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THE LIMIT POINTS OF A NORMALIZED RANDOM WALK!'

By HARRY KESTEN

Cornell University

1. Introduction and statement of results. This paper deals with the set of accumu-
lation points of n™%S, for a one-dimensional random walk S,, n = 1. S, is called a
random walk if S, = 7_, X; for a sequence {X;};; of independent, identically
distributed random variables. The (random) set of accumulation points of n™%S,
will be denoted by

(1.1)  A(S,, o) = set of accumulation points of n7%S,,n =1 = nm{—n'“S,,: nmj.

The bar in the last member of (1.1) denotes closure in the extended real line
R = Ru{—00, + o0} with its usual topology. This meaning for a bar over a subset
of R will be maintained throughout; F will always denote the common distribution
function of the X,. 4

The motivation for this study lies in two recent results. Firstly, a condition of
K. G. Binmore and M. Katz (private communication) for a point b to be an
accumulation point of S,/n. Secondly, a necessary and sufficient condition of
Stone [16] for + oo (or — o) to belong to 4(S,, 1).

In Section 2 we first prove that 4 (S,, ) is w.p.1? equal to a fixed (non-random)
closed set B(a). Of course B(x) depends on F, and in fact can be viewed as a charac-
teristic of F. In particular B(1) is a sort of generalized mean; it consists only of the
number | x dF (x) whenever this integral is meaningful. Next derive two forms of a
necessary and sufficient condition for a point b to belong to B(«) (Theorems 2 and
3). The first form of the conditions and its proof (Theorem 2 with Corollaries 1 and
2) are essentially due to K. G. Binmore and M. Katz. In Section 3 we use these
conditions to derive the possible forms of B(«) for 0 < « < 4, and in part for o« = 4.
Specifically we prove

THEOREM 4. Assume F(0)—F(0—) < 1. Let 0 < o < L. If n™ %S, has w.p.1 a finite
limit point, then w.p.1 all real numbers are limit points of n=°S, (i.e., if B(«)nR # &
then w.p.1 A(S,, ) = R).

If o = % and n™%S, has w.p.1 a finite limit point, then w.p.1 n~%S, has at least a
half line [b, o0] or [— o0, b] as limit points.

We conjecture that even for « = 1 B(2) = R as soon as B(3)nR # . If correct
this result would be an extension of part of Stone’s result in [16]. Indeed, the result
of [16] implies that if B(£)nR s ¢ then B (%) contains + co and — 0. In Section 4
we sharpen Stone’s result in another direction. We prove that if EX;* = 4 oo and
if n71S, = ai.0.2 w.p.1 for some fixed a€R, then lim sup,_, n~1S, = + o0 w.p.1
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2 w.p.1 = with probability 1; we shall occasionally leave out the expression w.p.1 when there
is no risk of confusion. i.o. = infinitely often.
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1174 HARRY KESTEN

(i.e., either n=1S, - — 00 or + 0 € 4(S,, 1)). Combined with a theorem of Spitzer’s
[14], this result shows that, in case EX; " = o, lim sup,_,,, S,/n = o w.p.l if and
only if '

Yo n"'P{S,> 0} = oo.

Lastly, in Section 5 we prove the somewhat surprising

THEOREM 7. For any closed set C <R which contains + 0o and — oo there exists
a random walk S, such that

A, )=C  w.up.l.
If 0e C one can even take S, recurrent.
To close this introduction we list several problems suggested by this work.

(1). 1s B(3) = R as soon as B(3)nR # & ? (See Remark 3 for partial results.)

(2). What are the possible structures of B(«) for o > 1, o # 1, or for any o > 0
in the case of higher dimensional random walks?

(3). Find necessary and sufficient conditions on the distribution of X, for
B(1)=R.

(4). Can one find the set of functions f: [0, 1]—= R which are in a suitable
topology accumulation points of (the linear interpolations of) the functions f,,
n21, defined by f,(k/n)=k~'S, or n™'S,, 0k <n? In this question we
think of analogues of Strassen’s determination of the accumulation points for
{Si(n log log n)~*}, ., ., when EX, =0, EX,> < oo (see [17]). In particular it
would be interesting to obtain a clear idea how n~'S, can have two points a and b
as accumulation points, while avoiding all the points between a and b.

2. General conditions for accumulation points of »™%S,. We begin by proving the
non-random character of 4(S,, «). More precisely we prove

THEOREM 1. Ify(n) » oo (n > o) and X, X5, - - are independent random variables
each with the same distribution F, then there exists a non-random closed set

@1 B = B(F, {(n)}) = R
such that w.p.1
(2.2) set of accumulation points of p(n)~'S, = Nw{y(n)"'S,:n = m} = B.

The set B is given by
(2.3) B = {b: P{y(n)~'S, has b as accumulation point} = 1}.

Proor. By the Hewitt-Savage zero-one law we have for any point 4 and any
interval /
2.4 P{b is an accumulation point of y(n)~'S,} =0 or 1
and
2.5) P{y(n)~'S,eli.0.} =0 or 1.
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Let
By = {b: P{b is an accumulation point of y(n)~'S,} = 1}
and € = the collection of all open rational intervals I for which
(2.6) P{y(n)~'S,el i.0.} =1.
Since there are only countably many rational intervals, (2.5) implies
(2.7) P{y(n)~'S,eli.o.forall I €%, but for no other open rational interval} = 1.

We shall now show that if I is an open rational interval then

(2.8a) INnBy# @ implies Ie¥
and
(2.8b) InBy=( implies I[¢%.

(2.7) and (2.8) together will prove (2.2) with B = B,, since w.p.1 y(n) 1S, will enter
i.0. any open neighborhood of any point b€ B,, and for any b¢ B, there will be an
open neighborhood U such that y(n)~!S,e U only finitely often. At the same time
this argument shows that be B, as soon as be By, i.e., B, = By, and therefore (2.3)
will follow at the same time.

To prove (2.8) observe that b is an accumulation point of y(n)~1S, if and only if
y(n)~1S,el i.o. for every open rational interval I containing b. Thus be B, if and
only if *

P{y(n)~ 'S, infinitely often in every I containing b} = 1.
In particular, if I is an open interval for which InB, # & then I contains some b
from B, and (2.6) holds, i.e., /e %. This proves (2.8a). Conversely, let / be an open
rational interval for which InB, = @f. We shall prove (2.8b) by deriving a contra-
diction from (2.6) for such an interval. Indeed, let I, and I, be the left and right

half of I (put the center point of I in Iy), and in general, let I, ... , , and
1 be the left and right halves of I,,,... . (& =0 or 1). If (2.6) holds

€1y, Bk 1

there exists a sequence 74, #,,"**,#; = 0 or 1, such that for all £

P{y(n)~'S,el,, ..., i0}=1

i
Consequently, if be N, 1,,,, ..., <1, then
P{b is an accumulation point of y(n)~'S,}
2 P{y(n)"'S,el,, ... ,io.forallk} =1.
This would mean
beBynI

contrary to our assumption. Thus (2.8b) also holds and the proof is complete.
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As stated in the introduction we find that w.p.1 A(S,, ) equals a non-random
set which we shall denote by B(«x) (instead of the more cumbersome B(F, {n*})
used in (2.1)). We turn to Binmore and Katz’ condition for b€ B(«). Actually we
consider somewhat more general normalizing sequences y(n) than n*.

THEOREM 2. Let y(n) > 0, n = 1, and y(n) » oo (n— 00) and assume

(2.9 lim, | o SUD; <py <ymy y(ny)fy(ny) =0
and
y(n
(210) llmﬂlosup15n15n25n1(1+n) ( 2; l
|

IfD>1,e>0and — o0 < a <b < w are fixed, then (i) implies (ii) and (ii) implies
(iii), where
(i) P{y(n)~'S,e(a,b)i.0.} =1,
(i) Y20 P{y(n)~'S,e(a, b) for some ne[D", D"*1)} = oo,
(iii) P{y(n)~'S,e(a—e, b+e)io.}=1.
ProoF. (i) implies (ii) by the Borel-Cantelli lemma. Assume then that (ii) holds.
Write I for (a, b) and fix an integer s so large that

1 [ | <Ll bt for 15 n, S m S na-0t
and

(2.12) zzn‘) (| [+]b)7 for 1<n Sny(D*7'=1)71

By (ii) we can then also find an integer 7, 0 < ¢ < s, such that

(2.13) © o P{y(n)"'S,el forsome ne[D**',D*"'*1)} =0

Fix such a ¢ and introduce the events
E, = {y(n)"!S,el forsome ne[D™*, D"
but yp(n)~'S,¢1 forall nzDC+De+,
Then
P{E,}
(214) =Y prseicprsrert Juer Py(n) 'S, ¢1  for Dt < n<,y()"'S,edu}
“P{y(n)"'S,¢I for nz= DUV |y(D)7IS, = u}.

