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ON THE ASSUMPTIONS USED TO PROVE ASYMPTOTIC
NORMALITY OF MAXIMUM LIKELIHOOD ESTIMATES'

By L. LECaM

University of California, Berkeley

1. Introduction. Let ® be a subset of the real line. For each 6€® let p, be a
probability measure on a certain o-field « carried by a set X. Let {¥", «"} be the
cartesian product of n copies of {¥,a}. Let P, , be the measure product of n
copies of p.

Several statistical problems lead to the study of the behavior of the functions
0= Py, , as n tends to infinity. In particular, the statements concerning maximum
likelihood estimates found in Cramér [1] can be considered statements about the
local behavior of the logarithm of the likelihood function

A(t,0) =1 4Py
W(t,0) = log~ Po )
when n increases indefinitely.

A similar assertion can be made about the deeper results of Wald [11] concerning
the asymptotic sufficiency of the maximum likelihood estimates and the asymptotic
normality of the family of measures. (Wald gives convergence results uniformly in
6 instead of locally ; however, the bulk of the argumentation is local.)

The regularity conditions used by Cramér or Wald or other authors, for instance
Doob [2], Dugué [3], Wilks [12] always involve the existence of two or three
derivatives of the function = dp,/dp, and additional uniform integrability re-
strictions. These regularity restrictions do not have by themselves any direct or
obvious statistical relevance or interpretation. Their role is to permit the proof of
the desired theorems.

It has long been realized that the assumptions in question are somewhat too
stringent for this purpose and that in fact the asymptotic normality derived from
them ought to be a consequence of assumptions involving only first derivatives.

Even if one is not particularly interested in the maximum economy of assumptions
one cannot escape practical statistical problems in which apparently “slight”
violations of the assumptions occur. For instance the derivatives fail to exist at one
point x which may depend on 6, or the distributions may not be mutually absolutely
continuous or a variety of other difficulties may occur. The existing literature is
rather unclear about what may happen in these circumstances. Note also that since
the conditions are imposed upon probability densities they may be satisfied for one
choice of such densities but not for certain other choices.
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More recently J. Hajek [5] and the present author [7] have introduced another
type of regularity assumption which occurs naturally from certain statistical
desiderata. These conditions refer to the differentiability in quadratic mean of the
map ¢ = (dp,/dp,)t. 1t is rather obvious that the “differentiability in quadratic
mean” condition cannot imply conditions of the Cramér type since only one
differentiation operation is involved instead of two or three. Whether on the con-
trary Cramér’s or Wald’s conditions imply the “differentiability in quadratic
mean” is not transparent. We shall show that this is indeed the case. In the process
we shall generalize some of Cramér’s results, reset a lemma of Hdjek in a framework
which is not restricted to translation parameters and extend in a similar manner a
theorem of L. Shepp [10].

Although certain of the arguments given here remain valid for multidimensional
parameter sets © we have limited the last section to the case of real-valued para-
meters. The reason is that some of the arguments about continuity of sample paths
of stochastic processes do not extend directly to more than one dimension. In fact,
an example of Kemperman (private communication) shows that the one-dimen-
sional results do not remain valid without further restrictions when 8 becomes
three-dimensional. One could still proceed to an extension. However, the condi-
tions under which we know at present that extension is possible do not have
acceptable statistical relevance. Also they appear to be remote from the conditions
which justify their existence by being necessary.

2. The Hellinger transform and statistical tests. Let P and Q be two probability
measures on a o-field «. Let u = P+ Q and let fand g be the densities f = dP/du
and g = dQ/dp. The L;-norm of the difference P—Q is |P—Q|| = [|f—g|dn =
2[1—||P A Q||], where P A Q is the minimum of the two measures P and Q; that is,
the measure which has density /A g with respect to u. The Hellinger transform of
the pair {P, 0} is the function ¢ defined on [0, 1] by ¢(a) = ||(dP)' ~*(dQ)|| =
|f*~°g*du. The value p(P,Q)=¢(}) = [(dPdQ)* is also called the affinity
between P and Q. The Hellinger distance H(P,Q) is defined by H?*(P,Q) =
[((dP)t—(d0)*)* = [(f*—g*)* du = 2[1 — p(P, Q)]. It follows that

H*(P,0) £ ||P-0|| £ H(P,Q)(4~H*)* < 2H(P, ().

Thus P and Q are disjoint if and only if ||P— Q|| = 2 or equivalently H*(P, Q) = 2.
The metric H and the L,-norm define the same uniformity on the set of probability
measures.

Consider the problem of testing P against Q. There exists a test which minimizes
the sum of the probabilities of error. This minimum sum of errors is easily seen to
be ||P A Q||. Thus the L;-norm has a direct statistical interpretation. It measures
how easily one can test between P and Q. The Hellinger function ¢ has the following
interpretation. Let A be the logarithm of likelihood ratio A = log g/f = log dQ/dP,
with usual conventions for infinite values. Then for every a € (0, 1) the value ¢(o) =
||(@P)* ~*(dQ)|| is simply the value of the Laplace transform E e for an expectation
taken under P. Holder’s inequality implies that log¢(a) is convex in a. It is easily
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seen that lim,_, ,<,¢(e) is the mass of the part of Q which is dominated by P.
Similarly lim,_¢ 4>o¢(®) is the mass of the part of P which is dominated by Q.

Suppose now that P is the direct product P = Xp; of a finite or infinite family of
probability measures p; with p; carried by a o-field o; on a set X;. Suppose similarly
that Q = X,q; with g; carried by the same o; as p;. For each pair (p, q;) we have the
Hellinger transform ¢ () = ||(dp,)' ~*(dq;)’||. Let ¢ be the Hellinger transform
relative to (P, Q). Then () =[[;¢(«). One concludes easily, using the convexity
of logg;, that either ¢(3) = [1j#;(3) =0 and therefore the measures P and Q are
disjoint, or @(4) > 0, and then the mass of P which is Q dominated is precisely the
product of [];m; where m; is the mass of p; which is g; dominated. To prove it,
note that y,(«) =[];<.;(@) is a decreasing sequence of functions and that for
xe[0, %)

log,(a) = 2(1 - log 9,(3);

-+ therefore ¥,,< j<,|log@ (@] £ 2(1 =)}, < <slog @;(3)| for every a0, §).

The alternative “either @(3) = p(P, Q) = 0 or the dominated masses of product
are the product of dominated masses on components” will be referred to as
Kakutani’s alternative, from the theorem by this author [6].

Although the statistical interpretation of L;-norm in terms of probabilities of
errors renders the use of L,-norm very logical, the relations between L,-norm of
components and L,-norms of products are neither simple nor very informative.
Thus one is led to use instead the Hellinger transform, or when this is satisfactory,
the affinity or the Hellinger distance. In particular, the relation ¢(3) =[]0,®
gives

HZ(Pa Q) = 2{1 _Hj[l _'ZLHZ(pp q])]}

In all cases where the components (p;, g;) are such that H *(pj, q;) is “small” this
leads to the consideration of Y ;H?(p;, q;) instead of [];[1—4H?*(p; g;)] according
to the usual inequalities. Finally this leads to the introduction of stochastic pro-
cesses as follows.

Let ® be an arbitrary set. For each 6 © let p, be a probability measure on a
o-field o.. Let C(s, t) be the affinity C(s, 1) = [(dp, dp,)*. This function is a covariance
kernel on the set ®. Therefore, one can define real stochastic processes t = &(¢)
such that E&(s)E(f) = C(s, t) or equivalently E|&(s)—E&(t)|* = H*(p,, p,)- According
to the preceding discussion, the study of product Py, = X;p,, ; can thus be
reduced to a large extent to the study of series of independent processes £(6, n, j)
with

E lé(s, naj)_é(t’ naj)lz = Hz(ps,n,ja pt,n,j)~

At least one can effect such a reduction for the study of separation of measures.
More precise relations between the above processes or some closely related ones
will be given in the next section.

3. Condition (/) and some of its implications. In this section it will be assumed that
© is a measurable subset of the k-dimensional Euclidean space R,. For each e ©
we shall assume a given probability measure p, in some space {¥,«}. We shall
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denote A(s, t) the Hellinger distance A(s, t) = H(p,, p,) and suppose that ¢ = £(¢) is a
second order process such that

E|&(s)=¢0|* = h(s, 1)
DErINITION. The process ¢ satisfies condition (/) at the point 6€ © if
limsup| o |t| " ||EO+1)— E(0)]| < o0

for the quadratic norm ||&(s)—&(7)||* = 4%(s, t) and for arguments 6+1€©.

As was indicated in the preceding section, condition (/) at 0 is equivalent to the
statement that the products {Py., 4, ,} and {P, ,} do not separate entirely as
long as 1, keep bounded.

A condition related to (/) but definitely stronger is the local Lipschitz condition
(L) that there is an &¢ > 0 and a C < oo such that if [s—6|+|r—6| < & then

l[é@)—¢@] = Clls—1]].
However (/) nearly implies (L) in the following sense.

