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RESTRICTIONS!

By R. J. SERFLING

Florida State University
1. Introduction and preliminaries. Let {X;}2, be a sequence of rv’s having

finite variances {o;>}. Assume throughout (without loss of generality) that

E(X;)=0. For each vector X, , = (X4, ', X,4,) of n consecutive X;’s, let F,,
denote the joint df and let

1.0 San=Yat1X:

In statements about X, , only, the abbreviated notation X,, F,, S,, etc., shall be
employed.

This paper concerns stochastic convergence properties of sequences {S,,}nz1-
It will suffice to prove statements about the sequence {S,};%, but the more general
notation will be of use in formulating some of the restrictions adopted.

Convergence properties of the following types shall be discussed:

(1.1) P[S,/n—0] = 1;

(1.2) Y2 a, P[supys,|Si/k| > €] converges for every ¢ > 0;
(1.3) P[iim sup,_, ,, |S,/b,| £ 1] =1;

(1.4) 32 ¢y P[supyz, |Si/bi| > €] converges for every & > 0;
(1.5) Y. ¢ P|S,/d,| > €] converges for every ¢ > 0.

In the above, {a;}, {b;}, {c;} and {d;} are sequences of constants.

Condition (1.1) expresses the strong law of large numbers (SLLN) for the
sequence {X;},® and condition (1.2) represents information regarding the rate of
the convergence in (1.1). The larger that the a,’s may be chosen (in asymptotic order
of magnitude), the sharper is the result stated by (1.2). Condition (1.3) expresses a
form of the law of the iterated logarithm (LIL) (e.g., in typical cases b, may be
taken as small as O((nlnlnn)?).) and condition (1.4), like (1.2), concerns the rate
of convergence. Finally, condition (1.5) states that the sequence {S,/d,}r~, con-
verges completely to zero in the sense of Hsu and Robbins [7]. The smaller that the
d,’s may be chosen, the sharper is the statement. By the Borel-Cantelli lemma, com-
plete convergence implies strong convergence.

Properties such as (1.1)-(1.5) will be obtained as consequences of restrictions
imposed upon the absolute vth moments, for some v 2= 2, of sums Yartw X,
where the w; are given constants (e.g., w; = 1, or w; = Ini). Thus it is not assumed
that the X;'s are mutually independent and, in fact, the only restrictions on the de-
pendence will be what is implied by the restrictions of the type mentioned. (See [12],
[13] for details.)
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1236 R. J. SERFLING

The results below are obtained by adaptation of more or less standard arguments
[3], [10], [11] to make use of recent results [13] which state bounds for the vth
moment of

(1.6) M, , = max {ISa,ll> ) ISa,nl}

in terms of assumed bounds on the vth moment of |S, ,|.

Section 2 deals with the SLLN under moment restrictions of second order only.
In Section 3, the LIL (which implies the SLLN) is derived under moment restrictions
of order higher than the second. The case of bounded random variables is considered
in Section 4. Convergence rates associated with these SLLN and LIL are studied
in Section 5. Finally, in Section 6, the question of norming S, suitably for S,/d, to
converge completely to zero is considered.

2. SLLN under moment restrictions of second order. (Stronger conclusions (LIL)
under restrictions on moments of order higher than second appear in subsequent
sections.)

The proofs of Theorems 2.1 and 2.2 below each make use of the following lemma,
which is a special case of Theorem A of [13]. Here g(F,,) denotes a functional

depending on the joint df of X, y, ", X,,, Examples are g(F,,) =4t} 0? or
simply g(F,,) = n.
LeMMA A. Suppose that (2.1) holds, where g(F, ,) satisfies (2.2). Then
(2.0) E(M?,) < (log,2n)g(F,,). (allaz0,alln=1).
THEOREM 2.1. Suppose that
2.1) E(SZ,) < 9(Fan) (alla20,allnz1),
where g(F, ,) satisfies
(2.2) IF 0 )+ 9(Fariy) S 9(Faprr)s Isk<k+l,

and, uniformly in a = 0,

n?

(2.3) 9(F,n) = O(W——W), n— oo.
Then, with probability 1,
2.4) S,/n—0, n— 0.

ProoF. Let ¢ > 0. By (2.1), (2.3) and Chebyshev’s inequality,

. 1

: P o — ~ .

