The Annals of Mathematical Statistics
1970, Vol. 41, No. 4, 1273-1281

A CLASS OF ADF TESTS FOR SUBHYPOTHESIS
IN THE MULTIPLE LINEAR REGRESSION

By Hira L. KouL

Michigan State University

Summary. In the regression model Y = fx,+f,x,+Z a class of asymptoti-
cally distribution free (ADF) tests for testing Hy: f; = 0 when f, is unknown is
given. It turns out that if one uses Wilcoxon type tests then there is no reasonable
distribution of Z under which the test would be ADF unless x, and x, are ortho-
gonal to each other when centered. On the other hand if one is sampling from double
exponential, then the class of tests is reasonably large. The tests of the Freund-
Ausari type, Mood-type, among others, are in the class.

Section 1 consists of introduction, notation and assumptions.

In Section 2, we prove a uniform continuity Theorem 2.2 for rank statistics.
Theorem 2.1 and Lemma 2.3 are proved before Theorem 2.2. These latter two
results are based on the work done in [4]. Theorem 2.4 gives the desired result.
Finally generalization to the situation where one has multiple linear regression
model and has more than one parameter under H, with more than one unknown is
. mentioned.

1. Introduction, notation and assumptions. Suppose we are observing random
observations {Y;,1 <i < n}n = 1 independently such that

(1.1) Pr[Y, = y] = F(y—Bi (1)~ B2 %i(2))

where f,, B, are the parameters of interest and {x;,(«)i=1,-"-,njn=1a=1,2
are sequences of known regression scores.

Consider the hypothesis Hy: §; = 0, when nothing is known about f,.

Here we give a class of rank tests which are shown to be asymptotically distribu-
tion free for H, under some suitable conditions on the regression scores, on the
underlying F and on an estimator j, of f8,. One essentially constructs a test based
on the ranks of ¥;,— B, x;,(2) and shows that asymptotically it is equivalent to the
one based on the ranks of Y;,— f, x;, (1), where B, is the true value of the parameter
B2, in probability. In the case of two sample problems, when testing for scale with
unknown locations, a similar thing has been done by Gross [2] for a class of
statistics.

The following assumptions and notations will be used in the sequel.

We shall suppress the dependence of {x;,(j)} on n and write {x;} instead.
Assume

(1.2) limmax, ¢;<, x2/Y. x% =0 a=1,2

0<limn 'y x% <k,<o0 x=1,2
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1274 HIRA L. KOUL

and
limn™'Y x;; x;, S k < 0.

Here and in the sequel lim will always be taken as n — co.

Let M = {¢:[0,1) > R;

(i) @ absolutely continuous and is such that forevery0 S u < 1, (1) = j';go’(v) dv
where ¢’ is the derivative of ¢ which exists almost everywhere;

(i) ||| = folo’ ()] du < o0}

Note that ¢ € M implies ¢ is bounded and hence square integrable.

The distribution F is not known but is a member of &#, = {F; F is an absolutely
continuous cdf and has absolutely continuous density with sup, f(x) < 4 < 0.
F strictly increasing}.

Let R;, be the rank of Y;,—tx;, among {Y;,—tx;, 1 =i < n} for some ¢. Clearly
R;, is a function of t.

Define for a score function ¢ the test statistic

n R.
1.3 S, ()=n""t ; L
( ) n() n i;x'1¢<n+l)
The test is to reject H, in favor of positive values of g, if S,(8,) is large.
Finally let us represent S, as a Chernoff-Savage type statistic. Thisrepresentation
will be very helpful in the sequel.
For any two numbers ¢ and x, define

(14) Un(t, X) = n_ ! Z:'= 1 I(Yin_ txiz é X), qn(t’ x) = Evn(t’ x),
(15) un(t’ x) = n_ ! Z;’= 1 xil I(Ym_ txiz é X), mn(t ,X) = E#n(t’ X),
(1.6) Ly(t,x) = n*[p,(t, x) = m,(t,x)],

where I(A) is the indicator of the set 4 and E is the expectation taken under H,,
when the true parameter value of 8, is 0. With these definitions one can write

(1.7 Su(®) = §2 o @[(n/n+D)v,(t, x)] dp(t, x)
where x is the integrating variable.