Moreover,
(2.15) P{p(n)"'S,¢I for nZ D"+ |y()7'S, = u}

= P{p(n—1)7"S,_,¢y(n—1)"(p(m)I —y(u) for n—1 2 DCF*1—1},
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Butfor/ < D™*'*! p > DU+ Us+t gne has

(2.16) n—12 DUHDSH_[ > (Dsmi_q)prstitl > (pstiog))

and

(2.17) n<(1=D'"%"Y(n-1).

If, in addition, u €1, then by (2.11), (2.12), (2.16) and (2.17)

218) [3(n=D" (oma—p(Du)—a] < a] y(ff)l)-1|+<|a|+|b|)v LU
as well as

(2.19) [y(n— D)~ (p(m)b —p(yu) —b| < e.

(2.18) and (2.19) imply
W=D G =9(Dw) < (a—2,b+e),
and (2.15) therefore gives
P{y(n)~'S,¢I for n>Dr*Ds*|y)~1S, =y}
2 P{y(k)"'S,¢(a—e,b+e) for k=D*"'—1}.
When this is substituted into (2.14) we finally obtain
P{E,} 2 P{y(k)"'S,¢(a—e,b+¢e) for k=D"'-1} '
Y presesi<prress PO IS, 61 for Dt <<l but y()"'Sel}
= P{y(k)"'S,¢(a—e,b+e) for kzD"'—1} "
P{y(n)"'S,el for some ne[D™*", D+*1)}
Since the events E,, r = 0, are disjoint we have
12Y,50P{E} 2 P{y(k)"'S,¢(a—e,b+e) for k=D"1—1}
Y20 P{p(n)"'S,el forsome [D'*!, Dttty
Together with (2.13) this implies
P{y(k)~'S,¢(a—e,b+e) for k=D"'—1}=0
for all large s which satisfy (2.11), (2.12). Thus (iii) must hold.
COROLLARY 1. Let a > 0, D > 1 be fixed. Then be B(«) if and only if for all ¢ > 0
(2.20) 2oP{|n"S,—b| <& for some ne[D",D'*')} = co.
PROOF. y(n) = n* satisfies (2.9) and (2.10), and b€ B() if and only if

P{n~*S,—b| <e io. forall &¢>0}=1,
or, equivalently, if and only if
(2.21) P{n"*S,—b|<eio}=1 forall ¢>0.
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By Theorem 2, (2.20) and (2.21) are equivalent.
COROLLARY 2. If
(2.22) Yo nT'P{n7°S,—b| <&} =
for all ¢ > 0, then be B(x).
ProoF. This is immediate from Corollary 1 and the estimate
S pren<prsi” P{|n7%S,—b| < &}
< IZ:I—_DI—Y—-F}PH ~*§,—b| <& for some ne[D",D""h}.

REMARK 1. Condition (2.22) is not necessary for be B(«), as can be seen from
the example at the end of this section.

For the second version of conditions for be B(x) we need the following lemma
which is some form of the maximum principle.

LEMMA 1. For xeR, a, b, C€[0, o) and n, me Z*3 one has
(2.23) E # {k:Sye(x—aC,x+aC),n £ k < n+bm}
<2(a+1)(b+1E # {k:S;e(—C,+C),0=k < m}
= 2a+1)(b+1)Ypzd P{ISi| < C}.
PrOOF. We can always cover (x—aC, x+aC) by at most 2[a]+2 intervals of
length C, i.e.,
(2.24) (x—aC,x+aC) = UL (y;—1C, yi+40)
for suitable choices of y;. (2.24) implies
(2.25) E # {k:Sie(x—aC,x+aC),n £k <n+m}
<YUAP2E % (k:S,e(y;—3C, yi+3C),n <k <n+m}.
Now for fixed y; and » define
T, = inf {k: k 2 n, S, e(y;—3C, y; +3C)}.
Then
(2.26) E # {k:S,e(y;—%C,y;+3C),n £ k <n+mj}
=200 ey <sc P{Ty = 1, S e du}
E # {k:S;e(y;—=3C,y,+3C), | £ k < n+m|S,;=u}
= 2020 ey <ac P{Ti = 1, S e du}
"E# {r:S,e(y;i—u—1C,y;—u+3C),0<r <n+m—I}.

3Z*t = {0, 1,2, -+ }; #A stands for the number of elements of the set 4. Throughout So is
taken to be 0.
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But for n</<n+m and |u—y;| <3C one has n+m—I<m and (y;—u—1%C,
y;i—u+1C)= (—=C, +C), so that

2.27) E# {r:S,e(yi—u—13C,y;—u+4C),0<r<n+m-1}
SE#{k:S;e(-C,+C),0 =<k <m}.
(2.25)-(2.27), together with the estimate Y ;5 , P{T; =} < 1, prove
(2.28) E# {k:Sie(x—aC,x+aC),n < k <n+m}
< 2a+1)E # {k:S;,e(=C,+C),0 £ k <m}.

If we replace n by n+jm in (2.28) and sum over j =0, 1, - - [b], then we obtain the
inequality in (2.23). The equality of the second and third members of (2.23) is
obvious.

THEOREM 3. Let y(n) satisfy the conditions of Theorem 2 and in addition

2.29 =K .
( ) 1nysny Y(M2) 1=®
Then
(2.30) beB(F,{y(n)})
if and only if »
© -1Q _
@.31) 5 POTIS,—bl<ek o eso.

n=1 2izo P{|S| < v(m)}
(Note that the summands in the denominator contain y(n), not y(/).)

ProOF. By Theorem 2, (2.30) implies
(2.32) Yo P{|y(n)~'S,—b| <& forsome ne[D",D""!)}=co

for all ¢ > 0 and D > 1. Conversely, if (2.32) holds for all ¢ > 0 and some D > 1,
then (2.30) holds (compare proof of Corollary 1). We now estimate the summands
in (2.32) for suitable D in terms of certain expected numbers. Put

p(e,r,D) = P{|y(n)"'S,—b| <& forsome ne[D",D""")}
and

Y (n2)

1sSniSnasény 7('11) '

K2=

By (2.10) K, < oo. Also define the stopping times

U,=Ude,D)=inf{n:n 2 D", |y(n)"'S,~b| <&}
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Then
(2.33) E# {n:|p(n)"'S,—b| < (K, +K,+|b])e, D" < n < D"*?}

=Y prcicort i Jlump) o P{U, = Ly(D7 'S € duj

E# {n:|p(n)"'S,—b| < (K, + K, +|b]e, i S n < D2 [p() 7' S;=u}.
Also
(2.34) E# {n:|p(n)7'S,—b| < (K, + K, +|b)e, I £ n < D" 2[p()7'S, = u}

= E # {m:|y(m+1)7 (S, +y(Du)—b| < (K, + K, +]|b))e,
0<m<D*2=1}

and

(2.35) [p(m+D~ (Su+(Dhu)—b]

—y(l
< p(m 41" [Sy| 4 OB lu—b|+ !v(m+) v()“ b.

y(m+1) y(m+1)

For D'<I<D'*', 0Sm<D**—1<D*? 1<D<2 and |u—b| <e¢, the
right-hand side of (2.35) is bounded by

y(ny)
y(ny) -

By virtue of (2.10) we can take D = 1+ with 0 < < Jo(e) so small that the last
term of (2.36) is at most |b|e. With such a choice of D

I
1—

(2.36) Ky y([D" 2D 1S, + K e+|b] sup

15n1En25D%ny

Iy(m+l)—1(S,,,+y(l)u)—b| < (K +K,+|b]e

whenever y([D"*2]))7!|S,,| < &. Consequently, for the indicated values of / and u
(see (2.34))

(237  E# {n:|y(n)”'S,—b| < (K, +K, ASn< D2 y(D)7'S, = u}
2 E# {m:y([D 2D !S,| <e,0Sm<D*?-D"1}.