LEMMA 1. Assume that © is the intersection of a closed set with an open set of R,
and that (1) is satisfied at all points of © then the set (B) of points at which (L) is not
satisfied is a closed set without interior points in the relative topology of ©.

Proor. Condition (/) implies the continuity of the map ¢= &(¢) to the Hilbert
space of square integrable variables, hence the continuity of the map (s, ¢) = A(s, t).
Let A4, be the set of points e ® defined by A4, = {0e®; sup,[A(t, 0)||—06]|"*;
|t—6] < n~'] < n}. By construction 4, is closed (in ©). Let 4,° be the interior of
A,. A point 0 satisfies (L) if and only if e |J,4,°. However J4, = ©. Thus
B<U(4,\4,°) is of the first category. Furthermore, let U be any open subset of @
(in the relative topology). If 4 restricted to U satisfies either (/) or (L) at some
0e U then 4 satisfies the same condition at 6 relatively to the whole of ®. Thus
BNVU is of the first category in U. The result follows since U is not of the first
category in itself.

A deeper and more important result is the following.

THEOREM 1. Let S be a measurable set of points 6€® at which the process &
satisfies condition (I). Then the process & is differentiable in quadratic mean at all
points of S except perhaps those of a subset which has Lebesgue measure zero.

The proof will only be sketched since the result is essentially well known. A basic
remark is the following lemma which is used in Saks [9] but is not isolated there.

LEMMA 2. Let & be a Banach valued function defined on the measurable set ©.
Let A be a measurable subset of ® such that for every x€ A there is ane, > 0and a
K < o0 such that if ye A, ze © and ||y—x|| <&, and ||z—x|| < ¢, then

IE0) - €@)|| = K ||y—-2]|-

If & possesses an approximate derivative at almost all points of A then & possesses
a derivative at almost all points of A.
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This lemma can be applied to the present case by noting that the set

A, ={0eS:sup,.o[h(1,0)|t—0|"";[t—0| <n~ '] < n}

is a measurable set. Furthermore, if 6 4,, s€ 4,, 1€® and if 2|0—s| <n™! and

2|t—0] <n~" then |s—¢| < n~* and therefore h(z, 5) < n|t—s|. Thus we are reduced
to proving existence of approximate derivatives on sets such as 4,. Retaining only
those points of 4, which are points of density unity of 4, eliminates only a set of
Lebesgue measure zero. Thus it is sufficient to prove that restricted to A, the function
¢ has approximate derivates almost everywhere. One can also cover 4, by a count-
able family of sets having diameter smaller than n~!. Thus it is sufficient to show
that if ¢ is defined on a measurable set and satisfies a Lipschitz condition on that
set it is almost everywhere approximately differentiable on that set.

This is proved by induction on the number of dimensions in Saks [9] page 300.
It remains therefore only to prove the starting point of the induction assumption
namely that if S is a measurable bounded subset of the line and if s = &(s) is defined
on S and Lipschitzian there then & is almost everywhere differentiable. Now such a
¢ can be extended to be a Lipschitz function on an interval containing S. The result
is then a consequence of a theorem of Gel’fand [4] according to which if a function
s=2 &(s) to a Banach space possesses almost everywhere an almost separably
valued bounded weak derivative it admits the same function for strong derivative
almost everywhere.

Returning to the measures {py; 0 @} let us consider now other processes related
to the process &(¢). For this we shall make the domination assumption that there is
a probability measure p which is such that u(4) = 0 is equivalent to sup,pe(4) = 0.

We note in passing the following easy result.

LEMMA 2. If the process & is continuous in quadratic mean and therefore in par-
ticular if & satisfies (I) at all € © then there is a probability measure p such that
wW(A) =0 if and only if po(A) = 0 for all 0 @.

Indeed continuity of 6= &(0) implies continuity of the map 6 = P, for the
L;-norm ||pg—p||- Hence {p,: 0 ®} possesses a countable dense subset {py,}. It
is sufficient to take u =) 27/p, .

From this point on we shall assume that & is the process obtained as follows:
Take the Radon-Nikodym derivative dp,/dp and its square root (dpe/d)®. This is a
measurable function in which one can substitute a variable w whose distribution is
given by the dominating measure u. It is quite clear that if 8= £(0) is the process
so obtained then E|&(0)|* = 1 and E|£(6)— &(1)|* = H*(6, 1).

For a given 0@ let us define other processes X(¢) and Y(¢) as follows. The
process X(¢) is given by X(¢) = (dp,/dpe)* —1 where one substitutes in the function
dp,|dp, a variable x whose distribution is given by p,. If necessary we shall indicate
this dependence on 0 by using the symbol X,(¢) instead of X(¢). The process Y(z),
or more specifically Yy(¢), is defined by Yy(¢) = Xy(¢) — EgX,(2).

Let J, be the indicator of the set of values of x where £(0) # 0. The affinity
p(ps, p,) may be written
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p(pss p) = [(dp.dp)* = [ Jo(dp,dp)* +[ (1= Je)dp,dp)*.
The first integral can now be rewritten
§Jo(dp,dp)* = Eg[1+Xo()][1+X(s)].
For the second integral we shall use the notation
§(1=To(dp,dp)* = Bo(s, ).
It follows that
EX(t) = p(p» po)—1 = —3h*(0,1)
EX*(t) = 2[1 - p(p,, po)] = Bol(t. 1)

Var X(£) = [1-p*(p,, pe)] = Bolt, 1)

Also
Cov[X(s), X(t)] = E[Y()Y(1)]
= p(Ps> P) — P(Ps> Po)P(Ps> o) — Bo(s, 1)

We shall be interested below in cases where the process Xy(¢) is differentiable in
quadratic mean at ¢ = 6. Suppose then that it is so and that the derivative in quad-
ratic mean is X’(6). Then the following relations hold:

€)) EtX'(0) = —3lim,o&™ "h*(0,0+e1)
= —1lim, o&" B[O +¢t, 0 +et].

() EiX'(6)sX'(6) = lim,..o 6~ 2EX(0+e5)X (0 +¢1)
= lim,. o &~ 2{[p[0 +es,0+et]— p(0 +&s,0)— p(6, 0+¢t) +1]
—Bo(0+es,0+¢€t)}.
= lim,_, o 2¢”2{h*(0, 0 +¢s) + h*(0, 0 +et) — h*(0 +es, 0 +et)
—2pB(0+es,0+¢t)}.

From these relations one can easily deduce that if X’(6) exists and if ¢ satisfies
condition (/) at 6 then EX’(6) = 0. More specifically one can obtain the following
result.

LEMMA 3. Assume that the process t = &(t) is differentiable in quadratic mean at
t=0. Let £'(0) be the derivative and let T'(0) be the matrix I'(0) = EEO)[EO].
Then both Xy(t) and Y4t) are differentiable in quadratic mean at t=0. Also
EXy'(6) = 0 and X,'(0) = Y,'(0). Finally, if y(0) is the matrix EX'(0)[X'(6)]T then

s[T(O)—y(0)]tT = lim,_, o2 Be[0+ &5, 0+et].

The difference I'(0)— () is a positive semidefinite matrix.
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Proor. We have already remarked that differentiability of X and condition (J)
imply that EX’(0) = 0. Since Y(¢) = X(¢)+4h*(0, t) the relation between Y’ and X’
will also follow if we prove only that the differentiability of & implies that of X.

To show this let Jy be the indicator of the set where £(0) 5 0. One can then write

&) —&(0) = Jo[&(1) — &O)] +(1 - JTp)é(1)
and
[&()—=&0)—(t—0)E'(0)] = Jo[£()—&(0)— (1 —0)E'(O)] +(1 = To)[E(t) — (t—0)¢'(0)].

Divide by |¢—6| and take expectations of the squares. Since the two terms on the
right are disjoint, both norms

|t=6]* |[Jo[&() - &O) - (1—0)E' ®)]]
and

|t=6]* ||(1=J[ED - (1—0)E'©O)]|]
must converge to zero. The first term is the norm obtained from the integral

|t—0]72 [ Jo|&1) — E&O) — (t— O)E'(O)| ds
t 0)?
- li=o* [ g 1-e-0 g

= |t—0|72E, | X()—(t—0)X'(0)|?

for X'(0) = &'(0)/£(6). In other words, as functions on the probability space, the
derivatives & and X’ satisfy the relation:

£'(0) = S(OX'(O)+(1—Ja)E'(0).

Since (1 —Jp)€(0) = 0 the desired relations follow immediately.

Note that since I'(8) —y(0) is semidefinite, to show that I'(8)—y(0) = 0 at a par-
ticular point 6 it will be (necessary and) sufficient to show that for each fixed ¢ one
has

1-(t—-6) 40y d

lim,,o&™2B(0 +et,0+¢t) = 0.
We shall now show that under condition (/) this is almost everywhere true.