Define
1.8) A1) = [25, @[qu(t, x)(n/n+1)] dm,(t, x).

Finally for any rv X.#,(X) is probability law of X when 0 is the true parameter
value.

2. A uniform continuity theorem and main theorem. Without loss of generality
we may assume that the true value of the parameter f, is zero. Let P, denote the
probability measure generated by {Y;, 1 £ i < n} under the above assumption. The
following results have been proved in [4] and will be restated here without proof for
the sake of completeness.
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LemMA 2.1. If conditions (1.2) are satisfied by the regression scores and Fe F
then for every ¢ >0, and any 0 < a < oo, there is an n(e, a) and b(e) such that
n 2 n(e, a) implies

(i) Pylsup {|v,(tn"%, x)—q,(tn"%, %)|; |t| S @, xe[— 00, + 0]} >¢] <e.
(ii) P,[sup{nt|v(tn~%, x)—q,(tn"%, x)|; |t| S a, xe[— 00, 0]} 2 b(e)] S &

LEMMA 2.2. Under the conditions of Lemma 2.1
sup {L,(tn"%,x); xe[— o0, + 0], |¢| < a}

has a limit determined by a Gaussian process with continuous sample paths in P,
probability and consequently if G,(t, &) and M, (t, &), £€(0, 1], are two real-valued
processes such that

@.1) sup {|G,(tn ™%, &)~ M,(tn ™%, 9)|; |¢] < a,£€[0,1])

tends to zero in probability, then

(2.2) lim,.,, P,[sup{|L,(tn™%,G,(tn™%,&))— L,(tn~*, M, (tn"%,0))|;
[f|£a,05¢<1}ze]=0

for any 0 < a < . Also

(2.3) lim,., P,[sup{|L,(tn" % x)—L,0,x)|; |{| < a,xe[— o0, + 0]} 2 €] =0

forany 0 <a < oo.

Now let us look at the function g,(¢, x) = n™ ') F(x+1x;,). Clearly for every
t, g,(t,-) is a distribution function and has the same properties as does F. Also note
that v,(¢, -) is nothing but an empirical cdf and as such i$ nondecreasing. Define
for0<¢é<1

2.4 G,(1,&) = inf{x;v,(t,x) = &}
M, (1, &) =inf{x;q,(t,x) = &}.

From (i) of Lemma 2.1 it then follows that (2.1) is satisfied for the above G, and
M, and consequently (2.2) also holds. We will need this fact and therefore shall state
itasa

COROLLARY 2.1. With G, and M, defined by (2.4), (2.2) holds.
For the purpose of proving the following theorem, since F is continuous and
strictly increasing, we shall without loss of any generality assume F(y)=y0 <y < 1.

THEOREM 2.1. Let {Y;,1 £ i £ n} n 2 1 be a sequence of independent tv’s satisfying
(1.1). Let {x;,, 1 Si<n,a=1,2} n=1 satisfy (1.2) and FeF ,. Then for every
¢>0,any 0 < a< oo, there is. A (¢, a) which may depend on F and {x.,}, such that
n = A (g, a) implies

P,[sup (n*|{S, (tn™*) — 4, (tn™H)} = {5,(0) = 4,0)}]; |t| Sa)> el <e
for all e M’ where M’ = M is such that sup {||¢||; pe M’} < 0.
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Proor. Throughout the proof we shall assume that for any & > 0 there is an
n(e) and a b(e) independent of n. The statements then will be made for n = n(e, a).
Because of the boundedness of the score function ¢; we can replace the argument
of ¢ in the definition of S, by v,(7, x) above. Consequently we shall prove the
theorem for the statistic S,(t) = [o(v,(t, x) ) du,(t, x). Consider the decomposition

n S ()= A0} = [ (qn) dL,+1* [ (v,— q,)0(q,) dm,
+ [ {e(v) = @(4,)} dL,+n* [ {9p(0,) = 0(q,) — (0 — gn)0(g,)} dm,

= B,1()+ B,2(1) + B,3(1) + R,(t) say.
We set to prove
(2.5) P,[sup {|R,(tn"¥)|; |t| < a}‘> e] <e.
Now note that by Lemma 2.1 (ii) there exists a b(e) such that for every

|t] £ an”?, —0<xE +w,

(2.6) vu(t, X) = q,(t, x)+un"?%, [u] < be)

with probability at least 1 —e.