Next, an application of Lemma 1 shows that the last member of (2.37) is at least

1 Dr+2 -1 ,

We introduce the abbreviation

1 D
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and use (2.37) and (2.38) to estimate the right-hand side of (2.33). This yields
E# {n:[y(n)™'S,—b| < (K, +K,+|b|)e,D" < n < D"*?}
2 Y prsi<or+i fju-sy<e P{U, = Ly()™' S, e du}
‘K3 T'E # {m:|S,| < w([D"**]),0 = m < D'*?}
= K37 'p(e,r, D)E # {m:|S,| < »([D"*2]),0<m < D"*?}.

Upon using the definition of K;, and Lemma 1 once more, we finally obtain, for D
sufficiently close to 1,

p(e;7,D) S K3 E # {n:[y(n)™'S,—b| < (K + K, +|b|)e, D" < n < D"*?}
“(E # {m:|S,| <y([D"**]),0<m < Dr*2})1

P{|y(n)"lS,,—b| < (K;+K,+|b|)e}
pran<pr+2E # {m:|S,| < Ky 19(n),0 < m < n}

P{|y(n)~'S,—b| < (K, + K, +|b|)e}
Dr<n<Dr+? Z?;(} P{IS,' <y(n)}

Consequently, if (2.30) holds, and hence (2.32) or

=K,

= 2K5(K; +1)

Y2op(e,r,D)=00 forall ¢>0,D>1,

then (2.31) follows.
The estimate in the other direction is similar, but fortunately somewhat simpler.
Indeed

(239) E#{n:[y(n)~'S,—b|<e,D"<n<D*1}
< Zprékmﬂ_f,u_,,,qP{U, =1Ly())~'S,edu}
"E# {n:|[y(n)7'S,—b| <e,lSn <D y)7'S, = u}
= Y orzi<or+tfjump) <o P{U, = Ly(1)"1S,edu}
"E# {m:|ym+D7(S,+y(Du)| < |b|+e,0 = m < D11}
< p(e, 7, D)E # {m:|S,,| < 2K, ([b|+&)y([D"*']),0 < m < D"*1}.
By definition of X, we have for 1 < D <2and D" < n < D!, y([D"*']) < K, y(n),
and thus by Lemma 1 and (2.39)
P{|y(n)~'S,—b| < &}
Dren<pr+i Z;’;ol P{ISII <ym)}

(2.40) shows that (2.31) implies (2.32) for 1 < D < 2, and hence (2.30). The proofis
complete.

(240) p(e,r, D) 2 {8K, K,(|b|+&)+2}*
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REMARK 2. Virtually the same proof leads to the following criterion: If {y(n)}
satisfies the conditions of Theorem 3, then

P{liminf,_ ,y(n)~"'[S,| < 0} =1

if and only if
& P{[S,| < Ky(m)}

=1 2020 P{|S)| < v(m)}

ExampLE. To illustrate the above results we show that a transient random walk
can go to infinity very slowly. Specifically we show: Let X, X,, - - be independent
identically distributed integer valued random variables with a symmetric distribu-
tion satisfying

(2.41) P{X, =k} =P{X, = —k} ~ [C(logk)*/k*] (k - o0)

= o0 forsome K >0.

for some C > 0. Then S, is transient (i.e., |S,| = oo w.p.1), but forall 0 < < 1
A(S,,0)=R  w.p.l.

In particular, one has w.p.1

S
liminf|71:—| =0 forall a>0.

B— 0

Proor. By a well-known limit theorem (see [8], Theorem 35.2 with proof and
footnote, p. 175, or [6], Theorems XVII. 5, 1 and 2) one has

i P{ S, < 1 1(* dt
imP{ —————S Sxp=-— —
s |C*n(logn? =" (T a)_ T+

"] —cos
where C* = Cj 5 X dx = nC.
2

-0

From the local limit theorem in Section 50 of [8] we then conclude

P{S, =k ! 1 ———k 1% 0
{Sn= }_n{ +<nCn(logn)2>} ._’

as n — oo, uniformly in k. Thus we have

nCn(log n)®

1
~ 2Crllogny
when n— o, k,/[n(log n)*]— 0. In particular ) P{S, =0} < co. So that S, is
transient ([3], Theorem 2) and for 0 < « £ 1 and fixed beR

(2.42) P{|n_“S,,—b| <e} = Zn“(b—5)<k<n°‘(b+e)P{Sn = k}

P{S, = ku}

2en*"!
nC(logn)®’
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Also, forO<a <1

(2.43) Z;‘;ol P{lS,l < n“} = 20§l<n°‘(logn)'3/z+Z""‘(‘°£”)“3’2§’<”P{|Sl| < na}

2n*
= O(n*(logn) ") +(1+o(1 72Cl(log ])?
(wilogm ™ Ht(+o) 5 Ciieghy?
_ 2(1—a) n*
= 0(n'(l D+ +o(1) 51—
O(n(ogn) )+( +0( )) nZCa logn
2(1—a) n*
n2Ca logn’
Similarly, for « = 1
. lo
(2.44) Z P{|s)| <n} ~ 2c(logn)2 toglogn.

It is easily seen from (2.42)-(2.44) that

& P{|n~"S,—b| <e}
ZSIp(s <) "

for beR, 0 <o =1 and all ¢ > 0, so that our claims follow from Theorem 3.

3. The limit points of »~%S, for « < 1. This section is devoted to the proof of
Theorem 4, which has already been stated in the introduction. The proof is broken
down into several steps, some of which ((b)-(d)) will be used again in later sections.

(a) As usual we denote the distribution function of the X; by F. If F is con-
centrated on [0, o0) but not on {0} then 0 < EX; < oo and by the strong law of
large numbers n‘lS — EX; > 0 w.p.1 so that n™% S, does not have any finite limit
points for « < %; similarly if F is concentrated on (— o0, 0]. Thus we may assume
that F has at least two points of increase —u,, +u, with u; > 0. It is then possible
to decompose F as

3.1 F=pG+(1-pH

for some 0 < p <1 and nondegenerate distribution functions G, H such that the
support of H is bounded and

(3.2) [xdH(x) =
(E.g.,if Ay = [—u;—1, —uy/2], A, = [u,/2, u,+1] we can take*
H(B) = 0(1 F(AlﬁB)+ot2 F(Asz)

“If H is a distribution function and C a Borel set, then we use H(C) to denote the measure
assigned to C by the Borel measure induced by H.
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with oy, &, > 0 such that
oy 4, X AF(x)+ 5 [ 4, xdF(x) = 0,
ay F(A))+ay, F(4,) = 1;
then0 < 1—p < min(x; "%, 2,7 1))
(b) Let X,, X,, - be a sequence of independent identically distributed random
variables with a distribution function F of the form
33) F =32 oncFy

where p, 20, ;2o p, =1 and F, a distribution function. It is then possible to
construct a probability space with an array of random variables {X/};5,, ;s0,
{n:}:> 1, such that all these random variables are independent and such that

P{n; = k} = py, k=0, i1

and such that X;/ has distribution function F;. The random variables {X, '}y are
then also independent and have the distribution

P{X{" < x} =} %o P{n; = k}P{X} S x} = Y20 P Fi(x) = F(x).
Thus the probability structure of the original random walk S, is the same as that of
(34) gn = Z;‘=1 Xima n ; 1.

In particular, the set of accumulation points of n=2§, is (w.p.1) the same as that .
of n=*S,. For later use we shall also introduce’®

(3.5 U,/ =Y1 X1, = j].

Note that U,/, n 2 1, is for each fixed j a random walk as well. U,’ is the sum of the
n independent random variables X;" I[n; =], 1 £i < n, each of which has the
distribution function

(3.6) (1-ppeo+p; F;.

(g0 is the degenerate distribution which assigns mass 1 to {0}.)
(c) In view of (a) and (b) it suffices to prove Theorem 4 with S, replaced by S,
as in (3.4) with the following choices of parameters

Po =D, pi=U-p), Fy =G, Fi=H

(p, G and H as in (3.1)). We shall make this replacement, but drop the tilde and

again write S, (instead of S,). Then, in the notation of (3.5) S, = U,°+ U, and

the increments of U,' have distribution pe,+(1—p)H which has zero mean and

bounded support.

s ImeAl=1 if neA
. =0 if né¢A.
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(d) Let 1 £n, <n, <--- be the successive indices n for which #, = 1. The
random variables n,—n;_,, i = 1 (n, = 0), are independent, all with a geometrical
distribution with success probability p; = 1 —p. Even stronger, when

F, = o-field generated by {5, X/:j=0o0r 1,i < n}

then
P{smallest n; > nexceedsn+k|#,} = p*.