PROPOSITION 1. Assume that the process t= E(t) is differentiable in quadratic
mean at almost all points of the measurable set ©. Then
lim,,|_.o |T|_2B0[0+T,0+T] =0
for all 0€ © except perhaps those of a subset which has Lebesgue measure zero.
Proor. For simplicity let us write ¢(0, t) = By(t, t). Thus ¢(0, t) is simply the
mass of the part of p, which is p, singular. We have seen above that when the pro-

cess ¢ is differentiable at 6 then lim |z| ~2¢[0, 0+ 1] < sup {uI(O)u”, |ju|| £ 1} < co.
In particular, ¢(0, 0+1)— 0. Also, since EX'(6) =0, lime™'h*0, 6+&t) =0 so
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that lim e~ *¢(6 + &7, 6) = 0 and more generally lim,j_, |t| "*¢@[0+7, 6] = 0. Let us
show in fact that at such a point 0 one has always

lim o0 |t| " 20[0+7,6] = 0.
For this purpose write
r(0,1) = |t—06]| " [|&(1) - &6) - (1 - 0)¢'(0)) .

If J, is as before the indicator of the set where £(¢) # 0, the part of p, which is p,
singular contributes to »2(0, t) a term of the type

|t—6|"2EJ, |&0)+(t—0)¢' ()]
Thus
r(0,1) = |t—6|"* |EJ|EO)|*|* - |EJ|E6)]?].

Since as t —» 0 EJ, — 0 the last term on the right tends to zero. Therefore the same is
true of the first term which proves our assertion.

To go further, note that & is continuous at almost every point of ®. Let @, be the
set of points of continuity and let

ro(6) = sup, {r(0,1); 1€ @, |t—0f < n~"}.

This is a measurable function of 8 ®,. By assumption r,(6) — O for almost every
0e®,; hence by Egorov’s theorem, r, converges to zero uniformly on certain
compacts of @, which cover all of ©, except a Lebesgue null set. Let us consider
then a compact K= ®, such that r, = sup [r,(0), 6 € K] - 0 and such that &'(6) be
continuous when restricted to K. If §, and ¢, are both elements of K and |0,,— t| <
n~! we can write again

Tn Z 100 1) Z [ty =0,| 7" |E,, £ [* — E|J, €' @D

We can assume that 6, - 6,e K. In this case £'(6,) = €'(6,) in quadratic mean.
Also EJ, — 0 since EJ, < h*(t,, 0,). Thus the last term still tends to zero. The same

is therefore true of the first term.
To summarize, if K is a compact such that sup [r,(0); 0 K] — 0 and such that
&' restricted to K is continuous, then

supg, {@(0,1)|t—6]7%;0€K,teK,(0—1) <n~'} - 0.

This proves the desired result, since it implies y(6) = I'(6) at least for all points
of density unity of K.

LEMMA 4. Assume that the process & is differentiable in quadratic mean at 0.
Let {X;,j=1,2, -} be independent copies of the process t = X(t) induced by the
measure py. Let X' be the derivative of X ; at t = 0 and let V,, be the random variable

V,=n"*Y"_ X/(6).
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If ,, is a bounded sequence of vectors then
Y X (0+1,/nh) ~1, V,+ 37, T(0),”
converges to zero in quadratic mean as n — co.

Proor. Consider first the processes Y (t) = X;(t)—EX(t). According to the
preceding lemma, Y; is differentiable in quadratic mean at ¢ = 6 and the derivative

is X;'(6). It follows that

Y(6+1) = tX;/(0)+]|t| R(t)
where ER; = 0 and where ER;*(t) - 0 if ¢ — 0. This gives

Yien Y(0+1/n?) =1V, +|t|n"*Y ., R)(x/nd).
The last sum on the right has expectation zero and a variance equal to the sum of
the variances of its components.
E[n"*Y, ., Ri(z/n*)|* = ER,*(z/n?).

This tends to zero as n — oo as long as 7 stays bounded. To complete the proof it is
sufficient to evaluate the sum ) ;EX;(8+1t/n"%). We have seen that this is equal to
—nih*(0, 0+1/n?) or equivalently to

—(n/2)E|&0+1/n*)—&O)]*.

Since ¢ is differentiable at @ this tends to —3E|c&'(6)]* provided only that <

remains bounded.

REMARK. The above argument remains valid if one assumes only that X is
differentiable in quadratic mean at ¢ = 6, provided that, for instance,

nh*(0, 6+1,/n?)

remains bounded. However, in this case the statement of the lemma must be modi-
fied and replaced by the assertion that

Z;= 1 X}(e + Tn/ni) ™ Vn + %h2(09 0 + Tn/ni)
tends to zero in quadratic mean.

COROLLARY. Under the conditions of Lemma 4 the process 1= Y =, X;(0+1/n?)
has finite dimensional distributions which converge to that of a normal process
T = Z(t) with expectation EZ(t) = —41I'(6)t and covariance kernel

E[Z(s)—EZ(s)]Z(t) = sy(0)t".

In particular if 1, — T the sequences {P,,} and {Py .. v} are contiguous if and
only if
(0)c" = t[(O):".

This is quite obvious.
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Instead of the sum Y ; ., X;(0+t/n*) one can also consider the logarithm of like-
lihood ratio obtained by taking independent identically distributed observations.

Letting A,(0, t) = logdP, ,/dP, , be the logarithm of likelihood ratio, one can
take A, equal to

A6, =2%"_log[1+X (1]

for the distributions induced by p,. The limiting behavior of A,(0, t) is related to
that of ) ;X(¢) according to the prescription given by the following result.

LEMMA 5. Assume that the process t = X(t) is differentiable in quadratic mean at
t = 0 and that ¢ satisfies condition (1) at 0. Then, for every bounded sequence t, the
difference

3AL0,0+ 1, /nH) =351 X [0+ 1a/nY) +37,9(0)r,

tends to zero in Py, , probability as n — .

This follows from the asymptotic normality of ) X (0+1,/n*) and the usual
Taylor expansion argument.

In the case where ¢ is differentiable in quadratic mean this lemma shows that the
limiting distribution of A,(0, 6+1/n*) is a Gaussian distribution with variance
47y(0)7” and with expectation equal to —z[F(0) +y(0)]=T.

Another aspect of the implications of condition (/) is related to results of L.
Shepp in [10]. Theorems 1 and 3 of [10] are implied by the following proposition.

PROPOSITION 2. Assume that 0 is such that for any te © the affinity p(pg, p,) is not
zero. Consider the measure P direct product of a countable set of copies of py. For a
sequence T = {t,} of vectors such that 0+t,€ ® for all n let Qy be the direct product
of the measures pg.,,.

If the process & satisfies condition (I) at 0 then for any sequence T = {t,} such that
Y|ta|?* < o the measures P and Qr are nondisjoint and the masses of their dominated
parts are the product of the masses of the dominated parts of the components.

Conversely, if p(P, Qr) >0 for every sequence T = {t,} such that Y |t,|* < oo
then condition (1) is satisfied at 0.

PRrOOF. Let p, = p(pg, Po+s,) and let h,2 =2(1—p,) = H*(py, py+,,). Since we
have assumed that p, >0 the product []p, is convergent in (0, c0), that is
p(P, Q) > 0 if and only if ) ,h,%> < co. Thus, to prove the first statement it is
sufficient to apply Kakutani’s alternative theorem (Section 2) and note that if

b(0) = limsup|; o ]‘L’I' ! ||§(0+‘c)—€(0)”
then
anmhn2 é [b2(0)+1] anmltnlz

for m sufficiently large.
Conversely, suppose that Y |z,|> < oo implies Y 4> < 0. Let F(u) be the number

F(u) = sup, {h*(6,0+1);|t|*> = u}.
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Suppose that there is a sequence u, > 0 such that », — 0 but lim, F(u,)/u, = co.
Extracting subsequences, if necessary, one may assume that the sequence u, is such
that

(a) the sequence u, decreases and 10 u,, , < u,.
(b) F(un-f- 1)/un+1 > SF(un)/un‘

Construct a sequence of numbers r, as follows. Take r; =1 and let r,,; =2 be
such that

(C) it (un+1/un) é %
(d) TS [F(un+ 1)/F(un)] _Z.. %

These inequalities can be written

%F(un)/F(un+ 1) é Fpt1 é %un/un-l-l'

Thus there is always some number r,,, = 8 which satisfies the relation. Let k, be
the integer part of [[}-,r;. Let v, be a vector such that |v,|> = u, and

h2(01 0+Un) % F(u,,)—2‘”k,,_ 1'

Form a sequence ¢, by taking ¢, = v,, and t,, t5, " - -, #; 44, €qual to v, and so forth,
so that the value 7 = v, appears k, times. Then Z]tjlz =Y kqu, still converges.