2:5) [[8,] > en] 0<(ln n)’(Inln n)2>

Put n, = [expk?], where [-] denotes integer part. Then

1
(2.6) P[IS”kI > Enk] = O(m) . k— o0,
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and by the Borel-Cantelli Lemma, with probability 1,

2.7 IS, < ens for all k large enough.
Put ¢, =M,, ., —n.- Then

(2.8) Su] S S + if ngSnsme.
By Lemma A

@9) E(&>2) < [1082 201441 =120 (F nm, 1)

and by (2.3), uniformly in k&,

(2.10) E(ék2)=0< (s s =m)° )

[InIn(n, . —n)]1?

so that, uniformly in k,

. _ Ny — Ny 2 1
2.11) P[¢ > en] = 0[( , > [Inln (nk+1—"k)]2].

It is easily seen that the right-hand side of (2.11) is O((kIn?k)~"). Hence (Borel-
Cantelli), with probability 1,

(2.12) & < emy for all k large enough.
Combining (2.7), (2.8) and (2.12), we have, with probability 1,

(2.13) |Sa/n| < 2¢ for all n large enough.
Therefore, (2.4) holds.

COROLLARY 2.1.1. Suppose that

(2.14) E(X;X;)) < pj-;0;0; (alli £)),
where 0 £ p, < 1 for all k =0,1,---. If, uniformly in a =2 0,

n2
(2.15) (ZZH 012)(2'6 p) = 0<W> > n— o0,

then, with probability 1, S,/n — 0.

The result is obtained from Theorem 2.1 by taking g(F,,) equal to twice the left-
hand side of (2.15). Then (2.2) is trivially satisfied and, by Lemma 2.1 below, (2.1)
is satisfied.

Note that the uniformity part of condition (2.15) restricts the possible variation
in the sequence {a;}, but the requirement on the sequence {p;} is quite mild. Thus
Corollary 2.1.1 has a useful implication in the case of a weakly stationary sequence,
i.e., when ¢;2 = 0% and E(X;X;) =r;_; (all i, all j). Then (2.14) is satisfied with
o;=0;=0cand p;_; = |r;_;|/o® and we have
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COROLLARY 2.1.2. Let {X,} be weakly stationary with E(X; X, ;) =r; (all i, all
j=0,1,--).If

npleof — "
(2.16) Xilrl = O((ln n)*(Inln n)2> ’

then, with probability 1, S,/n — 0.
Since |r;| < r, by the Cauchy-Schwarz inequality, we have

2.17) ' Yl = 0(n)

automatically for a weakly stationary sequence. Hence (2.16) and likewise (2.15) are
rather mild dependence restrictions.

In contrast with Corollary 2.1.1, a later result (Corollary 2.2.1) allows much
greater variation within the sequence {o;} but at the expense of more stringent
conditions on the sequence {p;}.

The lemma necessary to Corollary 2.1.1 above and to Corollary 2.2.1 later is the
following.

LEMMA 2.1. Suppose that
(2.14) E(X;X;) S pj-i0:0; (alli <)),
where 0 < p, < 1 for all k =0,1, . Let b; = 0 (all i). Then
(2.18) E(Ya1% b X)* < 23451 b2 2T 0.
Proor. Write ¢; = b,6,. Then, applying (2.14),
BT b X)? < Yol e+ 280 i Yot ey
= ZZI'I ¢’ +227;i Pj2f+:+ 1CiCitj
SYariel + Yzt itiie? +Z?:J’I{cz2+,-)
= ZZH Ci +ZJ 1 P;(ZZ:H:H ¢

which implies (2.18) since p, = 1.

The following theorem, generalizing a result proved by Rademacher and Mensov
for mutually orthogonal rv’s (see [3] 157, or [11] 86), gives conditions under which
the series ) {* X, converges with probability 1. Application of the result to the series
Y X,/n then yields, by the Kronecker lemma ([15] 238), a criterion for the conver-
gence, with probability 1, of S,/n to zero.