Thus if N(n) = inf {n; : n; > n}, then P{N(n) < (1+¢&)n|#,} - 1 and
P{n==y¥m X <e|F,} -1 (n->o, >0, a>0)

and it follows from a well-known extension of the Borel-Cantelli lemma, [2],
problem 5.6.9,° that

3.7 be B(a)
if and only if
(3.9 P{b is an accumulation point of n,”*S,,i = 1} = 1.
Note now that
T,=S, = I=1 Z?'=n,-,+1Xi'"
can be written as the sum T, = Y f= (V;+ W,), where
V= Zn,_,<i<n1Xi,“ = Zm_1<i<n1Xi0,
W= X=X, .

All the variables V,, V,, -, W,, W,,-- are independent; each ¥, has the dis-
tribution function

(3.9) | Y50 P(1—p)G*

and each W, has the distribution function H. Thus also T}, k = 1, is a random walk
(with increments V, + W,). Lastly, by the strong law of large numbers

lim,_, , ni/k =1/(1—p) w.p.1,
so that (3.8) holds if and only if
(3.10) P{b(1—p)~*is an accumulatior{ point of
kT =k Y, (V+W), k=2 1} =1.

By the equivalence of (3.7) and (3.8) it suffices to prove the theorem with S,
replaced by T,. E.g., for 0 <« < 4 we have to show that if n™*T, has a finite
accumulation point w.p.1, then w.p.1 all real numbers are accumulation points of
n *T,.

6 Take for Breiman’s X, the triple (i, Si, #) and Breiman’s A ={(n, S,n):|n"°S—b| < e},
B={(n,S,n):In"*S—b| < 3e,n=1}.
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(e) Since H has mean zero and bounded support we have by the central limit
theorem

(3.11) P YA, W, < x) - B(x/o)
where
o2 = ijH(dx) D(x) = (zn)—%j'x_w e 2 4y,

We shall now show that we may in a certain fashion act as if P{k~*Yj_, W, < x}
equals ®(x/o). First we have to “discard” values of (X¥-1 W) which exceed
4o(k log log k)*. More precisely, put

en = ¢(0) = (LiZo P{|T,| <P ™"
We claim for any fixed b
(B.12) Y, P{n"*T,—b| <&,  |Yi-, W] > 4a(nloglogn)t} < co.
Indeed, c, is decreasing and when we introduce
R, =inf{n:n22",|n""T,—b| <&, |Yi-, W| > 4o(nloglogn)t},
we can write
Yarzn<arr 16, P{n 7T, —b| < &.|Y1=, Wi > 4o(nloglog n)*}
S e E# {n:|n7°T,—b| <¢,|Yj-, W] > do(nloglogn), 2" < n < 21}
=) prsi<or+i flu—p<e P{R. = L1 T*Ty€ du}E # {n:|n"*T,— b| <,
ISn< 2 17T = u}.
Just as in (2.39) we have for 2" < 1 < 2"*!, lu—b| <,
E# {n:|n™"T,—b|<e,l Sn <21 |I7*T; = u}

S E# {m:|T,| < 2K,(|b]| +&)2*"*D,0 < m < 2+1}

< 22Ky (|b]+&)+ DR+ 1)E # {m: |T,,| <2",0=m <27}

= 6(2" **K,(|b| + &)+ 1)(c,r) 1.
Consequently '
(3.13) Yargn<arn1 G P{n T T,—b| < ¢,|Yr W)| > 40(nloglogn)*}

S 62" K(|b|+&)+1) Y rei<2r1 P{R, = 1},
But, by the usual reflection principle (see [13], Lémma VIL9.1)
(3.14) Y orgi<oret P{R, = [} £ P{max,r cpcrer | Yooy Wi > 2%0(27* ! loglog 2}
< $P{|XY Wi > 20(27* ! log log 27)*}
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for sufficiently large r. Now, by Bernstein’s inequality, [13], Theorem VII. 4.1,
(3.15) o P{|Y2L1 Wi| > 20(2"* ! loglog 27t}

= 0(Q % oexp {—3loglog2}) < o

so that Y20 sr<j<2rv1 P{R, = I} < 00, and (3.12) follows from (3.13).

With the large values of |Z7=1 W,I out of the way we can now apply Esseen’s
central limit theorem. For simplicity we assume that H, the distribution of W7, is
non-lattice. If H is a lattice distribution, Theorem 43.1 in [8] has to take the place
of (3.16) below. In the non-lattice case Theorem 42.2 of [8] reads in our notation

(3.16) P{x;0/n<Yi_ W, <x,0./n}
e_%(xzz)Ql(xz) e_%(xlz)Ql(xl)

JCn) Jn T J@m) Jn

where Q,(x) is a quadratic polynomial of x and n*o(n"*)— 0 as n— oo, uni-
formly in x,, x,. In particular, for 0 <a <%, x, =" 'n ¥ (n*(b+e)—y), x; =
o~ n~*(n*(b—e)—y) and |y| £ 50(n log log n)* we have

= O(x,) —D(x,) + +o(n™%

e 02 ggpa=4
N

It is now easy to complete the proof of Theorem 4 for 0 < « < 4. Indeed, for any
b, b'eR, some |0,], |0,| < 1and largen,

(3.18) P{|n"°T,—b| <¢}
= I[ylgSa(n log log n)1/2 P{Z;'-—-] Viedy}
‘P{—y+(b—en*<Yj- W< —y+(b+e)n*}
+0, P{|n™°T,— b| <&, Y}~ Wi| > 4o(nloglogn)*}

az + 2
y
=(1+o0(1 Vied s
(1+o) Iy1 < 50(n log log n)1/2 {t; : y} \/(2) { 2”02}
+0, P{{n™°T,— b| < &,|Y -1 Wi| > 4a(nloglogn)?}

=(L+o(1))P{|n~*T,—b’'| < &}
+0, P{{n"T,— b| < &, |4~ , Wi| > 40(nloglogn)*}
+20, P{|n™°T,— b'| <&,|Ys-, Wi| > 4o(nloglogn)?}.

3.17) P{—y+(b—£)n°‘ < i W, < —y+(b+e)n} (1+o(l))
1=1

By virtue of (3.12) we may conclude from (3.18) that for 0 < « < %
(3.19) Yo, P{{n"*T,—b| < &}

and

(3.20) Y2, ¢, P{{n~*T,~b'| < &)
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converge or diverge together. Since the divergence of (3.19) and (3.20) for all
¢ > 0 are equivalent to’ be B(T,, «) respectively b’ € B(T,, ) (by Theorem 3) we
see that if B(T,, o) contains any be R, it contains all of R. This proves Theorem 4
for0<a<i.

(f) For a = } the conclusion (3.17) from (3.16) is not permissible anymore. In
this case (3.16) only gives

(3.21) P{ y+b—en* <Yr_ W, < —y+(b+e)nt}
=(21) " * [ yp-tn- 2o 1—1] <eo-1€ Tt
+0{n"*1+|b]*+y*n~"}
{exp(—10" X (—yn"*+b—e)?)+exp(—1o (—yn t+b+e)?)}

+o(n™%).
Again we restrict y to
(3.22) |y| £ 50(nloglogn)*.
From the well-known asymptotic relation, [9] problem 1.4.1,

! 2 gt ~ ——e
J@) Jisx x/(27)

we see that the right-hand side of (3.21) for | y|n * and n large (under the condition
(3.22)), and ¢ > 0 fixed, equals

%
(1 +o(1))ﬁ<%> exp(—2}7>min((—yn_*+b——s)z,(—yn‘*+b+e)2).

—x2/2

(x — 0)

More generally, there exist constants 0 < K, < K5 < oo depending on ¢, b and o,
but not on #, such that for all y satisfying (3.22) and » sufficiently large

K, _l_y_l_l N o b—e)? (— vt 2
(3.23) \/(Zn)(l-'-on*) exp 552 min((—yn~*+b—¢e)*,(—yn"*+b+¢)*)

SP{—y+(b-en* <Y W, < —y+(b+e)n?}

K, Iyl
= \/(27:) (1 +an*>

1 «
'exp(—ézj>min((—yn‘*+b—s)2,(—yn'*+b+a)2).

Now assume b e B(T,, 1). Then (3.19) with « = 4 diverges for all ¢ > 0. Assume for
the sake of definiteness that

(3.24) 2, P{n"*T,—b|<e, Y7 V,20}=00 forall &>0.