However
Y h¥6,0+1) = —1+ k,F(u,)

is infinite. Thus if condition (/) is not satisfied there are sequences T = {r,} with
Y |t.f* < o0 but p(P, Q) = 0.

In the case considered by Shepp the measures p, are obtained by shifting the
measure p, by the amount ¢ — 6. In such a case the kernel C(s, t) = p(p,, p,) is the
covariance of a stationary process. Thus, if condition (/) holds at one value of 6 it
holds for every 6. The process is then differentiable in quadratic mean almost
everywhere; hence everywhere because of the shift invariance. Thus in the shift
situation one can replace condition (/) by differentiability in quadratic mean. This
is essentially the statement of Lemma 3 of [10].

4. Some other differentiability conditions. In previous papers [7], [8], this author
has studied certain statistical conditions which were called there asymptotic
differentiability conditions. Several equivalent forms are given in the papers men-
tioned above. One possible system of assumptions is the following, where we
denote again the logarithm of likelihood ratio log(dP, ,)/(dP,,,) by A, (0, t), and
where it is still assumed that © is a subset of the k-dimensional Euclidean space R,.

(D1) If {|1,|} is a bounded sequence then the sequences {P, ,} and {Py., /ut, .}
are contiguous.

(D2) There exist random vectors ¥, and a function #= A(f) such that if |t,] is
bounded

An(03 0+ tn/n%) —t, Vot A(tn)

tends to zero in P, , probability.
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(D3) The sequence of distributions £(V, [ 0) has a limit.

(D4) If Z{A,0, 0+1,/n*|0} possesses a limit and if sup|t,| < co the limiting
distribution is Gaussian. ,

Let us note in passing that (D3) is almost redundant, since it is implied by the
combination (D1)(D2) unless the closed cone tangent to ® at 8 does not have
interior points.

Condition (D1) alone is already very much stronger than the assumption that
our process ¢ satisfies condition (/) at 8. In fact, one can show that (D1) is equivalent
to the following set of conditions in which X(¢) is the process described in Section 3.

(D1, a) If sup|t,| < oo then the sequence of distributions L[} ;,X;(0+1,/n*]
is relatively compact.

(D1, b) Assuming sup|t,| < oo if the sequence F, = £[Y; ., X (0 +1,/n*)] con-
verges to F then the variance of the limiting distribution Fis the limit of the variances
of the F,.

(D1, ¢) Let ¢(s, t) be the mass of the part of p, which is p, singular. Then, if
sup |t,| < 0

lim n[@(8, 0 +1,/n%) + (0 +1,/n*,0)] = 0.

It has been shown in [7] but follows easily from the above decomposition of
(D1) that the combination (D1)(D2)(D3) implies that the following (C1) is satisfied.
(C1) Let C(s, t) = p(p,, p,) and assume s, — s and ¢, — ¢. Then

lim,_, o & 2{C(6 +é&s,, 0 +¢t,) — C(0 +&s,, 0) — C(6, 0 +¢t,) + C(6, 0) }

exists and is finite.

If in addition (D4) is satisfied the limit in Condition (C1) must be of the form
sT(0)¢7 for a certain matrix I'(6). This will be referred to as Condition (C2).

Note that Condition (C2) looks similar to the condition of differentiability in
quadratic mean at 0 of the process £&. However, the increments &s, and &, involved
in the expression tend to zero at the same rate so that Condition (C2) is weaker
than the condition of differentiability in quadratic mean.

Since differentiability in quadratic mean of ¢ at 6 implies (D2), (D3), (D4), but
not always (D1), one could conjecture that the combination of (D1), (D2), (D3),
(D4) might imply the differentiability of ¢£. We shall now give an example showing
that this is not necessarily correct.

Let {X, o, 1} be the probability space consisting of the interval [0, 1] with its
Borel sets and the Lebesgue measure. Let {¢,} be an orthonormal sequence of
functions. That is [¢,dA =0 and [¢,¢,dA = 3§, . Let f(t) = |logt|* for t€[0, t,],
t, < 1. Construct a function ¢ = V(¢) as follows. If k < f(¢) < k+1 let

V(t) = [(k+D=fO]oe+ LA () —klow 1
Let y(¢) > 0 be the number such that
Y1) = EV2(®) = [k+1-fOP +[f -k} 2 .
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Finally define a process X(¢) by writing
X(t) = [Vt~ a(t)]
where a(z) > 0 is selected such that
2a(t) = t[1+a*(1)].

1t is easily verifiable that such a value of a(¢) does exist and ¢/2 < a(¢) < ¢. In order
that 1+ X(¢) = 0 it is sufficient that

V() 2 y(®a()—1/t.

If this positivity requirement is satisfied the process 1+ X(¢) can be treated as the
square root of a likelihood ratio for a measure p, whose density with respect to
A =peis [1+X ()]

Let us first show that for this family Condition (C2) is satisfied at ¢ = 0. For this
purpose, take two values u and v such that u < v, and consider ¥(u/n*) and V(v/n?).
The inequality u < v implies f(u/n?) > f(v/n?). If there is a k such that k < f(v/n?) <
f(u/n?) < k+1, then

V(u/n?)=V(u/n®) = [fu/n®)~f (0/n*)][@e+1 — @i].

Thus
E|V(u/n*)—V(v[n})|> £ 2| (u/n*)—f (v/n*)|?.

Suppose, on the contrary, that k < f(v/n?) < k+1 < f(u/n*) < k+2. In this case
the coefficient of ¢,,, is equal to 1—[(k+1)—f(v/n?)] for V(v/n*) and to
1 = [f(u/n*)— (k +1)] for V(u/n?). The difference of the two is at most f(u/n?) — f(v/n?).
Taking into account the contributions of ¢, and ¢, , one obtains

E|V(u/n*)—V(v/n*)|* < 3| f(u/n?)—f (/n)|?.

For n sufficiently large one can write 0 < v < n* and also

fu/n®)—f(v/n?) = (logn* —logu)* — (logn* —logv)*.

This quantity is of the order of magnitude of 4(logv/u)/(logn*). Thus, if u < v <n*
and iflog v/u < b, the difference f(u/n*) —f(v/n*) will be less than unity for sufficiently
large n. From that point on the only possible cases are the two cases just described
above, and therefore,

E|V(u/n*)— V(v/n*)|f < Cb/(log n*)*.

The covariance difference which occurs in Conditions (C1) and (C2) can be written
here

n[C(u/n*, v/n*)— C(u/n*, 0)— C(0,v/n*)+ C(0,0)]
= nE[X(u/n*) - X(0)][X(v/n*)— X(0)]
= wvE[W(u/n*)— a(u/n®)][W(v/n*)— a(v/n?)]
= uo{EW(u/n*)W(v/n*)— a(u/n*)a(v/n?)}
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where we have written W(t) for V(¢)/y(t). The term involving the function a is
smaller than uon™'. According to the above comparison of V(u/n?) and V(v/n?) the
first expectation tends to unity. Therefore the second difference involved in (Cl1)

tends to wuv.
Let us consider now a more specific choice of the functions ¢ . For this purpose
let g,, be the function defined by

(%) = 24" if  xe[0,27m*1)],
= 2" if xe[27m*D 2=m]
=0 otherwise.

Take for ¢, the function g,. The inequality k < f(t) < k+1 can be written
exp[—(k+1)?*] < t < exp(—k?). Thus if k £ f(¢) £ k+1 we can write

t|V(1)] S exp(—k?)22¢*D,

From this one can easily verify that the corresponding 1+ X(¢) will be positive at
least for t <4 and k = 2. Writing again W(t) for V(¢)/y(¢) take a fixed number
ue(0, o). If k is such that

exp[—(k+1)*] < u/n* < exp(—k?)
then
|n = W(u/n?)| < u='2exp [ k*J22** D),

Suppose now that the W, are independent random processes which are copies of
the process W. It follows from the above inequality that n~ Y, W(u/n?) has a
limiting normal distribution with expectation zero and variance unity. The cor-
responding sum Y ;X (u/n?) is equal to

Yisn X j(uln) = /n®) Y, <, Wiu/n*)—un*a(u/n?).

This is also asymptotically normal with variance »* and with an expectation equal
to the limit of —una(u/n?). Since a is defined by the equality 2a(?) = ¢[1+a?(¢)]
one can write a(?)/t = 4[1 +a*(¢)]. Thus lim,_,¢a(?)/t = 1. This gives

lim una(u/n?) = 4.

In conclusion, the family of measures p, constructed above with the particular
choice of function ¢, has the following properties.

(a) Conditions (D1), (D2), (D3), (D4) are satisfied, and therefore Condition
(C2) is also satisfied.

(b) The process ¢t = X(¢) is not differentiable in quadratic mean at ¢ = 0. In fact
t~'X(1) tends to zero in measure, and even almost surely, but E[r™'X(1)|* =
1+a?(t) - 1.