THEOREM 2.2. Suppose that
(2.19) E(S2,) < g(F,,) (allaz0,allnz1)
where g(F, ,) satisfies
(2.20) 9(Fai)+9(Fari)) < 9(Fopr), l<sk<k+l
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Suppose that for k sufficiently large, say k = ko > 1,

(2.21) 9(Fyp) < h(F,,)[In*(k+1),
where h(F, ,) satisfies
(222) W(F o)+ (E i) S MF o), 1<k <k+l,
and
(2.23) h(Fy,)— A< o (n— ).
Then, w)‘th probability 1,
(2.24) YT X,  converges.
PROOF. Let n = k. Then, by (2.1), (2.3) and (2.5),
(2.25) EQF X)* < Alln®n.
Put n, = 2*. Then, by (2.25), the series
(2.26) Y B X)?
converges, implying, with probability 1, that
(2.27) mX;—0, k - 0.

Now let & =M, ., ,-m- By Lemma A and (2.19), (2.20) and (2.21), since
My 41 — Ny = 1y, We have for k sufficiently large

(log, n)?
p)

(2.28) B S 5 )

It follows by this, (2.22) and (2.23) that the series

(2.29) Y B

converges, implying, with probability 1, that

(2.30) & —0, k — oo.

Combining (2.27) and (2.30), we obtain, with probability 1,

(2.31) YR X0, n— 0.
COROLLARY 2.2.1. Let {X;} satisfy

(2.14) E(X, X)) < p;-,0:0, (all i £ ),

where 0 < p, < 1 forallk =0,1,---. If {0,} and {p;} satisfy

(2.32) i(g)zﬂz < : and

(2.33) Y7 pi < oo,

then, with probability 1, S,/n — 0.
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ProoF. Theorem 2.2 is to be applied to the rv’s Y; = X;/i. (As mentioned earlier,
convergence of the series Y Y; implies that S,/n — 0.) Note that
(2.34) E(Y)=0, E(Y?=od2i% Define
(2.35) o g(Fa) =201 0 [iH(X6 ) and

(2.36) WF,,) = 2[i <E‘l_’>zaz]<§ pi).

By Lemma 2.1 and (2.34),
(2.37) E(Ye1h Y)? < g(F,) (@lla20,allnz1).

Thus the conditions of Theorem 2.2 are satisfied, completing the proof.
A special case of Cor. 2.2.1 is the Rademacher-Mensov result:

COROLLARY 2.2.2. Let {X;} be mutually orthogonal rv’s. If the series
Y ¥ (Inn)?e,*/n* converges, then, with probability 1, S,/n — 0.

3. LIL under moment restrictions of order higher than second. (The special case
of bounded variables is reserved for the subsequent section.) Analogously to the
use of Lemma A in the previous section, the following lemma, which is Theorem B
of [13], is needed in the present section.

LemMMA B. Let v > 2. Suppose that (3.1) holds, where g(n) is nondecreasing,
2g(n) < g(2n) and g(n)/g(n+1) - 1 as n - . Then there exists a finite constant K
such that

(3.0) EM;,) < Kg*'(n) (allaz0,allnz1).
THEOREM 3.1. Let v > 2. Suppose that
(3.1) E|S,.|" £ g¥(n) (allaz0,allnz1),

- where g(n) is nondecreasing, 2g(n) < g(2n) and g(n)/g(n+1) —» 1 as n - c0. Suppose
also that g(2n)/g(n) is bounded, n — oo. Then, with probability 1,

(3.2 IS, = 0(g*(n)(Inn)*(In In n)*"), n— .

Proor. Imitating well-known techniques of argument (e.g., Lamperti [10]), put
a(n) = g*(n)(Inn)*(Inlnn)*” and M, = M, ,. By Lemma B,

K
(3.3) P[M, > a(n)] £ @T(ln—ln—n)z
Put n, = 2*. Then (Borel-Cantelli), with probability 1,
3.4) M, <a(n) for k large enough.
Now, for n, < n < n,,,, we have

(3.5 a(n) 2 a(m) and |S,|sM

Rk + 1
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and thus, with probability 1

1S o M,  a0n10)
ain) = a(m) = a(ny)

Since the right-hand side of (3.6) is bounded, k — oo, (3.2) follows.

3.6) for k large enough.

ReMARK. The result does not require boundedness of the X;’s, only uniform
boundedness of the vth absolute moments, i.e.,

37 E|X,]' < gP(1) (all §).

The conclusion (3.2) improves as v increases. This is possible because Lemma B, in
contrast with the appropriate generalization of Lemma A to the case v > 2, does
not have a factor (Inn)" in the bound on E(M; ,). With such a factor present, the
right-hand side of (3.2) cannot be improved beyond “O(g*(n)(Inn)'*) for any
e>0."