For Fe#,, and by (1.2) there are constants A, and K, such that for every
lt| < an”*

2.7 |dm,(t, M,(t, y))| £ K, 2dy 0sysl
Using (2.6), except for probability at most &, one can write for all |¢| < an™?,
Ry(1) = n* [ {o(q,(t, )+ un™)— ¢(q,(t, x))—un"2p'(q,(t, x))} dm,(t, x).

Now making a change of variable from ¢,(¢, x) to y (note that y may depend on ¢,
but that presents no difficulty for integration purposes) and using (2.7), we have
except for probability at most &, sup, <|R,(tn~¥)| < K, A[§ p,(v) dy where

Pu(¥) = SUP|y <b(ey 12| 0(y +un™ ) — @(y) —un"tp'(y)|

which tends to zero for almost all y and hence [pg,(y)dy tends to zero. Therefore
(2.5) is proved.
Next consider B, (t) = [¢(q,(t, x)dL,(t, x). Noting that

P[sup {@(g,(t, £ 0)) £ L,(t, + 0); |t| San"t =0] =1

foralln, wehave B,,(t) = — [L,(t, x) dp(q,(t, x)) for every ,t| < a withprobability 1.
But by substitution B,;(r) = — [§L,(t, M,(t, £))¢'(¢) dé. Hence

(2.8) sup{|B,,(tn"*)~B,,(0)]; |1] < a}
< sup {|Ly(tn ™%, M,(tn™%,8)) = L,(0, M(0,9))|; |f] < 0,0 < & < 1}Jo] -
But since by Assumption (1.2) and Fe &,
sup {|q,(tn™*, x)— q,(0, x)|; lf| <a, —0 < x < 0}

S nm Y sup {|F(x+1x;, n~H—F(x)|;

f|£a,—0<x<0}-0
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which implies sup {|M,(tn™%, &) — M,(0, &)
2.2)

P,[sup {|L,(tn™*, M,(in"*, &)= L0, M,(0,&)|; |f| £ a,0 S ¢ <1} > e] <

;|1 £a,0<E<1} -0 and hence by

for any 0 < a < 0.
Consequently since ¢ € M, we have from (2.8) that
P,[sup{|B,(1n" =B, (0)]; || S a} > e] <

forany 0 < a < .

Term B,, is dealt with in similar fashion to B,;. The term B,, is dealt with in
fashion similar to R,. However here we integrate by parts first which is justified as
both functions L,(t, -) and v,(¢, -) are the functions of bounded variation and 0]
is continuous, then use of Corollary 2.1 is made. It remains to prove that con-
vergence is uniform with respect to ¢. This will follow if we show that the terms
R.(1), B,(t)— B,(0)i = 1, 2, and B,;(¢) satisfy, as a function of ¢, the Lipschitz
condition (LC) in the norm ||o|| = [§|¢’| for large n with large probability, uniformly
in |t| < an™*. By looking at (2.8) it is clear that B,,(f)— B,,(0) satisfy LC condition.
Similarly one can easily see that this is so for B,,(t)— B,,(0) and B,3(t). We verify
this condition for R,(¢) term here. Let

R, y(0) = n* [ [o(v,(t, X)) — @(q,(t, x))] dm,(t, x)
Ro2(t) = n* [ [v,(t, ) = qu(t, )]0' (4,2, %)) dm (2, x).

Clearly, in view of Lemma 2.1 (ii) and (2.7) supy,| < | R2(tn )| < K, 4b(e)||o|| with
probability at least 1 —e¢. Integrating by parts and making change of variables from
m(t, x)toy,0 <y <landg,to0=<y=1,wegetR, (1) = —n*[i[m,t, G(t, )~
my(t, M,(t, y))]¢'(»)dy so that
Sup|t|§an‘1/2 |Rn2(t)! é Sup0§y§ 1 sup|t|§an“/2 nilrnn(ta Gn(ts )’))
—m,(t, M,(t, )| |lo]|-
It may be readily verified that for Fe %, the first term is bounded in probability.

Thus the proof is complete after noticing that R,(t) = R,,(t)— R,,(?).
We next prove a series of lemmas and theorems which will lead us to ADF tests.