(c) There is an ¢ > 0 such that all the p,, € [0, ] are mutually absolutely con-
tinuous.
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It is true that the process ¢ = X(¢) has a certain number of kinks corresponding
to the passage from the inequality k < f(r) < k+1 to k+1 < f(t) <k+2. One
could avoid this by defining V*(¢) according to the formula

V() = [1-q(f (O = k)] +a[f (1) = K]pe+
for k £ f(t) < k+1 and for a function g defined by
q(z) = Cfgexp {—[x~'+(1—x)" ']} dx

with ¢(1) = 1. Then proceeding just as before one obtains a process X *(¢) which is
now infinitely differentiable for every ¢ > 0 and every x. The process is also in-
finitely differentiable in quadratic mean for ¢ > 0. Finally lim z "™V *(¢) = 0 almost
surely for every number m. In other words X *(¢f) = —3¢2[1+ R(¢)] for a process
t = R(¢) infinitely differentiable for ¢ > 0 and such that ¢t ~™R(¢) — 0 almost surely
as t — 0. In spite of this, conditions (D1) to (D4) are still satisfied with A,(0, ¢/n?)
asymptotically normal with variance equal to 4z2.

It is clear that one could also extend the definition of the process to the interval
[—1, 0] so as to have a singularity at the interior of the domain of definition: just
write V[—|¢]] = V[|¢|].

The foregoing conditions (D1)-(D4) are also related to certain conditions of
differentiability of the logarithm of densities dp,/dp,. As a prelude to the study of
the implications of conditions of the Cramér or Wald type let us consider the
following system of assumptions.

Assume that the measures p, have densities f(x, §) with respect to a certain
o-finite measure p on the space {¥, o/}. Let ®(x, 0) be the logarithm ®(x, 6) =
logf(x, ). The set © is still a subset of R,.

AssUMPTION Al. There is a vector valued function ¢(x, §), and matrix valued
functions B(x, 6) and B(x, 0, t), such that

(1) ®(x, 0+ 1)—D(x, 0) = 16(x, 0)—3¢B(x, 0, 1)tT.

(2) E,o(x, 0) = 0. Also M(0) = Ego(x, 0)pT(x, 0) exists.
(3) lim,_,q supy, <, Eq||B(x, 0, t)— B(x, 0)|| = 0.

(4) C(0) = EyB(x, 0) exists.

We shall also need a stronger assumption as follows.

AssUMPTION (A2). All the conditions of (A1) are satisfied but part 3 of (Al) is
replaced by

lim, o Egsupy, <. ||B(x, 6, 1)~ B(x, 60)|| = 0.
Let A, =n‘*zj§,,(p(xj, 0), the variables x; being independent identically dis-

tributed according to the measure p,. Let A, (6, t) be the logarithm of likelihood
ratio A,(0, t) = Zjé,,[(b(xj, 1)—®(x;, 0)].
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LEMMA 6. Assume that condition (Al) is satisfied then, for any sequence t, such
that 0+1,/n* € © and sup|t,| < 0o. The difference

An(o’ 0+ (tn/n%) ) -1, An + %tn C(e)tnT
tends to zero in probability.

Proor. The proof is immediate. The difference in question is simply equal to
—n- ! Zl§" t"[B(xj’ 6’ tn/n%) - C(e)]tnT = —n" ! Zjén tn[B(xj’ 0, tn/n%) _B(xja G)JtnT
+n71Y <t [B(x,,0)— C(O)]t,".

The last term tends to zero according to the strong law of large numbers. For the
first term one can use the bound |t,|*n™'Y ., ||B(x), 0, t,/n*)— B(x;, 0)||. By
Assumption (Al) part 3 the expectation of this tends to zero.

COROLLARY. If (Al) is satisfied and t, — t then A,,(O,‘0+(t,,/n*) is asymptotically
normally distributed with mean —LtC(0)tT and variance tM(0)tT. The difference
C(6)— M(0) is positive semi-definite.

The last statement arises from the fact that if A has the appropriate limiting
distribution of A, then Ee® <1 with equality only when the sequences are

contiguous.

CoROLLARY. Condition (A1) implies (D2) (D3) (D4) but not (D1). However, (D1)
is implied by (A1) and the further requirement that C(6) = M(6).

Let us note in passing that the contiguity requirement (D1) does imply
C(6) = M(0) if the closed cone tangent to ® at § contains at least k linearly inde-
pendent vectors. Also, Assumption (A1) as stated does imply that p, is absolutely
continuous with respect to each p, for ¢ in a neighborhood of 6. However, it does
not imply that p, is absolutely continuous with respect to p,. The singular mass may
be approximately equal to 4(z—0)C(8)(t—6).

It is clear that (Al) implies condition (/) at the point 6. Also (A1) implies that
®(x, ¢t) is differentiable in p, measure at 6. Therefore (A1) implies that the process
t = X,(¢) is differentiable in measure at 6. In fact, the derivative X,'(0) is easily seen
to be equal to 1¢(x, 0).

As usual, if 7, ¢ the asymptotic normality of A,(0, 6+ (t,/n?)) implies the
asymptotic normality of ng,,X (t,/n*) with a limiting distribution which has a
variance equal to }#M(0)tT and an expectation equal to —3tC(0)¢tT + LtM(O)T. If
the process ¢ is differentiable in quadratic mean at 0, the matrices C and M are
related to our previous matrices y and I' by the relations M = 4y and C = 2(y+1T).
When X(¢) is differentiable in measure the following remark may be of interest.

LEMMA 7. Suppose that there is a random vector V such that
limy, o |t] ' [X(0+1)—X(6)—tV] =0
in py measure. Then V is the derivative in quadratic mean of X at 0 if and only if for

every sequence t, tending to a limit t the norm &~ *||X(6+et,)— X(0)|| tends to the
limit ||tV || as e 0.
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This follows from the fact that convergence in quadratic mean is equivalent to
convergence in measure together with convergence of the quadratic norms. Now

EX*(0+¢t,) = h*(0,0+¢t,)— Bo(0+et,)
where B,(¢) is the mass of p,, which is p, singular.

Thus, if X is differentiable in measure to ¥ it will be differentiable in quadratic
mean to V if and only if whenever #, — ¢ one has

lim,_, &~ 2[h%(0, 0+et,) — Bo(0 +21,)] = E, |tV |>.
From this one obtains immediately the following lemma, in which a unit vector ¢

belongs to the closed cone tangent to © at 6 if there is a sequence v, such that
0+v,€0 and |v,| 'y, > 1.

LEMMA 8. Assume that the contiguity condition (D1) is satzsﬁed and that Condition
(C2) is also satisfied for a matrixI'(0).

Assume in addition that at s = 0 the process s = X(s) is differentiable in p, measure
to a vector V. Then the process s = &(s) is differentiable in quadratic mean at s = 0
if and only if for every unit vector t in the closed cone tangent to © at 0 one has
{[[(0)—T,1tT =0, the matrix T, being defined by Ty = EVV'".

COROLLARY. Suppose that condition (Al) is satisfied and that in addition
C(0) = M(0). Then the process s = &(s) is differentiable in quadratic mean at s = 6.

Proor. We have already noted that (A1) combined with the equality C(6) = M(0)
implies all the conditions (D1) to (D4); hence also (C2) for a matrix I'(6) equal to
1C(0). The equality C(0) = E@¢” is then nothing else than the equality I'(6) = EvyT
for V = o.

To terminate this section we shall describe a consequence of the stronger as-
sumption called (A2) above. This result implies many of the usual assertions con-
cerning maximum likelihood estimates 0,. In particular, it implies the assertions
on the asymptotic behavior of n*(9,—60) made in [1].

As before we shall write A, = n™*Y; _,0(x;, 6) and

An(03 t) = ngn[q)(xﬁ t)_q)(xja 0)]
for variables x; distributed independently according to ps.

PROPOSITION 3. Suppose that Assumption (A2) is satisfied. Let S,(t) be the

difference
S,(t) = A0,0+1)—nttA,+intCO)".

There is a function t = y(|t|) tending to zero as |t| » O such that for every & > 0.
Po{|SuO] < nle+n(|tD]|t|* forall t with 0+te®}
tends to unity as n — 0.

ReEMARK. Unless the process t = S,(¢) is separable or similarly restricted one
cannot assert that the set in the probability bracket is measurable. The assertion
is then that its interior measure tends to unity.
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ProOF. One can write the difference S,(¢) in the form
nT1S () =n"1Y c t[B(x;,0)—C(OT —n~' Y ., t[B(x,, 0, 1) — B(x;,0)]¢".