The LIL implies the following SLLN.

COROLLARY 3.1. (SLLN). Let v > 2. Suppose that
(3.1) E[S,.]" < g¥(n) (allaz0,allnz=1),

where g(n) is nondecreasing, 2g(n) < g(2n), g(n)/g(n+1)—1 as n— oo, and
g(2n)/g(n) is bounded. If g(n) satisfies

n2
(32) g(n) = O<W>, n— o,

then, with probability 1, S,/n — 0.
Of particular importance and generality is the case given by

(3.8) g(n) = An’,

where 4 < o0 and 1 £ 6 < 2. In (3.8), we require § = 1 in order that 2g(n) < g(2n)
hold. The restriction 4 < 2 may be assumed without loss of generality, since by
Minkowski’s inequality (3.7) implies a condition of form (3.1) with the right-hand
side of order »’. Clearly the g(n) in (3.8) is nondecreasing, g(n) ~ g(n+1) and
g(2n)/g(n) is bounded. Thus a condition of type (3.1) for some function g(n) implies
a similar condition (though possibly milder) with g(#) of the form (3.8). The lower
that 6 may be taken (= 1), the more stringent is (3.1) and the more powerful are the
conclusions obtained. Specifically, we have

COROLLARY 3.2. Let v > 2. Suppose that

3.9 E|Sa’,,|" < An?v® (allaz0,alln=1),
where A < o0 and 1 £ 6 < 2. Then, with probability 1,
(3.10) |S,| = O(n¥’(In n)*"*(In1n n)*"), n- .

If, further, 6 < 2, then S,/n — 0 (n — o0 ) with probability 1.
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The most stringent case, d = 1, applies under various different dependence
restrictions (weaker than independence), given that the moments E|X;|" are uni-
formly bounded. Thus, under the latter assumption, we have, with probability 1,

(3.11) S, = O(n*(Inn)'*(Inln n)?”), n— oo,

if {X;} is any of the following well-known types of sequence:

(i) a sequence of mutually independent rv’s;

(ii) a strictly stationary sequence satisfying a certain mixing condition weaker

than m-dependence;

(iii) a stationary Markov sequence satisfying Doeblin’s condition;

(iv) a sequence multiplicative of order v, where v is even;

(v) a sequence of martingale differences.
In the above, the “conventional” definitions are intended. Detailed discussion and
references may be found in [3], [8], [12] and [14].

4. LIL for uniformly bounded variables. Here we assume
4.1 |X,|<B (all i),
in which case for each v > 0 a relation of form
4.2) E[S,,|" < An*” (alla=0,allnz1)

is satisfied, where 4 < o0 and 1 £6 £2 and 4 and § may depend upon v. The
immediate implication of the preceding section is that for each v > O there exists
d, 1 £ 6 <2, such that, with probability 1,

4.3 |S,| = O(m*(Inn)'*(In In n)*"), n— oo.

If 6 does not depend upon v (e.g., in cases that § = 1), we obtain, by letting v — oo
in (4.3), that for any ¢ > 0, with probability 1,

(4.4) |S,| = O(n¥(In n)®), n— .

In particular, (4.4) is true with § = 1 for any ¢ > 0 in the case of a bounded sequence
satisfying any of (i)~(v) mentioned at the end of Section 3. However, under some of
these dependence restrictions, it is possible to obtain a stronger conclusion by the
use of an appropriate probability inequality on S,. For example, in Hoeffding [6]
it is shown that (4.6) below holds in the case of mutually independent rv’s satisfying
(4.1) and it is pointed out that his argument extends to the case of X;’s being martin-
gale differences. In [14], it is shown that, more generally, (4.6) holds if the X;’s are
multiplicative rv’s (defined below). Inequalities similar to (4.6) can certainly be
developed under other kinds of dependence restriction. Thus the following result
has a broad scope of application.

THEOREM 4.1. Let |X}| < B (all i). Suppose that for any v > 0, there exists A, < o0
such that

4.5 E|S,,|' < A,n* (@llaz0,allnz1).
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Suppose, further, that

(4.6) P[|S,| > 1] S 2728 (t>0).
Then, for any 6 > 2B?, with probability 1,
4.7 IS, | < (BnInlnn)?, for all n large enough.