LEMMA 2.3. Assume that ¢ € M is such that

(2.9) j(l) !(Pllz < o0, SUPo<ux1 |‘P”(“), <K,

and FeZF , is such that

(2.10) I()=[2,(f"|f)*dF < 0.

About {x;;}1 £ i< n,j=1,2, we assume that (1.2) holds. Then

(2.11) n¥||4,(tn™%) = 4,00)—tn~*4,(0)|| - 0

where An(o) = n_22?=1 Xi1 Zj: 1 (sz _xiZ),‘.o—ooo (X)o'(F(x))dF(x)

and ||+ || stands for sup norm taken over || £ a, forany 0 <a < .
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ProoF. Recalling the definition of 4, function from (1.8) one notes that A0
can be expressed by A4,(t) = n™ 'Y x;, {2, 0lg,(t, x—1tx;,)]dF(x), by mere substitu-
tion process. Also observe that (n/n+ 1) in the argument of ¢ is dropped which can
be done. Using Taylor’s expansion of ¢ around g,(0, x) =, F(x), and putting
B2, x) = q,(t, x—1x13)— q,(0, x), 5,; = (%j2—%12), by =171} ;8;;, one gets

(2.12)  n}||4,(tn" ) — 4,00)—tn*4,(0)||
< |7 s % [ 2w (™%, ) — tn ™40, £ ()} 0/ (F(x)) dF(x)||
+Kj|n 7 Yixi (2 hitn ™, x) dF ().
But
(2.13) h,(t, x) = n"zj[F(x+t5,j)—F(x)]
=tn"? Zjé,-jf(x+65,-j)
where |¢| < |¢| and it may depend on various quantities involved. Also note that
(2.14) %o [n“Zé,-jf(x+65ij)]2 dF(x)
ST Y0 Y [P f A (x+E 5y dF(x))
=71 Y00 Yo [ f (%) AF(x—£5,)))
= (n71 Y eh)A

where A comes from the fact that sup, f(x) < A < . Using (2.13) and (2.14) one
gets ||n7E Y x,, [ h2(tn ™3, x)dF(x)|| < 2a*n~#|n"2 Y, x,, ¥; 62| which -0 in
view of (1.2) and the fact that n~* — 0 as n — co0. Furthermore

(2.15) 24 h(tn ™%, )= tn "2 b, f (x)} = 20~y 6L (x +E8;,n ).
Also for all 1 £i,j <n,
[[2of (x+&8;n™ B! (F(x)) dF(x)|
(2.16) SH{UZof () dF(x—E8;;n™ )[4 0" 2(u) du)}
S AI) [o9*(w)dul? < o0 by (2.9) and (2.10).

Hence combining (2.16) and (2.15) we observe that (| =%y ;1 [ 2 oo {Pruitn ™%, x)—
tn™4b,,f(x)}¢'(F(x)) dF(x)|| = @ 2n™ 2@ 72y |x Y 63)AI(N)fs¢ () du] - O as
n— oo for by (1.2) lim, ., {n™2Y|x;;|};6%} < co. Hence one concludes (2.14).
This terminates the proof.

After integrating 4,(0) by parts it is easy to see that

An(o) =n"! Zi (%11 — %) (%12 —X5) .f(l) o(u, f)p(u) du
=b,(o,f) say
where @(u, ) = —f'(F~*(u))/f(F~'(u)). Hence one has
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COROLLARY 2.2. n#||4,(tn™*)— 4,(0)— tn"*b,(p, f)|| - 0.
Combining this with Theorem 2.1 one gets

THEOREM 2.2. Under the conditions of Theorems 2.1 and Lemma 2.3 on the under-
lying quantities one has for every ¢ >0

2.17) P,[n||S,(tn™ )= 8,0~ n~4b,(p,1)]| 2 £] > 0

where ||-|| is sup norm taken with respect to all |t| < a,0 <a < .
An immediate consequence of the above is the following

THEOREM 2.3. Assume {Y;,1 i <n},n =1 asin model 1.1. Let the conditions of
Theorem 2.2 be satisfied. Furthermore suppose B, is an estimator of B, such that for
every ¢ > 0 there exists n(e) and b,(¢), depending only on &, such that n = n(g) implies

(2.18) Pr[n#|B,—B,| < by(e)] = 1—e.
Then for every ¢ > O there is an n(g) such that for all n = n(e)

(2'19) Pr [n*,Sn(Bn)—Sn(ﬂz)'l'(ﬁn—ﬂz)bn((P’f)l é 3] é &

Sfor every B,, where probability in (2.19) and (2.18) is computed when B, is the true
parameter point.