Let H[x, |t|] = sup, {||B(x}, 6, s)— B(x, 0)||; |s| < |¢|}. According to Assumption
(A2) the expectation 7,(|¢|) = E4H[x, |t|] tends to zero as |t| > 0. We can bound
n~1|S,(#)| by the expression |¢t|>n™'Y ;  Hlx, |t|]+|n" 'Y <ut[B(x;, 6)— C(O)]¢7|.
By the strong law of large numbers the last term will eventually remain inferior to
3elt|2. For the same reason the term » ="'y ;, H[x;, |¢|] tends pointwise to #,(|¢|).
Let then #(|¢|) = lim,on,[|¢|+|c|] on the open set where this is less than an
arbitrary number b = 1. Otherwise, take 5(#) = co. The finite part of 5 hasin function
of |¢| only a finite number of jumps larger than &/4. Thus one can find values 0 =
10 =<1, £+ £ 1, which divide the range of values where # is finite into intervals
where # varies by no more than &/4. To conclude, it is sufficient to note that
Hix, |t|] S Hlx,t;]if1,-, = |t| <1

From the proposition one can deduce the following result, in which a set K is
called tangent to © at 6 if the Hausdorff distance of the parts of K and @ situated
in the ball centered at @ of radius ¢ tends to zero faster than ¢ as ¢ — 0.

PROPOSITION 4. Suppose that Assumption (A2) is satisfied, that the matrix C(0)
is non-singular and that © has a convex tangent set at 0. Then there is an o > 0 with
the following property. Let 8, be any point 0,€ © such that

ngnq)(xjs 8,) 2 sup;co {Zjén(l)(xj, 13 |t—0| <aj—n"l.
Let T, be any point T, © such that
n™ ! +n*(T,—0)A,—4n(T,— 0)C(0)T,— )"
= sup {n*tA,—intC(0)t"; 0+t O}.

Then n*(T,—0,) tends to zero in P, probability. Furthermore, in the definition of T,
one can substitute instead of © any set K tangent to © at the point 6.

Proor. Choose « small enough so that in the notation of Proposition 3 one has
nl|t]1> < 4tC(0)tT for |t| < o. Then eventually A6, 6+1) < ntA,—intC(6)"
for all |¢| < . According to the definition of 8, this gives

n%(gn - O)An— 2]{/"(9,‘ - B)C(e)(é— 0)T g - n- 1'
Equivalently, writing C instead of C(6) for simplicity
[n*(0,—0)—2C~'A,TIC[n*(0,—0)—2C~1A,T]T < 4A,TCT A, +n" 1.

Since ¥ [A,,|0] converges to the Gaussian distribution A7(0, M) it follows that
n|d,—06| is bounded in probability. The same argument applies to 7, Thus,
leaving aside cases which have probability as small as desired, one can replace ©
by the set @, = {r: te®, n*|t—6| < b} or the corresponding set where K replaces
©®. However, for every ¢ > 0, according to Proposition 3,

|AL0,0+1/n?)—7A,+41CeT|
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is eventually smaller than g|t|?5~2 for all 7 such that |t| < b and (§+1)e®. This
gives

n*(8,—0)A,—4n(0,-0)C(0,— 0)" 2 n¥(T,—0)A, —In(T,~OC(T,—0)"—n""' —e.

The result follows by the usual convexity arguments.

When K is a convex cone the immediate implication of the preceding proposition
can be described as follows. Suppose 8 = 0 for simplicity. Then n*(8,—60) behaves
asymptotically like the projection ( = closest point) of C "'A,” on K for the metric
induced by C. This implies the appropriate asymptotic normal behavior if K is a
linear space. If K is not a linear space one can, in principle, obtain the limiting
behavior of n*(8,—0) by projecting an A[0, C"'MC '] vector Z on K. This
remains true even in certain other cases where K is not convex, but the necessary
conditions seem hard to describe in a simple manner.

5. Additional results for one dimensional parameters. We have gathered in this
section a number of different results which have in common that either they do not
extend to k-dimensions or that we do not know of any natural way of extending
them. Let us start by recalling a general argument of Kolmogorov. For the pur-
pose, ® can be any metric space and ¢ = X(t), t€ © any stochastic process indexed
by ©. Suppose that for each integer m = 0, 1, 2, - - - one is given a finite or countable
subset S,, of ®. Assume also that S, is reduced to one point {75} =S,. Let
S =UnS, and let T,, = U,;{S;;j <m}. Let C,, be the convex hull of the set of
random variables {X(1); t€T,,}. Finally, let ¢,, m=1,2,--- be a sequence of
numbers ¢, > 0 with Y'e,, = a. Define a number 4,, by the relation

On = Ypesmr, P{nf[|x()—Y|; YeC,] > &,}.
LEMMA (8). With the notation just described let S be the closure of the set S.
Assume that {X(t); te S} is a separable process with separating set S itself. Then
P{Suptes |X(t)—X(t0)| > Z:=l sm} é Z:=1 6m
PrOOF. Since S is a separating set for the process {X(¢); te S} it is sufficient to
prove the result for S itself instead of S. We shall prove by induction that
*) P{sup;cr,.,, |X(t)—X(to)| >Y ey S Ym0

If this is true, the desired result follows. Indeed, let 4,, = {o: |X(¢)—X(t,)| £ a for
all te T,,}. The sets A4,, decrease to a certain set 4 which is precisely the set where
Sup, c s |X(t)—X(t0)| < a. Thus it is enough to prove (*). This inequality certainly
holds for m = 0, since T, = S, = {t,} provided only that sums with empty sets of
indices be interpreted as equal to zero. Suppose now that the inequality is valid for
i=0,1,2,--,m—1 with m—12=0. For every teS,\T,, and every YeC,, one
can write
|X(O—X(@to)| < |X(O)—-Y|+|Y—X(10)|.

Thus, taking a supremum on Y over the last term only, we obtain
|X(O)— X ()| < |X(®O— Y| +supger,, | X(E)—X(10)]-
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Since this is now true for every YeC,, it follows that
|X(t)_X(tO)| é Vm(t)+5up§e Tm |X(€)_X(t0)|9
with V,(¢) = inf {|{X(t)— Y|; YeC,}. It follows that
P{sup, cs,, o 1,0 | X() = X(20)| > &m+ 211" &}
é P{Suptesm\Tm Vm(t) > sm}
+P{sup,cr,, | X()— X(t0)| > 171 &}
S0+ i 0
This concludes the proof of the lemma.
From this point on we shall always assume that © is*a subset of the real line and

that t = X(t) is a separable process with set of indices ©.
In this case consider the quadratic norms defined by

|[X(H)—X(9)||* = E|X(©)— X(s)|* = h*(s, 1).
Let o(0) be the value ¢(0) € [0, o0] given by
o(0) = limsup,, |t — 6]~ * h(t,0).
Condition (/) of Section 3 is satisfied at 0 if and only if ¢(6) < co.

DEFINITION 1. Let S be a subset of ®. The variation of X on the set S is the
supremum of all sums of the type Y ;|| X(¢;.,)— X(z,)|| for finite systems of points
{t;} such that t; < ¢;,, and ¢;e S for all ;.

LEMMA 9. Let S be a closed subset of the line and let {X(t); te S} be a separable
stochastic process which is continuous in quadratic mean. Assume that the set S has
an infimum ty€ S. Then for every B > 0

P{sup,.s|X(1)— X(t,)| > B} < 24I*/B.
where L is the variation of X on S.

PRrROOF. Assume ¢, = 0 for simplicity. Extend X to a continuous function defined
on the whole of the half line [0, o) by interpolating linearly in each interval
contiguous to S and leaving X constant on the right of the supremum of S. Let
X be the process so extended. Let s(t) be the variation of X(¢) on the set [0, 7). This
is a continuous nondecreasing function such that sup,s(t) = L. For each integer
m > 0let {Tm’j;j=0, 1,2,--+,2"—1} be numbers such that 0 = 1,, ( <7, 1" ** <
Tm, j < Tm,j+1 <"+ and such that s[z,, ;] =j27"L. Let S,, be this set of points.
Construct the successive sets so that S,, =S, . ;. Use this for the sets of Lemma 8
and apply Chebyshev’s inequality. This gives

-my\2
Ztssm\Tm P{inf‘tETm IX(t)_X(T)l > Bem} é (232_8_L2)_2m
m
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Hence, if ¢, = (1-p)p" "L, B> = 3,
P{sup|X (1)~ X(to)| > B} S }/B*Y %27 ™, 2 < 241%|B.
This concludes the proof of the lemma.

REMARK 1. The continuity in quadratic mean is not really necessary. However, it
does imply that any dense set is a separating set.

REMARK 2. Suppose that S is a finite interval S = [a, b] of the line and that the
process X satisfies condition (/) at all points ¢€[a, b]. Then X admits almost every-
where a derivative in quadratic mean X'(¢) with ||X'()|| = o(¢). However, X need
not be the Bochner-Lebesgue integral of its derivative, since ¢ need not be integrable.
In fact, the variation of X on [, b] is given by L = [>o(¢)dt, and X’ will be in-
tegrable on [a, b] if and only if X is of bounded variation Qn [a, b]. For a proof see
Gel’fand [4]. Consider the process as map from [a, ] to the Hilbert space of
equivalence classes of square integrable variables. If (/) is satisfied for every
tela, b], then ¢ = X(t) is well determined by X(a) and the derivatives ¢ = X '(¢)
where they exist whether or not L is finite, but the integral is of a Denjoy type.
A very useful corollary of Lemma 9 is the following result.