7 Even though this is an abuse of notation, it hardly needs saying that b€ B(7,, ) means
P{b is an accumulation point of n~°T,} = 1.



THE LIMIT POINTS OF A NORMALIZED RANDOM WALK 1189

(If (3.24) fails then the analogue with Y;_, ¥, <0 instead of Y;_, ¥/, 2 0 must
hold.) In view of (3.12) and (3.23) we must then also have for all ¢ > 0 (compare

(3.18))
0 n yl -1
Cp P V,edy <1+-L~>
ngl 0 <y= 5a(n log log n)1/2 {1:21 ! } on?

1
. —_ Y(=—vyn—%* 2 -
exp( 202)( yn~*+b+e)* = 0.

But then also for any 4’ 2 b and ¢ > 0

0 n iyi >—1
Cn P Vied 1+
ngl Jo <y=5a(nloglogn)¥/2 {t; ! y}( on?

1
. . — 1 ' 2 —
exp( 202)( yn*+b'+¢e)* = o0,

and a fortiori (by (3.23) again)
Yo, P{n7iT,—~b'| <e} =0 forall &>0.

Thus if be B(T,, 1) and (3.24) holds, then [b, co] = B(T,, 1). If the analogue of
(3.24) holds with 7., ¥, <0 instead of Y-, ¥, =0 then beB(T,, ) implies
[— o0, b]< B(T,, 1). This completes the proof of Theorem 4 for o« = .

REMARK 3. Assume one could prove »

(3.25) P{liminf,_ ,n"*|Y/-, V| < 0} = 1.
Then, by the Hewitt-Savage zero-one law there existsa ¢ =0 s-¢

liminf,, ,n *[}7- V| =c  wpl
and thus the stopping times

N,=inf{n:n22"n"* |31, V| S c+1}

are well defined. Moreover, by the Borel-Cantelli lemma
(3.26) YR oP{2'SN, <2} = 0.

But since the V; and W; are independent we have (using the central limit theorem

G.11)
(3.27) P{{n™*T,—b'| <& forsome 2'<n<2*'}
2 rci<arifyzer 1 PN, = Ln Y1 Viedy}.
“P{n"YI_ We(b' —y—e, b —y+e)}
= 22r§t<2'+1f|y|gc+1 P{Nr = l’"—%z7=1 VIEdJ’}Ks
=KgP{2" <N, < 2"}
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for some Ky = K4(e, b'c) > 0. From (3.26), (3.27) and Theorem 3 we conclude
b'e B(T,, %) for any b’ eR. Thus, if one could prove (3.25) from the fact that some
be B(T,, %), then we could conclude B(}) =R as soon as B(})nR # J. Using
Remark 2 this proof can indeed be carried out when F is symmetric, or even when
only

|ImE e®*t| = o(1—Re E€®*') as 0 —0.

(3.25) is also easily obtained from [15] when S, is recurrent. Thus the answer to
problem 1 is in the affirmative for a symmetric or a recurrent random walk. We have,
however, been unable to prove (3.25) in general from B(T,, )R # & alone.

4. The infinite limit points of »~'S,. In this section we find conditions for
+ 00 and/or — oo to be limit points of n~1S,. We do this by investigating the posi-
tive and negative contributions to S,. More precisely, we shall obtain + co e B(1) as
a consequence of
X +
limsup,., ,, - =4 w.p.1
Zz 1 X
(under suitable conditions). This approach leads to the interesting corollary that if
EX,* = o0 and limsupS, > —oo then lim supn~'S, = +c0. The heart of the
matter is contained in

THEOREM 5. If EX,* = oo and P{S, > 01i.0.} =1, then
+

' X
4.1 limsup,, o —s==+o  wp.l .
) ST X, P

REMARK 4. It is much simpler to prove a two-sided analogue, namely that
E|X| = oo implies

IX |
li o p.1.
imsup, S lXil w.p

(see [11]). (4.1) and this two-sided analogue express in some way the preponderance
of the maximal term in S, when E|X| = co. This phenomenon has been investigated
more systematically by Darling [4] and Feller [5], [7].

Proor. If X;~ =0 w.p.1 then there is nothing to prove, provided we interpret
X,*/0 as +oo whenever X,* >0. Assume then that P{X; <0} >0 and let
1 £ n, <n, <--- be the successive indi¢es n with X, > 0. The situation is the same
as in step (d) of Section 3. The random variables

— — - +
Vl - Znt-1<b<nxXi = _Zm-1<i<mXi and VV; X," Xm

are all independent, all ¥, have the same distribution which is concentrated on
(=00, 0], and all W, have the same distribution, namely the conditional distri-
bution of X, given X; > 0. Again

=Yi=1 (N + W), kz1,
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is a random walk and it is clear that {S, > 01i.0.} implies that .S, > O for infinitely
many n following a positive step. Thus we may assume
(4.2) P{S, > 0i.0.} = P{T; > 0i.0.} = I.

Thus, we have w.p.1
i Wi> =Y, V,20 io.

and a fortiori

“4.3) Y W, > kinfy, —1/iY_, ¥, io.
Introduce the random variables

“4.4) a, = kinfys, = 1)Y=, V).

By definition

4.5) a,/k is increasing

and w.p.1

(4.6) limy_, , a,/k = E(—V,) =Y %0,P{X, <0}YP{X, >0}E{X,” | X, S0}.
If EX,~ < oo then

4.7 nT!yYr X, >EX;" <o  wp.l

whereas it is well known that EX;* = oo implies (see [2], problem 3.3.10) '
4.8 limsup,., X,*/n=0  wp.l. |

Thus (4.1) is trivial if EX;~ < oo, and we may therefore assume EX,” = o0 and
a fortiori E(—V;) = c0. By (4.5) and (4.6) we then have

4.9) aplk 1 oo w.p.1.
Note that the g, depend on the V; only and that by (4.3)
(4.10) PO Wi aio |V, V) =1

for almost all sequences V', ¥, --. Consider now a fixed sequence Vi, V,, -
for which (4.9), (4.10) hold. Since the W, are independent of the V’s, W, W,, -
are still independent, identically distributed random variables when V,, V,, -
are fixed. Thus Theorem 2 of Feller [5] applies, and we conclude

P{W, > a;i.0.|Vy, Vs, -} =1

for any sequence V', V,,- -+ which satisfies (4.9) and (4.10). Since this is the case
for almost all sequences ¥y, V,, - we must have

(4.11) P{W, > a,i.0.} = 1.
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We shall now prove in separate lemmas that (4.11) implies
P{W,> =13 V;io} =1
and then, for any ¢t > 0
P{W,> —tY¥  V;i0} =1
For this purpose we introduce the events
E(t) = {W, > tkinfiy, =i~ Y-, V;i.0.} and
Fit)={W,> —tYi_Viio.}.
LeMMA 2. P{F(#)} = 1 or O according as
4.12) Yo [P{W,edw}P{w> —tY [ V}}
is infinite or finite.
PROOF.
P{W, > —tz Vi) = [P{W,edw} P{w > —tz, Vi)

so that convergence of (4.12) implies P{F(¢)} = 0 by the convergence part of the
Borel-Cantelli lemma. When (4.12) diverges we use Kochen and Stone’s [12]
generalization of the Borel-Cantelli lemma. Note that for £, < k,

P{W,, > =13 1L Vi, Wy, > —t Y12, Vi)

SP{W, > —tY 1 Vi, W, > =t 24, Vi)

=P{W,, > —t YL VI P{Wjyop, > =t Y5231V
(because — ¥V, = 0). Thus if we write

G(k) = G(k,1) = {W, > —tY}ey Vi}

then, fork, < k,,

P{G(k)nG(k,)} = P{G(k)} P{G(k,— ky)}.
Moreover, the divergence of (4.12) states -

i1 P{G(K)} = oo

By part (iii) of the theorem in [12] (with X, taken to be # {k :1 < k < n and G(k)
occurs}) we therefore have (if we put P{G(0)} = 1)

P{F(t)} = P{G(k)i.0.}
2 limsup, , (3 k=1 P{GU)N* 2 X1 sh 2o 2n P{Gk NGk ™!
2 $limsup,. o, (T -y P{GUON Tk, =1 P{G(k1)} ok, P{G ks — kD) ™!
24

The Hewitt-Savage zero-one law then shows that P{F(z)} = 1 as desired.
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LemMaA 3. If P{F(t)} = O then P{E(41)} = 0.
Proor. For any fixed w =0
(4.13) P{w > 4tkinf;, —it Z§=1 v}