PROOF. Let 6 > 2B2. By (4.6), we have
4.8) P[IS”I > (6nInlnn)*] < 2(Inn) %25,

Put m, = [expk“], where [-] denotes integer part. Since 6 > 2B?, we may choose
2B*/0 < a < 1. Then a0/2B* > 1 and (Borel-Cantelli)

4.9) |Sn| < (On Inlnn)?, for all k large enough,

with probability 1.

Since a < 1, there exists a value of v > 2 such that @ <(v—2)/v, in which case
(1—=a)(3v) > 1. For such a value of v, let us utilize (4.5) in conjunction with Lemma
B of Section 3. It follows that, for some M < o0, and each k,

Sn_Sn v (nk+ 1 _nk)%v
4.10 = Tk <M - -—"—" _
“.10) E[ma" (neInInny)* ]- n (I lnn)®

The right-hand side of (4.10) is Ok~ ~2@)(In k)?"), so that the infinite sum of the
left-hand sides in (4.10) converges. Therefore, with probability 1,

S,— S,
4.11) max ———I n =S -0, k — oo.
meSnSng+ (nk Inln nk)i‘Jf

From (4.9) and (4.11) it follows that, for any & > 0, with probability 1,
4.12) |S,| £ (0+¢e)*(nInlnn)?, for all n large enough.

Since 6+ & may be chosen arbitrarily close (>) to 2B?, the conclusion of the theorem
is proved.
As a particular case, consider a sequence {X;} of multiplicative rv’s:

(4.13) EX, - X,)=0 if k=1 and ij < <ip.

This condition is stronger than mutual orthogonality but includes the case of a
sequence of martingale differences and the case of mutually independent rv’s (when
the expectations in (4.13) exist). As mentioned above, (4.5) and (4.6) hold for a
bounded multiplicative sequence. Hence

COROLLARY 4.1. Let {X,} be a sequence of bounded (|X}| < B) multiplicative rv’s.
Then, for any 0 > 2B?, with probability 1,

4.7 IS,,I < (6nlnlnn)?, Jor all n large enough.
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5. Convergence rates in the SLLN and LIL. The following theorem is part of
Theorem 1 of Katz [9], which generalizes earlier results due to Erdés [4] and
Spitzer [15].

THEOREM (Katz-Spitzer-Erdos). Let v 2 1. Let {X;} be a sequence of independent
and identically distributed rv’s, with E |X 1|" < 0. Then, for each ¢ > 0,

5.1 Y n*"2P[|S,/n| > €] < c0.
This result was proved by complicated methods based on those of [4]. However,
its implication in the case of bounded variables can be obtained more easily and it

will be helpful in the sequel to see how. The implication in question is, of course,
that for each ¢ > 0,

(5.2) Y n=P[|S,/n| > €] < oo, for every choice of .
Now, as mentioned earlier, Hoeffding [6] proves the probability inequality,

(5.3) P[|S,| > t] S 27728 (t>0),
for independent and uniformly bounded (|X i| < B) rv’s. With ¢ = ne, (5.3) immedi-
ately yields (5.2).

Actually, the SLLN concerns P[sup,,|Si/k| > ¢] more than P[|S,/n| > e]. It is
of interest to obtain results of type (5.1) involving the former probabilities in place
of the latter. It also is of interest, as previously in this paper, to obtain the con-
clusions under dependence restrictions weaker than independence.

We shall assume that {X;} satisfies
5.4 E|S,.|" s 4,n¥ (ala=0,alln = 1),
where v > 2 and 4, < 0. By Lemma B, this implies the existence of a constant
K, < oo such that

(5.5) EM},) S K,n* (alla=0,alln = 1).
By Markov’s inequality, (5.4) and (5.5) imply, respectively, for ¢ > 0,

(5.6) P[|S,n| > ne] s 4,67 n ¥ (alla=0,alln>1)
and

5.7 P[M,,>ne] < K,e"'n" ¥ (@alla = 0,alln = 1).

THEOREM 5.1. Let v > 2. Let {X;} satisfy (5.6) and (5.7). Then for each & > 0 there
exists a constant C, < oo (depending on A, and K,) such that