COROLLARY. Suppose that S is a compact subset of the line and that X  is a process
satisfying the conditions of Lemma 9. Let X , be a sequence of separable stochastic
processes such that E|X ,(t)—X (s)|*=E ]X (N=X ()| for all pairs (s, 1) of
elements of S, and E IX ,,(t0)|2 < b < oo for some ty€S. Then the sample functions of
the processes X, are almost surely continuous functions. Furthermore, for each
e>0 there is a bounded equicontinuous subset K of continuous functions such that
P{X ,(-)eK} > 1—¢ for all values of n.

PRrOOF. Consider the processes Y, defined by Y,(t) = X (t)— X ,(¢,). Extend them
by interpolation to ¥, as in the proof of Lemma 9. On any interval [t j» Tj+1) ON
which the variation of X g is s(t;,,)—s(t;) £ L/M one can write

P{sup,[|Y()=Y(z)|;7; S t <1j4,] > &} = 2412 /(e m?).

Therefore, it is possible to cover S by m intervals (t;_y, 7;,,) such that in each
interval the process oscillates by not more than 2¢, except perhaps for cases having
a total probability inferior to 24L2[me?] ™. Since this can be made as small as one
wishes independently of n, the result follows.

For application to statistical problems, let us consider the situation described
by the following assumptions.

(B1) The set ® is a finite or infinite interval of the line. For each 6 suppose given
a probability measure p,, define A%(t, 0) = H*(p,, p,) as before and let X(¢) be
the process defined by X(¢) = (dp,/dps)*—1 as in Sections 3 and 4. Let Y(t) =
X(t)— EX(t). Consider independent copies Yi(t), j =1, 2, -+ of the process Y.

(B2) The densities dp,/dp, are selected such that the processes Y; are separable

(This is always possible, of course).

(B3) The process t = X(¢) is continuous in quadratic mean.



ASYMPTOTIC NORMALITY OF MAXIMUM LIKELIHOOD ESTIMATES 823

We shall assume that the logarithms of likelihood ratios A,(0, t) = logdP, ,/dP, ,
are taken equal to 2) ;. ,log [1+X ,(£)].

LeEMMA 10. Assume that conditions (Bl), (B2), (B3) are satisfied. Let Z,(t) =
n~*y ., Y,(t). Let J be an interval J =® such that 0€J and such that the variation
of Y on J is equal to a finite number L. Then the following relations hold except
perhaps on a set which has probability inferior to 24L*B™2.

(1) sup,.;|Z, ()| < B.
(2) A(B, 1) £ —nh?(0, t)+2Bn?* for all teJ.
(3) Jn{t; A0, 1) Z 0} ={t: n*h?(0, t) < 2B}.

Proor. Conditions (B2) and (B3) imply that on the interval J the sample functions
of the processes Y; are continuous. Thus the sample functions of the sum Z, are
also continuous, so that Z, is a separable process. Theé first relation is then a con-
sequence of Lemma 9. The second relation follows by writing

A0,0) =2} ;< log[1+X (D] <2) ;<. X (D)
= —nh?0, ) +2n*Z(1)
< —nh*0,t)+2Bn?.

The third relation is an obvious consequence of the second.

As an application of this lemma, consider points 8,€J such that A6, 0,) =0
and A0, 0,) = sup, . ; A0, t)—1/n. In fact, one can often suppose that 8, actually
maximizes A,(0, t) for teJ, since the sample functions of A,(6, t) are continuous
at each ¢ where A6, t) > — o0, and therefore they assume a maximum on each
compact. The lemma says that a 8, satisfying the conditions just described is such
that with high probability n*4%(0, §,) < 2B. In other words, n*h2(0, 8,) is bounded
in probability. The more familiar statements of the type that n*(8,—60) is bounded
in probability would correspond more or less to the stronger assertion that n4%(6, 0,)
is bounded in probability. We do not know how to prove this without further
assumptions. However, we shall now describe a result of this general character.
The assumptions made may appear strange. They are easier to understand if one
remembers that the function ¢ = s(¢) used below is just as good a parametrization
as ¢ itself. For simplicity we will consider only a one-sided situation; that is, of
course, immaterial.

(B4) Let s(t) be the variation of Y in the interval [0, 7). This is finite for some
7 > 0. Furthermore, there is a number &2 > 0 such that

o? = liminf,., h%(0, 1)/s*(t).

PROPOSITION 5. Let Assumptions (B1), (B2), (B3), (B4) be satisfied. Then there is
a 6 > 0 such that if a, > 0 is taken such that s(a,) = 16n~*/(a%e)

A0,0) £ —1na®s* () +2n*Z,(a,)

JSor all te [a,, 0+ 8) except for cases whose probability is inferior to 2162,
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Proor. Consider on an interval (8, 6+6) the process ¢ = Y(¢)f(¢) where f is a
continuous positive decreasing function. The variation of this process in an interval
[a, B)=(6, 6+ ) is easily seen to be inferior to

M = [2B(5)ds(t)—[a]| Y() - Y(a)|| 4B(2)

< [2B(t) ds(t)— fas(0) dB(2).
Take for f(¢) the function f(t) = s~ 2(z). This gives

M £3[bs72(1) ds(?) < 3/s(a).
It follows from Lemma 9 that

P{|Z(t)—Z,(a)| < Bs*(1), for all te[a,b)} = 1—216/(s*(a)B?).
Proceeding as in Lemma 10 one sees that the relation in the probability braces
implies
A0,1) £ —nh?(0,1)+2n*Z,(a) +2Bn*s*(r)

for all values of € [a, b). According to Assumption (B4) there is a 6 > 0 such that
s remains finite in the interval [0, 6+6], and such that A%(0, ) = 3a*s*(¢) for all
te[0, 0+45)]. Taking B = $a’n*

A0,1) £ —1ans* () +2n*Z,(a).
For this value of B one has also
s (a)B? = s4a*ns*(a).
For a given & > 0 one can take a value a, such that ;a*ns?(a,) = ¢ 2. That is
s(a,) = 16n~%/(ea?).
The result follows.

Note. The argument assumes implicitly that s(z) > 0 for te(0, 0+6). The case
where s vanishes in an interval is trivial.

COROLLARY 1. With the notation and assumptions of Proposition 5, assume

s(t) > 0 for te(0, 6+90). Then
P{A(0,1) <O for all te[a,,0+8)} = 1—232¢.

Proor. The inequality in the probability brackets will hold if 2n¥Z(a,) <
1na?s*(a,) and the relation of Proposition 5 holds. According to Chebyshev’s
inequality

P{|Z,(a,)| 2 (48) " 's(a,)} < 16¢%.
Thus, eliminating cases which have probability at most 232¢2, one can write

2n* 1 (n*
milal s(a,)—ina?s*(1) < 5 {% s(a,)— noczsz(a,,)} .

A (0,1
,,(,)<48
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The quantity in the brackets is equal to

16 16?2 16

a2e? o

The result follows.

COROLLARY 2. Suppose that assumptions (B1) to (B4) are satisfied. Suppose also
that t # 0 implies p, # p 4. Let J = [0, b) be a finite or infinite interval on which Y
has bounded variation. Assume also that there is an & > 0 such that Jn{t: h*(0, t) < ¢}
is compact. Then

(1) The probability that there is a 0, with values in J that A0, 0,) = sup {A(0, t);
teJ} tends to unity as n — .

(2) If 6,* takes values on J and is such that A0, 6,%) = 0, and in particular for
0,* = 0,, the sequence n*s(0,*) is bounded in probability.

PROOF. According to Lemma 10, sequences of the type n*h%(0, 6,*) are bounded in
probability. Thus the probability that 6,* be in the compact K = Jn{t; h*(0, t) < ¢}
will tend to unity. This gives the existence of 0, as before. If p, # p, for t# 6
then inf {h*(0, t); te Kn[a, b]} > 0 for 6 < a. It follows that for any & > 0 the
probability that 6,*€[0, 6+0) will tend to unity. The last statement is then a
consequence of Proposition 5.

Since the condition called (B4) above may appear somewhat unfamiliar the
following simple remark may be of interest.

LeEMMA 11. Suppose that condition (I) is satisfied on an interval (0—0, 0+ 9),
6 > 0; that is to say, suppose that for te(0—0, 0+9)

limsup,q|t]"'h[t,1+1] = o(t) < c0.
Assume also that 0 is a Lebesgue point of ¢ in the sense that
m, g, c>01 ' [0 |o(t)—0(0)|dt = 0.