§ Z:o=0 P{W > 4tkmin2nk§i<2n+lk _i—.lzli:l I/;}
© dtk 2

=X P{W > — 5y X Vz}
=0 =1

© 2t2”k
=1

n=0
because — Y s, V; increases with i. Now —Y ;4 ¥, is the sum of the 2" positive,
independent, identically distributed random variables
Zi= =Y ek Voo lsig2"

Thus, if we put
p=pw,k)=P{Z, Zwjt}=P{w= -1y, V} then

2nk

t
(4.14) P{w > =% Y V,} < P{Z,- g%v for at most 2"~ ! values of ie[1,2”]}
=1

= 20§r§ 2n-1 (zrn)l"(l “P)Z"_'- .
By Chebychev’s inequality
(4.15) l-p=Pw>—tY.,V} =%
implies
(4.16) Y Gra-p¥rs %ip;(,—l—z_-zlzz s16(1—p)27".
0srsan-1 @9

(4.13)-(4.16) combined give
P{w > 4tkinf;y, —i 'YV} S 16(1—p) Y027 " = 32P{w > -ty Vi

and the inequality between the first and last members remains trivially valid when
(4.15) fails. Thus

(4.17)  P{W, > 4tkinf,s, —i~ ' Yio, V} < 32[ P{W,edw} P{w > —t Y-, V}}
= 32P{W, > —t} (=1 Vi}.

By virtue of Lemma 2 the assumption P{F(t)} = O entails the convergence of (4.12)
and hence

Yooy P{W, > 4tkinf;y, —i~ ' Yio, Vi} < 0.
This shows P{E(4t)} = 0 as desired.
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LemMA 4. If P{F(t)} > 0 for some t > 0, then P{F(t')} =1 for all t' > 1.
PRrOOF. Since P{F(t)} is clearly decreasing in ¢ it suffices to prove P{F(2t)} =1
whenever P{F(t)} > 0. But
P{W,> =2t} V}} = P{(Wy, > =2t} [, V}}
> P{Wy > —ty %V, and =Yl VS =Y V)
=P{(Wy > —t Y25 VI P(Yla Vi2 Y Vi
2 AP{Wy > —tY %, V)

Similarly
P{W,> —2¥b, V) 2 3P(Wapyy > —tXET V).

Thus
Y P{W, > =2tYf Vi} =0

as soon as Y wey P{W, > —ty -, V;} = o0, and by virtue of Lemma 2 this gives
the desired conclusion.

It is now easy to complete the proof of Theorem 5. In the present notation (4.11)
states P{E(1)} = 1. By Lemmas 3 and 4 we therefore have P{F(})} >0 and
P{F(r)} = 1 for all t > 0. In terms of our original variables this says

P{X) 2tY™, X, i0}=1 forall t>0, .

which is equivalent to (4.1).
Theorem 5 has various simple consequences with a more immediate interpretation
than the theorem itself.

THEOREM 6. If EX,* = o0 and aeR then the following statements are equivalent:

(a) P{limsup,.,S,> —0} =1,
(b) P{limsup,.,S,/n>— o} =1,
(c) P{limsup,.,S,/n=+x0}=1,
(d) P{limsup,.,S,=+wo}=1,
(© Yo-11/nP{S,—an>0} = co.

Proor. Clearly (a) implies (b). If (b) holds, then there exists a constant X,
0 £ K < o0, for which \

S,+K
P{limsup nt n>0}=1,
n

n— o

because lim sup #n~ 1S, is a constant w.p.1 (by the Hewitt-Savage zero-one law).
In particular, it follows that w.p.1

S,+Kn=Y",(X;+K)>0 io.
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Since also E(X;+K)* = oo we can apply (4.1) to the (X;+ K). We now obtain (c)
from the strong law of large numbers. Indeed

(4.18) S,+nK = (X,+K)*=Yi., (X;+K)",
and thus by (4.1)

S,+nK
4.19) limsups———= = w.p.l.
Yi-1(X;+K)

If E(X,+K)~ > 0 then (c) follows from (4.19) and
lim,,,n ' Yi  (X;+K)”" =EX,+K)" >0  w.p.l

On the other hand, if E(X;+K)™ =0 and hence Y- (X;+K)™ =0, (c) follows
from (4.18) and (4.8). It is also clear that (c) implies (d), and (d) implies (a). The
equivalence of (e) and (a)—~(d) now follows from Theorem 4.1 of Spitzer [14], which
states the equivalence of (¢) and P{lim sup,., (S,—an) = +o0} = 1.

REMARK 5. Since (e) is equivalent to (a)-(d) for any choice of aeR we see
that if EX;* = oo then the series in (e) either converges for all aeR or diverges
for all aeR. In particular this shows (after an interchange of positive and negative)
that in the theorem of Binmore and Katz [1], if EX,;” = oo one only has to check
the divergence of (1) for one (arbitrary) a.

Theorem 6 is also a strengthening of Stone’s result [16] as can be seen by
rephrasing its main conclusion as *

COROLLARY 3. If EX, is well defined (+ o0 or — oo permitted as values of EX,)
then

(4.20) lim,., S,/n = EX,  w.p.l.
If
(4.21) EX,* =EX,” = o,

then one of the following three cases must prevail ;

(i) lim,  S,/n = + 0 w.p.1,
(i) lim, ., S,/n = — o0 w.p.1,
(iii) lim inf,, , S,/n = — 0 and lim sup,_,,, S,/n = + o0 w.p.l.

In particular, if n'S, has any finite limit point then both + 0o and — oo have to be
limit points of n™ 'S, (under condition (4.21)).

Proor. If EX, is well defined the strong law of large numbers gives (4.20), but
if (4.21) applies and (ii) does not hold then the Hewitt—Savage zero-one law and
the equivalence of (b) and (c) in Theorem 6 give lim sup n™!S, = c0 w.p.1. If
(i) does not hold either, lim infn~ 'S, = — 00 w.p.1, again by Theorem 6 (with
positive and negative interchanged).
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5. Construction of a random walk with prescribed B(1). The set of accumulation
points of n~ 'S, is necessarily closed. If C = {c}, ceR, is a one-point set in R
then we only have to take

[¥2xdF(x)=c
to assure
(5.1) A(S,,1) = B(F,{n})=C w.p.1.

If C contains more than one point, then the strong law of large numbers rules out
(5.1) as long as the distribution F of X, has a well-defined mean. To obtain (5.1)
we must at least have

(5.2) EX,* =EX,” = .

Under (5.2) we must have + oo and — oo in B(F, {n}) as soon as B(F, {n}) contains
a finite point (by Corollary 3). Thus if B(F, {n}) is not a one-point set then it
must contain +o0 and —oo. If C = {—o00, + 00} there clearly is a choice of F
which makes (5.1) valid. In fact, if we take for F the symmetric stable distribution
of index B, with characteristic function exp —|0]%, then for 0 < < 1

(5.3) P{|S,| < Kn} = O(Kn'~*)(n - o).
(5.3) is well known, but also immediate from the fact that S, has the same dis-
tribution as n'/# X,. For B < }
= P{|S,| <Kn} <o forall K>0,
so that »
|Su/n| = o0.  w.p.l.
By the symmetry and the Hewitt-Savage zero-one law we must have

P{+o and —oo are accumulation points of S,/n}=1.

This leaves us with the construction of an F for which (5.1) holds when C is a
closed set of R which contains + oo, —oo and at least one finite point. This will
be the burden of the proof below.

THEOREM 7. For any closed subset C of R which is either a one-point set or contains
+ 00 and — oo there is a random walk for which (5.1) is satisfied. If 0e C one can
even take S, recurrent.

PROUF. Apart from the recurrence statement, we have handled above all cases
where C does not contain + oo, —co and a finite point. If C = {0} then a random
walk with zero mean satisfies (5.1) and is recurrent, [3] Theorem 4. From now on
we shall therefore assume that C contains + 0o, — oo and at least one finite point.
We pick an arbitrary sequence of points {¢,},> = CNR such that

(5'4) lckl é k’

(5.5) for any m,{c,:k=m} isdensein CnR.
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We shall now construct (by a rather horrible method) an F of the form

(5.6) F=Z:o=0Pka’
where
(5.7) P20, Z:;Opk =1 and
(5.8) F, = distribution concentrated at 0,
—-b
(5.9) Fy(x) = G, (" - ) k21,
k

for suitable b, €R and g, > 0 and G, the uniform distribution on the integers in
[—rw +r] for a suitable integer r, > 0, i.c.,

Gk(x) = (2rk+])_l Z—rkglgmin(x, rk) 1

The sequences {a,}, {6}, {p.}, {r.} will be chosen inductively in a manner to be
described in a little while. First we note that (5.6) is a decomposition of the form
(3.3) and we shall accordingly take as our basic probability space the space de-
scribed under (b) in Section 3. In particular, {X;/}, {n;} i = 1, j = O will be indepen-
dent random variables with distributions as described in Section 3 (b). X, will
have distribution F and we shall write

Sy=Yr_ X (rather than S).