(5.8) Plsupys.|Si/k|> €] < C,n™# (alln 21).
PRrROOF. Trivially we have

(5.9) P[SqugnISk/kl >e] S Z?=Op[maxkj§k§kj+x lSk/kl > ¢],

where k; =n2/ (j=0,1,-*). And

(5.10) P[max,, <x<y,, , |Si/k| > €]

= P[Iskj/kjl > _218]+P[maxkj§k§kj+1 |(Sk—Sk,)/kj| > 4e].
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The use of (5.6) and (5.7) in the right-hand side yields
(5.11) Psupsy [Si/k| > &] < (4, +K)3e) " ¥ Y2274,

so that (5.8) holds with C, = (4, +K,)(3¢) (1 —2"#)" 1.
Thus we have
COROLLARY 5.1.1. Let v > 2. Let {X;} satisfy (5.6) and (5.7). Then, for each ¢ > 0,

!
(512) ZEZ—n—P[supkg,,lSk/ki > 8] < .

The implications of Theorem 5.1 under moment restrictions of type (5.4) are of
particular interest. As discussed in Section 3, (5.4) is a dependence restriction
satisfied in a variety of stochastic processes.

COROLLARY 5.1.2. Let v > 2. Let {X;} satisfy (5.4). Then, for each ¢ > 0, (5.12)
holds.

In particular, for bounded variables, we have a conclusion substantially better
than (5.2). :

COROLLARY 5.1.3. Let {X;} be uniformly bounded (|X;| < B) and satisfy (5.4) for
each v > 0. Then, for each & > 0,

(5.13) Y n*P[sup;s, lSk/kl > ¢] < o0, for every choice of a.

It should be noted that under a restriction milder than (5.4), e.g., with 4%
for 1 < ¢ < 2 on the right-hand side, analogous conclusions may be derived.

Finally, as regards convergence rates in the SLLN, we consider the improvements
in the above which are possible when the probability inequality (5.3) may be used.

THEOREM 5.2. Let {X} be uniformly bounded (|X;| < B) and satisfy the probability
inequality (5.3). Then for each ¢ >0 there exist positive constants C, < oo and
Pe < 1 such that

(5.14) P[sup,s,|Si/k| > e] < C.p.” (alln=1).
Proor. Trivially we have

(5.15) P[sup;>, |Si/k| > €] < Y2, P[|Si| > ke].

Applying (5.3) with ¢ = ke in the kth term of the above series,

(5.16) P[sup,s,|Si/k| > e] S 2Y 5., e */2P,

(5.17) =2 M2BY (| o= e/2B "1

Thus (5.14) holds with p, = e~**/2%* and C, = 2/(1—p,).

COROLLARY 5.2.1. Let {X;} be uniformly bounded (|X,| < B) and satisfy the proba-
bility inequality (5.3). Then, for each ¢ > 0,

(5.18) Y a"P[sup;, , |Si/k| > €] < w0, forany a < e?I?P,
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The conclusion (5.18) is, of, course considerably sharper than (5.13), which in
turn is sharper than (5.2). The scope of application of Corollary 5.2.1 is noted by
recalling, as discussed in the previous section, that (5.3) holds for a sequence of
uniformly bounded multiplicative rv’s.

Turning now to convergence rates in the LIL, let us note the following result,
given as Theorem 2 of Davis [2].

THeorReM (Davis). Let {X;} be a sequence of independent and identically dis-
tributed tv’s, with E(X,?) = 1 and E(X,*Inln|X,|) < co. Then, for each 0 > 2,

|Si]

|
5.19 . p > .
(5.19) nlnn [:g(ﬂklnln 0t~ ]< ®

As in foregoing discussions, we are interested in a parallel result to the above
under milder dependence and stationarity assumptions but making use of moment
restrictions of order higher than second.

THEOREM 5.3. Let v > 2. Let {X} satisfy (5.4). Then, for any choice of o and f
satisfying 0 S f<av—1=1,

1 1S
(520) ZW [k>n ké(l k)a > 1] < 00.