Finally, assume that the usual process & is differentiable in quadratic mean at
t = 0, or more generally, that

liminf,_ ||~ *h(6,0+1) > 0.
Then condition (B4) is satisfied at 0.
Proor. The variation of the process ¢ in an interval [0, ¢) is given by
u(t) = [ho(1) d.

It is easily verifiable that the variation of X or Y in the same interval is smaller
than or equal to that of £. Thus

s(t) < fpo(r)dr £ (t—0)a(0)+ [y |o(x) —a(0)| dr.
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This gives
liminf {h(0,0+1)s~ (0 +1)} = ¢~ *(6) liminf|¢|~* h(6, 6 +1).

The result follows.

This lemma is applicable in particular to processes ¢ satisfying condition (/) and
of bounded variation. For such processes almost all points of ® are Lebesgue
points of the function ¢. If, in addition, ¢ is differentiable in quadratic mean at 6
then

lim {h(0,0+1)s"'(0+1)} = 1.

Collecting the results established in the preceding propositions, one sees im-
mediately that the following result holds.

PROPOSITION 6. Let © be an interval of the line such that 0 is interior to ©.
Assume that the process ¢ has bounded variation ® and that K = {t; h*(0, 1) < &}
is compact for some ¢ > 0. Assume that Conditions (Bl), (B2), (B3) are satisfied.
Furthermore, assume that o is finite in some interval around 6 and that 0 is a Lebesgue
point of a. Suppose that a(0) > 0 and that t # 0 implies p, # py. Finally, assume that
¢ is differentiable in quadratic mean at 6. Then, with probability tending to unity as
n— o0, there exist measurable maximum likelihood estimates 8, and ¥ [1*(0,—0) | 0]
tends to the normal distribution with expectation zero and variance y(6)/[o*(6) +y(6)]*
where y(6) = E|X'(6)|* < *(6).

ProoF. The proposition asserts measurability of 8,. This can easily be verified
as follows. Divide the compact K covering it by intervals [a;, a;, ) of length 27k,
Number the intervals in their natural order on the line. Take the first j such that
A,(0, 1) reaches its maximum in [a}, a;, ). Let T} be equal to a;. If the covering of
K is a partition which is refined in the ordinary binary manner and the sample
functions of A, are continuous, the functions 7} will converge as k — co to a choice
of 8,. To prove the final statement of the proposition, note that with high proba-
bility one can restrict oneself to an interval of the type (0 —a/n?, 0+a/n*) since the
variation s(¢) is roughly proportional to — 6. Consider then the process 7= W,(t) =
1A,(0, 6+1/n?) in the same interval. The differentiability in quadratic mean implies
that V,(t) is asymptotically normal. The corollary of Lemma 9 implies that the
convergence to Gaussian distributions occurs in the Prohorav sense for the uniform
norm in the space of continuous functions on [—a, +a]. It follows by a fairly
standard argument that

SUP|¢| sa | W(D) = V(D) +3 Var V(1) > 0

in probability as n — oo. Letting X;/(6) be the derivative of X;(t)at ¢ = 0, and letting
A, = n'%zjg,,X ;(6), one can replace in a similar manner the process V,(t) by
—1nh*(0, 0+1t/*n)+1tA,, and the variance of V,(t) by y(6)t>. Thus

SUP|¢) <a | WD) —7A, +3[0%(0) +9(0)]7*]

tends to zero in probability as n — co. It follows that n*(8,—0) — [%(6) +7(0)] A,
tends to zero in probability. Hence the result.
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To terminate, let us mention an extension of a lemma of Héjek [5] which offers
an often convenient way of checking our condition of differentiability in quadratic

mean.
Let {X, o, v} be a o-finite measure space. Let ® be an interval of the line.

DEFINITION. Let g be a real-valued function defined on {X x ®}. We shall say
that g is simply absolutely continuous in 0 if it is measurable in x for each 6 and if
there is a function (x, 6) = ¥(x, 0) such that for every pair (s, t), s < ¢ of elements
of © the relation

g(x’ t)_g(x’ S) = j..te ‘p(xrt) dr
holds almost everywhere v, the integral on the right being for every x € X a Lebesgue

integral.
If g is a function satisfying the above definition fix s and consider g* defined by

g%(x, 1) = g(x, )+ [s ¥(x, 0) db.

Then g*(x, t) = g(x, t) except on a v null set 4,. Thus g* is a possible “version”
of the family {g(x, t); te ®}. This version is continuous in ¢ for each x and
measurable in x for each ¢. Thus it is jointly measurable. It follows that

Y*(x,0) = limsup o7~ '[g*(x,0+1)—g*(x,0)]

is also jointly measurable.
According to Lebesgue one must have y*(x, t) = y(x, t) except perhaps on a
set B, of values of ¢ which has Lebesgue measure zero. It follows that

_ﬂl//*(x, H—yY(x, t)| dt=0

and that one may as well assume that ¥ itself is selected jointly measurable.

PROPOSITION 7. Assume that © is an interval of the line and that {X, o/, v} is a
o-finite measure space. Let g be a function defined on X x ©. Suppose that g is simply
absolutely continuous for a function  which is jointly measurable.

Let 6*(t) = [y*(x, t)v(dx) and assume that 0 is a Lebesgue point of the map
t = o(t). Let G, be the equivalence class of x = g(x, t)—g(x, 0), then the map t = G,
admits the class of x= Y(x, 0) as a derivative in quadratic mean (for v) at t = 0 if
and only if at the point 0 the function g admits \ for derivative in v-measure on each
set Ae o of finite v-measure.

Proor. The necessity of the condition is clear. To prove the sufficiency note that
for ¢ > 0 one can write

[|£71G,||> = f1=*|g(x, 0+ ) —g(x, 0)|*v(dx)
= |7 fo* ¥(x, 1) dr|*v(dx)
S T{ ot W, w)| dud (e~ o+ |W(x, ©)| dr}v(dx)
< 72 2 )], D)) dc

St 2t o(wyo(x) dudt = |t [§ 1 o(7) dr|>.
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Thus
||t71G|| = a(0)+ 17" [o"|o(u) — (0)| du.

It follows then from Fatou’s lemma that
lim,.o ||t 1G] = a(0).

The desired conclusion is then a consequence of the usual argument in Hilbert
space.

REMARK 1. The proposition may be applied to the case where v is Lebesgue
measure on the line and g(x, 0) = g(x—0). In this case o(¢) is constant in 7 and the
result reduces to Hajek’s statement.

REMARK 2. In the application to statistical problems the function g(x, ) will be
the square root of a probability density f(x, 0). In this case if the set of points x at
which f(x, 0) = 0 has v-measure zero, then differentiability in measure of / implies
differentiability in measure of g at ¢ = 0. Furthermore, simple absolute continuity
of g implies that of f, but the converse is not true as simple examples will show.
Because of this it is perhaps convenient to note the following. Suppose that
lim, o717 [g(x, +7)—g(x, )] = Y(x, t) except on a set A, such that v(4,) = 0 and
that ¥ is jointly measurable. Furthermore, suppose that 0 is a Lebesgue point of
1= o(t) = [[Y3(x, 1)v(dx)]*. When v is a finite measure the absolute continuity of
g around 0 will be assured if one knows in addition that

limot™ ! g(x, 1+17)—g(x,1)| < o0,

except perhaps on a countable set of values of # which may depend on x.

REFERENCES

[1] CraMER, H. (1946). Mathematical Methods of Statistics. Princeton Univ. Press.
[2] Doos, J. L. (1936). Statistical estimation. Trans. Amer. Math. Soc. 39 410-421.
[3] DuGUE, D. (1937). Application des propriétés de la limite au sens du calcul des probabilités
a Pétude de diverses questions d’estimation. J. Ecole Polytechnique 3 305-374.
[4] GEL’rAND, 1. M. (1938). Abstrakte funktionen und lineare operatoren. Mat. Sb. 4(46)
238-286.
[5] HAsek, J. (1962). Asymptotically most powerful rank order tests. Ann. Math. Statist. 33
1124-1147.
[6] KakuTany, S. (1948). On cquivalence of infinite product measures. Ann. of Math. 49 214-224.
[7] LECaM, L. (1966). Likelihood functions for large numbers of independent observations in
Festschrift for J. Neyman, ed. F. N. David. Wiley, New York. 167-187.
[8] LECaM, L. (1960). Locally asymptotically normal families of distributions. Univ. California
Publ. Statist. 3 37-98.
[9] Saks, S. (1937). Theory of the Integral. Monografie Matematyczne, Warsaw. Dover, New
York (1964).
[10] SHEPP, L. (1965). Distinguishing a sequence of random variables from a translate of itself.
Ann. Math. Statist. 36 1107-1112.
[11] WaLD, A. (1942). Tests of statistical hypotheses concerning several parameters when the
number of observations is large. Trans. Amer. Math. Soc. 54 426-482.
[12] WiLks, S. S. (1938). Shortest average confidence intervals from large samples. Ann. Math.
Statist. 9 166-175.



