <1}.
Furthermore, H is bounded in the regions {(x,y):0<x=<y-—¢ y=<1}, ¢>0.
From the Carathéodory existence theorem, there exist local solutions of (20) at
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each point (g9(y),y) in T, which may be extended to the boundary of T (see e.g.
[3] Chapter 2, Section 1).

In addition, H(x, y) is positive on {(x,y):0 < x < y < 1} and nondecreasing in
x for fixed y there. This implies that no two solutions of (20) can cross. In fact, if
g, and g, are solutions to (20) both defined at y, and y,, y, < y,,and if A = g,(y,)—
g1(y1) > 0, then g,(y,)—g,(y,) = A. To see this, note that for y, <y < y,,

9:») = 9y )+ [}, H(g((2), 2) dz
for i = 1,2, so that for all ye[y,,»,],

@1 9:00)—91(») = A+ [}, [H(92(2), 2)— H(g4(2), 2)] dz.

Since H(x,y) is nondecreasing in x for fixed y, it is sufficient to show that
92(2) =2 g4(z) for all ze[y,y,]. But if g,(z) <g,(z) for some ze[y,,y,], there
would be a number y; = inf {z:g,(z) < g,(2), ze [y, y,]} with g,(y3) = g,(y;) and
g,(») = g,(») for y; <y < y;. This obviously contradicts (21).

This monotone property of the difference of two solutions to (20), g,(3)—g:(»),
implies that there is a unique solution to (20) with the boundary condition g(1) = 8,
for any g 0 < B < 1. Denote this solution by g,4(»).

Since H is positive on {(x,y):0 < x <y <1}, and bounded away from zero in
the regions {(x,y):0=<x<y<1l—g}, ¢>0, the solution gy(y) vanishes for
sufficiently small § (i.e. hits the lower boundary of T) at some point, call it
h(B): gs(h(B)) = 0. Clearly h() — 1 as f— 0. In addition, A is nonincreasing and
continuous from the monotone property of the difference of two solutions. Hence,
there exists a unique number ¢, 0 < ¢ < 1, such that A(c) = ¢. This number ¢ and
the solution g (y) satisfy the conclusion of the lemma.

THEOREM 2. Assume conditions Al through A6, and let ¢ and g(y) satisfy the
conclusions of the lemma. The value of the game exists and is equal to 1 —2c. Player I
has an optimal pure strategy: If x > ¢, put y = x; if x £ ¢ put y = f(x), where f is the
inverse function to g. Player II has the following minimax strategy.

(22) p(y) = p(c) for y=e

y b s
= p(c)exp{—fc %dz} for y>c

where

1 b ,
(23) p(C)=2[(1+b(C,l))exp{_ f T:E;—g((gz(%

ProoF. From the discussion following (17), it was seen that I’s suggested strategy
above gives him an expected payoff of 1—2¢ no matter what II does. That II’s
strategy (22) guarantees him an expected loss not greater than 1 —2c¢ remains to be
shown.

We first show that p(c) defined by (23) lies between zero and one inclusive, from

dz}+(1 —b(c, c))]_l.
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which we may conclude that (22) is, in fact, a strategy for II. From Al it is clear that
p(c) > 0. From A6

' by(9(2),2) Yoby(e,z) . 1+b(ce1)
L b0 = J b0 =850 o)

so that

1+b(c,c)

1+b(c, 1)

We also note that from A5, b,(x,y) = 0 in T so that p(y) of (22) is nonincreasing.
The best that I can do against any strategy of II is to call y equal to some fx)

which maximizes the integrand of (16). Thus, if II uses strategy (22), his expected
loss is at most .

p(c) = 2[(1 +b(c, 1)) +(1—b(c, c))]_ =1

(24)  [Amax(sup, <y {1 — p(¥)(1 = b(x, y))}, 5upy . {P(Y)(1 +b(x, y)) — 1}) dx
= [§ max (1 — p(x)(1 —b(x, X)), supy >, {P(Y)(1 +b(x,y))—1}) dx
using A5, and the fact that p(y) is nonincreasing. We will show that

(25) supys, {(P(Y)A+b(x, y))—1} = p(f ()L +b(x./(x))) —1
= 1—p(x)(1—b(x,x)) for x<e¢, and

(26) supy», {PO)(b(x, )+ 1) =1} < 1= p(x)(1=b(x,x))  for x>c¢,

so that (24) becomes the integral (17) with § = ¢, which, with our given f(x), is
equal to 1—2c, as we have seen.
To prove (25) and (26), we evaluate

d
e (PO +b(x,))—1) = p(»)by(x, )+ p' ()L +b(x, y)).

If y <c, then p'(y) =0, and this partial derivative is nonnegative from AS. If
y > ¢, then

2 01+, = p0)1 ) (22— PO |
Thus we have from A6,
ZEUXIHBEN-DZ0 i x>g0) (o 3 </6)
=0 if = =
<0 if < >
In particular,

@7 sup,s. (P +b(x, )= 1) = p(F())(L +b(x.f(x)))—1 if x=c
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and
(28) supy > (P(V)(L+b(x, p))—1) = p()(L +b(x, 1))—1 if xZe.

At x = ¢, the right side of (26) is equal to the right side of (28) by the definition of
p(c) and p(1). But the right side of (28) is nonincreasing in x from A4, whereas the
right side of (26) is nondecreasing in x from A2 and the definition of p(y), which is
nonincreasing from Al and AS. This, together with (28), proves (26).

From A4, if x < ¢, (27) is nonincreasing in x. This proves the last inequality in
(25) since the right side is nondecreasing in x, the left side is nonincreasing in x,
and the left and right sides are equal at x = ¢. In addition, for fixed x < ¢

SUP5 << (POY)(1+b(x, 1)) — 1) = p()(1 +b(x, ¢) ) — 1
< p(f))(1+b(x,f(x))) -1
from (27), completing the proof of (25).

ExAMPLE. If b(x,y) =—1 for x = y, and b(x,y) = 2y—x—1)/(1—x) for x < y,
the differential equation (20) becomes

iy — L790) _ _
g(y)—y_g(y) 9(0)=0, g()=c.

It is easier to solve for the inverse function f, which satisfies the equation

Jx)—x

1 f@=c, flo=1
—X

f)=

This equation has, as the general solution,

1+x

k
T =13t

The boundary condition f(0) = ¢, gives k = ¢—% so that

c—%+1+x
1-x 27

(29) )=

while the boundary condition f(c) =1, gives ¢®—4c+2 =0, whose solution
between zero and one is ¢ = 2—2% = 586 --. The value of the game is 1 —2¢ =
—.172---. Thus, the game is in II’s favor by about 17 cents of a dollar bet. Optimal
for I'is: if x < ¢ call y =f(x) where f is given by (29); if x = ¢ call y =x. To
find II’s optimal strategy (22), we need to compute

Y b . P [Pa® L 1-gW)
L +6(g(2).2)" ‘L g™ "L =g~ 715,40
= —log(1—g(»))-
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Thus

2 11
= T = = — =, 07"-
P(©) —g)12 2=c-21="7

and II’s optimal strategy is
p(y)=2"% it y<e
=27} 1-g(y)) if y>c
where g(y), the inverse function to f; is
90 =y—(*=2y+20).
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