In this result, the stationarity assumption is relaxed to that of uniform boundedness
of E|X;|* and the independence assumption is relaxed to the requirement that
E|S,,|" be O(n*") uniformly in a. Moreover, the factor (2Inn)~" in the nth term of
(5.19) is improved to n~!(Inn)?~ !, where B is suitably chosen in [0, 1). On the other
hand, the factor (61n1n k)? in the expression (5.19) become replaced by a less sharp
factor (Ink)*, where « must be > 1/v, and a moment restriction of order higher than
2 is imposed. The best restriction on a, namely that o > 0, occurs if v may be chosen
arbitrarily large, as in the following

COROLLARY 5.3.1. Let {X,} be uniformly bounded (|X;| < B) and satisfy (5.4) for
each v > 0. Then (5.20) holds for each choice of 0. > 0 and 0 < < 1.

Proor oF THEOREM 5.3. It is easily seen that the series in (5.20) is bounded
from above by the series

I S
5.21 — P
(.21 L a2y [,f‘:f,k(i k)“>1]
and therefore also by
Sy
5.22 C P 1S > 1|,
( ) Z 1- ﬂtzl [2i<k521+1k (l k)a :l

for a suitable constant C. By an argument similar to the proof of Theorem 5.1, and
for a suitable constant C,, the series in (5.22) is less than

1 21
(5.23) CiYq=5 2
J i=j1
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If B =0, the latter is less than C,) (Ini)i~*, for some constant C,. f 0 < f <1,
it is less than CZZi” ~*, for some constant C,. In either case, therefore, we have
convergence of the series in (5.23) and hence of that in (5.20).

6. Complete convergence of normed S, and M,. Following Hsu and Robbins [7],
we say that a sequence of rv’s {&,} converges completely to zero if the series
Y P|&,| > €] converges for each & > 0. For further discussion and references con-
cerning the following remarks, see Hsu and Robbins [7], Erdds [4], Chow [1] and
Stout [16].

To establish a frame of reference, we state the following result.

THEOREM (Hsu-Robbins—-Erdos-Chow-Stout). Let v = 2. Let {X;} be a sequence
of independent and identically distributed rv’s, with E |X 1|V < 0. Then:

(i) In the case 2 < v < 4,

S,
(6.1) ZP[LZ"/IV > s] < 0, all ¢>0.
(ii) In the case v = 4,
S
6.2 —,~I—"T— , ) 0, i .
(6.2) Zp[nf(ln g0 > e] <00, alle> if g(n) = o0

The proof is contained in [1] and [16]: statement (i) follows from Theorem 6 in
[1], while statement (ii) follows from Corollary 1 and subsequent discussion in [16].

It is noted that statement (ii) is sharp since in the case of X,’s having a common
normal distribution the series in (6.2) cannot converge unless g(n) — co.

Now let us consider results of the above type under less stringent dependence
and stationarity assumptions. As in the previous section, suppose that E|X ,-|" is
uniformly bounded and, further, that

(6.3) E|S,,|" £ 4,n* (alla=0,alln = 1),

where v = 2 and A4, < co. Then immediately we obtain by the Markov inequality
that

A

which, of course, is not as sharp as (6.1). However, if v > 2 is assumed in (6.3), then
by Lemma B we have the stronger conclusion

M
6.5 Pl ——— 22—
( ) Z l:n-%+ l/V(ln n)Z/V > 8] < 0,

giving information not contained in (6.1), (6.2).
In the case of a sequence {X;} for which E|X;|" is uniformly bounded for all v and,
further, (6.3) holds for all v, we may conclude, therefore,

(6.6) Y P[M,/n* > €] < o0, foreach o> 1,
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a result that compares nicely with (6.2). Thus (6.6) holds for strictly stationary
sequences {X;} satisfying a certain mixing condition (see Ibragimov [8]) and satis-
fying E|X;|" < oo, all v.

Confining attention now to a uniformly bounded (|X i| < B) sequence, suppose
that the probability inequality

(6.7) P[|S,| > t] S 27128 (t>0)

is satisfied. Then it follows easily that the sharp result (6.2) holds. Stout [16] notes
that most of his results remain true if the X;’s are not mutually independent but
form a sequence of martingale differences. His Corollary 4 implies that (6.2) holds
if {X,} is a sequence of uniformly bounded martingale differences. Now, as re-
marked in Section 4, inequality (6.7) is satisfied if {X;} is a sequence of uniformly
bounded multiplicative rv’s. Hence (6.2) holds for such a sequence. Obviously,
further relaxations of the conditions sufficient for (6.2) to hold can be obtained as a
simple consequence of proving the inequality (6.7) or like inequalities for a broader
class of sequences.
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