Before stating and proving our final result, we note that from (2.19) it follows
that the test based on S,(8,) would be asymptotically distribution free if b,(¢, f) = 0.

THEOREM 2.4. Let {Y;,,1 i< n} and {x,} be as in (1.1). Assume FeF, and
satisfies (2.10), {x;,} satisfy (1.2) and ¢ € M and satisfies (2.9). Furthermore suppose
there is an estimator B, of B, satisfying (2.18). Then

(2.20) b,(¢,f)=0

entails %,,(n*S,(B,)) = N(a, 0?), for some a, 6* independent of F. Consequently test
n*S,(B,) of Hy: By = 0 when B, is not known is asymptotically distribution free.

Proor. The proof follows from Theorem 2.3 and the fact that .S,”,,z(n*S,,(Bz)) -
N(a, 62), the proof of which may be found in Hajek [2].
The following lemma gives a sufficient condition for (2.20) to hold.

LeEMMA 2.4. If either

(2.21) n=t Y (i — X)X — %) = 0 or
(222) o(u) = o(1 —u) 0sus1l and
F(x)=1-F(—x) -0 <X< 4+

then b,(¢, f) = 0.
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Proor. Recall that b,(¢,f)=n" lZitxil =X )(xia—X2)b(o, f) with b(e,f) =
—[2 L () f(x)]e(F(x)) dF(x). That (2.21)= b,(p, f) = 0 is clear. We will show
(2.22) = b(¢, f) = 0 so that b,(¢, /) = 0. Now note that

—b(0, f) = [ o f (X)p(F(x)) dx.

J'(=x)e(F(=x)) =f'(x)p(1-F(x)) by (2.22)
=" ()e(F(x)) by (2.22)

But

which implies —b(¢, f) = 0.

REMARKS. Symmetry of ¢ seems to be quite reasonable in some cases and not so
reasonable in other cases. If ¢(u) = u—4, then there is no nontrivial FeZ# ,, satis-
fying (2.22) and (2.10) such that b(¢, f) = 0. Next observe that if ¢o(u) = o(u, f),
then b(¢, f) = 0if and only if fis uniform density. So if one would expect asympto-
tically most powerful type tests to be ADF, one must have orthogonal regression
score.

Next suppose F(x) =1/(14+e™¥), —o0 <x < +00, then o) =Qu—1)*0=
u < 1, @ an even integer, is a suitable class of functions for ADF tests.

If F(x) = 3)e” =00 < x < + 0, any symmetric function ¢, symmetric about
(3), and satisfying condition of Theorem 2.4, is reasonable. But there are non-
symmetric functions ¢ for which b(e, f) = 0.

To see that both these comments are valid we first note that for the above F,

b(@, f) = fosgn (F~'(u))o(u) du
—[§ o(u) du + [} @(u) du

so that b(@,f)=0< [§¢p(u)du = [}p(u)du which is trivially true for any ¢
symmetric about (). But for ¢ defined by

o(u) = u(t—u) 0
=u/6—1/12 3

we also have [3¢(u)du = [jo(u) du = 1/48. Besides this ¢ satisfies all of our con-
ditions. Thus if F is symmetric, symmetry of ¢ is not necessary for a rank test to
be ADF test.

Finally, for any F symmetric about zero, ¢(u) = [u—3]? is another example
where our methods are valid.

In the conclusion it might be remarked that the above results remain valid for
the general multiple linear regression model where one may have p parameters and
would like to test the hypothesis about any k < p parameters when the remaining
p—k are unknown. The test statistics is taken to be the suitable quadratic combina-
tion of corresponding linear rank statistics, which has an asymptotic x? distribution
with k degrees of freedom. Here the estimator vector for the unknown could be
either a least squares estimate or the one defined in [4], besides any other satisfying
the analogue of (2.18).
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