U,’ will be the random walk defined by (3.5), and in addition we shall need the
random walks

(5.10) Vi = Y0, X[, < j—2].

If we put

(5.11) N, =inf{i:n, =k}

then clearly

(5.12) S,=V +US '+ UF for n<inf{N,:r> k}.

The program for the construction is to choose the parameters such that w.p.1
(5.13) N, < N,;, eventually

as well as the appropriate parts of (5.15)-(5.18) below.

(5.13) guarantees the decomposition

(5.14) S,=V¥+U*'4+U* on N, <n<N,,,,

and the parameters will have to be such that U, and V, satisfy for any ¢ > 0 w.p.1
on Ny £ n < N,,, and k sufficiently large

(5.15) |n"'Vr—c, 5| <,

(5.16) '”_lUnk_l—(Ck-l_Ck—z)'§%‘akl)k+1k_l’
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and one of (5.17a), (5.17b) or (5.18).
(5.17a) U (= -y) Z da s kKT Z K,
(5.17b) nT U = (= ei-) £ —da P kTS — K2,
(5.18) |n7'US—(ci—c-p)|Se aswellas |n U —(cmy—cpy)| Se
Clearly, when (5.14)-(5.16) and (5.17a) hold, then
(519) n7'S,—c ="V —o )+ (T US T = (o —i2)
+(7T U = (== 1)) Z G =D i Pus 1 k—e 2 $K2.
Similarly, when (5.14)-(5.16) and (5.17b) hold

(5.20) n~1S,—c, < —3k%

On the other hand, when (5.14), (5.15) and (5.18) hold,

(5.21) |n1S,—c\] < 3.

In view of (5.4), (5.19) implies

(5.22a) n~1S, = 1k>—k = 1k* eventually,

and

(5.22b) n~!s, < —1k?

when (5.20) applies. On the other hand, (5.21) implies i
(5.23) inf,.c|n™'S,—c| < 3¢

because ¢, eC. Since one of these relations has to hold eventually, no matter
what & > 0 is, such a construction will indeed guarantee

(5.24) AS,, 1) = Cu{—0,+0}=C  w.p.l

To make sure that there is equality in (5.24) we have to make sure that there exists
for each ¢ > 0 w.p.1 for all sufficiently large k£ an ne[N,, N,.,) for which (5.18)
holds as well as infinitely many & for which (5.17a) holds for some ne[N,, N4 ;)
and similarly for (5.17b). Indeed this will guarantee that for each ¢ >0 and
sufficiently large k (5.21) (and hence (5.23)) occurs for some ne[N,, N, ) and also
that (5.22a) and (5.22b) will occur for arbitrarily large k. In view of (5.5) this will
make every ce CnR and + 00, — oo accumulation points of n~1S, so that (5.1)
will indeed hold.
We are almost ready to specify the parameters. First, we put

Y°=0, Y/=a;7'(X/-b), jzl

The {Y/}, {n;}, i=1, j =0, are still independent and Y,/ has the distribution
function G;. Thus

(5.25) T,j=Yr, Y/ nz1,
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is an integer-valued recurrent random walk for each fixed j (it has zero mean).
Together with the sequences {a,}, {b,}, {p:}, {r.} we shall choose two auxiliary
sequences of integers {4 },>1, {Vi}x>; such that 0 <A, < v, In addition, the
parameters will be taken so as to satisfy (5.7) and (5.26)—(5.32), where for k = 1

(5.26) be=p [e—2 1 pi b],

(5.27) A = max{20logk, 16k’p, p,_ (ai_, ri-; +bi_,),8k*p2b2},
(5.28) P{T,)=0forsome 4, <n<v}=1-k?

(5.29) 2r+1 2 3k2,2,

(5:30) piry S min{3pk™3 Bk Yiziplar2+b2)7Y,
k)T kT3 ()Y,
where f(k) is large enough to insure

(5.31) P} Y MI[n;=k]=0 and
[P XM I S k= 1]+ b X[, = kl—c}| =1

for some nel[kp, ', f(k)]} =1-k™2,
and

(5.32) a, = max {Pk_+11(512k6Pk Pi-1(ai-, Feoi+ by )i %kspk_+115 8k |ka Pk_+11}~

Our first task is to show that it is indeed possible to find a set of parameters
satisfying (5.7) and (5.26)-(5.32). We show that they can be picked inductively.
The c; already having been chosen, we begin with taking a, = b, = 0, ro =4 =
vo = 1®and p, = 1. Assume that at some stage b, A;, Vi, Py, Py, @;for0 < i < k—1
have already been found in such a way that (5.26)-(5.32) hold for 1 <i< k-1,
and such that p, > 0. Then (5.26) determines b, and one can successively choose
A I and vy large enough to satisfy (5.27)-(5.29). (5.28) can be satisfied because
T,*, n 2 1, is recurrent. For the same reason, one can determine an [f(k) satisfying
(5.31) because the two-dimensional random variables

(5.33) (Y *I[n; = k], XM [n; < k=114 b I[n; = k]—cp), i1,

are independent identically distributed bounded random variables, whose first
component is integer-valued with zero mean and whose second component has
expectation

520 P{ni =JYEX/ +P{n, = k}b,—c,

k-1 x—b.
ijfxde< p ’)+pkbk—ck (see (5.8), (5.9))
j=1

J

keipibj—c=0  (see (5.26)).

8 This is just for convenience. ao, bo, ro, 0, Vo do not occur in F, but in (5.27) etc. Notice,
though, that the choice ao = b, = 0 makes it unnecessary to know p, for any of the choices below.
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Thus the two-dimensional random walk
(Z;'= 1 YikI[’h = k]’ Z?= 1 {Ximl[’?i S k- IJ + by I[’?i = k] - Ck})

is recurrent (see [3], Theorem 5) and f(k) < co can be found. Note that X, =0
w.p.1 so that the distribution of the variable in (5.33) depends only on p;, b,, r,,
1<igk,and ay,- -, a,_,, all of which have been determined at this stage. Thus
also, f(k) depends only on parameters which are already chosen. Lastly, we can
choose -p, ., > 0 small enough and g, large enough to satisfy (5.30) and (5.32).
After this we repeat the cycle. Since p; = 2 and p,+; < 4p, k™3 onehas Y ;2 p, < 3,
and (5.7) will therefore be automatic if one chooses p, last of all as

Po = I—Z;f;ll’w

From now on we may and shall assume that we have a set of parameters satisfy-
ing (5.7) and (5.26)-(5.32), and we shall complete our task by showing that (5.13)-
(5.18) hold for any such set of parameters and that (5.17a), (5.17b) and (5.18) occur
sufficiently often. Firstly, from the definition (5.11) -

(5.34) P{N, = m} < mp, and
(5.35) P{N, >m} = (1-p)"
are immediate. Thus from the Borel-Cantelli lemma one has w.p.1 eventually
1 k
(5.36) — <N, £—.
k?py , Px

(5.36) entails (5.13) (and automatically (5.14)) because kp,~' < (k+1)"%p;
eventually by (5.30). (5.15), (5.16) and the last part of (5.18) will all be proved as
an application of Kolmogorov’s inequality. To do this observe that if {y;};, is
an arbitrary sequence of independent, identically distributed random variables
with

Ey=0, o¢°=Ey? <o,
then one has for
r,= Z?=l i
(5.37)  P{|[,| = nefor somen = A} < Y2 o P{max,i cycnivia [To| = 2'4e}
o AHl+1 2 2
This is first applied to the random walk
Vii—ney_p = Y 0= (XM < k=2]—ci-2)
= Z?= 1 Z’};f {a; Y/ I = j1+ biI[n;=jl-pp}
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which has zero mean and a variance for each increment of
E(V\*=c-2)" = (k=) Y2t E{a; Y[ = j1+b;([ni = j1-p)}
<2k Zf;f {ajZPj E(Y/)’ + ijPj}
<2k Zip{altrf+b7) S (k*p)! (see (5.30)).
Thus, by (5.34) and (5.37)
(5.38) P{|n"'V,*—c¢,_,| > efor some n = N,}
< P{N, = (K*p) ™"} + P{|V,} —nc,_,| > ne for some n = (k*p,) ™1}
S kT2 44k p(e’ktp) T S (14467 2)k 2.

(5.38), together with the Borel-Cantelli lemma, shows that (5.15) holds w.p.1 for
sufficiently large k and n = N,. In exactly the same way one shows

(539) P{|n" U} " —(cyoy —ch-2)| > 4@y Py 1 /k for some n = N,}
< k72 +4k7p 64k (ay pv ) 2E{ay_, Y[, = k—1]
+b—y(I[n, = k=1]—pe_1)}?
S kT2 4512k (@ prs 1) TP pe—1 (@ rRo bR ) S 2k72

(use (5.32)), which guarantees (5.16) for large k and n = N,.

Slightly more is needed for (5.17) and (5.18). Define 7* = ith index n with
N.=k, ie, tX =mif n,, =k and n, = k for exactly i—1 values of le[l, m—1].
In particular, N, = t,*. Define also

Lk = tﬁk and Mk = tﬁk'

First we use Bernstein’s inequality to bound the distribution of L, and M,.
Specifically, for A < + 1 one has

(5.40) Eexp(Ap,t}) = {Eexp (Ap,t,*}’
= {Z:O= 1(I=p)~ lpkexp(lpk ”)}i
={l—-p '(1—exp(—2ip))} "

Since
P{t} < ij2p,} < e* Eexp(—1ip, 1)
we obtain from (5.40) with A = —}

P{tik = i/ZPk} = e%i{l_Pk_l(l_exP(%Pk))}_i
Setl+)ige ¥
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Similarly, (using (5.40) with 2 = %), P{t* 2 2i/p,} S e™*'.
In particular,

(5.41) PdA/p S L S 24 p} 2 1-2e e 2 1—k™2
and
(5.42) P{vipe S M, £ 2v/py 2 1-k™2
Another observation is needed. Since the Y/* are integer-valued one has
(5.43a). ay Z:"=1 YikI[”li =k]za
whenever
(5.44a) Yi-y Y0 = k] > 0.
Also
(5.43b) ay z:"=1 Yikl[ﬂi =k] £ —a
whenever
(5.44b) Yo Y[y, =k]<O.
Moreover, we can easily obtain information on the distribution of the zeroes of
(5.45) iy YM[n; = k].
Indeed, for
(5.46) tfsn<th,,
the sum in (5.45) equals
(5.47) Yk e Y

which, by the independence of the Y,/ and the #; has the distribution of T} =
I yk
i=1 41

This is even true for the conditional distribution of (5.45) or (5.47) given
t%, oo+, 1 and (5.46). We therefore have P{} 7., Y/}I[n;=k]=0 for some
n<L=t}<P{TF=0 for some I <A} <> P{TF=0}. Now the Y}
are independent, integer-valued random variables with

sup, P{Y{ = s} = 2r,+ 1)~ .
By Corollary 1 of [10] there exists a constant C, such that

C C
. P{TF=0} <2 P b=l %
(5.48) {T¥=0} < 5 sup; (P{Y =s} < Gt DB

(since the distribution of Y* is so simple one can also check (5.48) directly, without
recourse to [10], by means of characteristic functions). Thus

(5.49) PO YM[n,=k]=0 for some n< L, =1}

CO lk - 3C01k% —-
< It < < Cok™% (see(5.29)).
—<2rk+1),=zl =en+1n)= (see (3:29))
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By (5.28) we have also
(5.50) P{}i_,Y![n,=k]=0 forsome L,=<n=<M,}
=P{T}=0 forsome A <I<v}=1-k 2
We are now ready to check (5.17) and (5.18).
(5.51)  U/t=n(ee—ci-y) = Z:’= {a Y [n; = k]1+b(I[n; = k]-po},
and trivially on Ny £ n < Ny < (k+Dpeiy
(5.52) |Z?=1 b(I[n; = k]—Pk)| =n lbkl S(k+1) |bk'pk—+ll < 1a,
(see (5.32)). (5.51), (5.52), (5.36) and (5.32) show that for sufficiently large k£ and
N, £n< N,,, one has
nTtUS = (g— o) 2 nT  a—3a) 2 N a2 g pen KT 2,

i.e., (5.17a), whenever (5.44a) holds. Similarly (5.17b) holds eventually for any
ne [Ny, N, for which (5.44b) holds. In particular, (5.17a) or (5.17b) will hold
eventually on N, £ n £ L, since by (5.49) and the Borel-Cantelli lemma

P{Y"_, YM[n, = k] # Ofor N, < n < Ly eventually} = 1.
In view of the symmetry of' the Y*, this also shows for large k
(5.53) P{(5.17a) holds for some N, < n < L}
> 4P{>7_ Y¥I[n; = k] # 0 for some N, < n < L,}
=P{Nyy; > (k+Dpii} 2 %
As for ne[L,, Ny, ), we again apply (5.37). As in (5.38), (5.39)
(5.54) P{{n"'U}""' —(ct—1—¢,-2)| > ¢ forsome n= L}
< P{L, < 3(A/P0)} +(Ae®) M 16p i y(ai—  rie— 1+ bi- 1)
<k72(1+¢e"?)  (by(5.41) and (5.27)).
Thus the second part of (5.18) will hold eventually on n = L,. Similarly,
(5.55) P{n~! IZ?=1 b(I[n; = k]—py)) > & for some n = Ly}
< P{L, < 3(A/p)} + (&) '8 b S k72 (1+272)
(by (5.41) and (5.27)).

Together with (5.51), (5.55) shows that eventually the first part of (5.18) holds
when n = L, and
(5.56) Yioi Yin = K] =0.

Summarizing, we have (5.17a) or (5.17b) on N, < n < N, whenever (5.56) fails,
in particularon N, < n < L,. On L, < n < N, (5.17a) or (5.17b) holds whenever
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(5.56) fails, and (5.18) holds whenever (5.56) occurs. This completes the proof of
(5.13)(5.18). Inter alia we proved that (5.17a), (5.17b) and (5.18) occur “sufficiently
often”. In fact (5.53) shows

(5.57)  P{(5.17a) occurs for infinitely many k and N, £ n < N,,} 2 4,

and by the Hewitt-Savage law the left-hand side of (5.57) equals 1. The same is
true if (5.17a) is replaced by (5.17b). Lastly,

P{(5.18) occurs for some N, £ n < Ny, }
> P{(5.56) occurs for some L, S n < Ny, }—2(1+& 2)k™?
2 P37, Y![n; = k] =0 for some L, < n < M,}
—P{M,; 2 N,,,}—-2(1 +e k™2
= P{T} = 0 for some 4, < I < v} —P{M; > 2v/p,}
—P{Nyoy S 20/p =21+ k2
> 1—k"2(4+26"2) =2 pes 2! (by (5.42), (5.50) and (5.34))
>1-k™35+2672)  (by (5.30)).
Again by the Borel-Cantelli lemma we have
(5.58) P{for all large k (5.18) occurs for some n€[Ny, Ny, q)} = 1.

As pointed out before, (5.13)—(5.18), (5.58) together with the fact that (5.17a)
and (5.17b) occur infinitely often, imply (5.1). This proves the theorem, except for
the recurrence of S, when Oe C. This last gap is easily filled though. Indeed, when
0eC, we can take ¢, = 0 for infinitely many k. For any k with ¢, = 0 we have

P{|S,| < 1 for some Ni < n < Ny}
= P{|Y0_, {XI[n; < k—1]+a, Y [n; = K]+ b I[n; = k] —c,}|
< 1 for some Ny £n < Ny}
= Pl Y!I[n; = k] =0and IZ?=1 {X"I[n; < k—1]
+bI[n; = k]—¢}| < 1 for some kp, ™' < n < f(k)}
—P{N, > kp,” '} = P{Ny1+ 1 < f(k)}
>1-2k"2—f(K)px+1  (by (5.31), (5.34) and (5.35))
=1-3k%  (by (5.30)).
Again the Borel-Cantelli lemma shows
P{|S,| = 1i0} =1,

which means that S, is a recurrent random walk (see [3]).
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