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A NOTE ON A SEQUENTIAL PROCEDURE FOR
COMPARING TWO KOOPMAN-DARMOIS POPULATIONS!

By EDWARD PAULSON

Queens College of the City University of New York

1. Introduction. Let n; and 7, be two populations with associated independent
random variables X; and X,, and suppose the probability distribution of X; for
i =1, 2 belongs to the Koopman-Darmois family with frequency function

f(x,0) = exp [P(x)Q(0) + R*(x) + S(0)]

where f(x, 8} is a probability density in the continuous case and a probability in
the discrete case.

We will let 6 = Q(0,)— Q(0,) represent the “‘difference” between populations
n, and 7,. In [1], Girshick gave a sequential procedure for testing the hypothesis
H, that § < —A against alternatives = A so that P[rejecting H0|5 < —-Al<a
and P[accepting H, | 6 = A] < f. This procedure of Girshick apparently cannot be
extended to deal with the situation when it is desired to test the hypothesis that
6 < 0, against alternatives 6 = d, for arbitrary §, and §, with §, > §,, and it is
the purpose of this note to supply such a sequential procedure using a different
approach to the problem.

2. Derivation of the sequential procedure. The rth pair of measurements from
populations n; and 7, is denoted by (X,,, X,,). It is assumed that all measurements
are independent and for each r, r =1,2,3, -, the pair (X,,, X,,) has the same
probability distribution as the pair of variables (X, X,) specified in the intro-
duction. Let Y;, = P(X,) for i=1,2, and V,= Y,,+Y,,. We will assume that
P (x), the coefficient of Q(0,) in the specified frequency function is subject to some
mild restriction, say P(x) = x™, so that Y,, has a frequency function of the form

J(x,0;) = exp [xQ(0,)+ R(x) + 5(0)],

where exp [R(x)] =0 whenever f(x,0)=0. This weak condition on P(x) is
certainly satisfied in most cases of practical interest, including the normal, binomial,
Poisson and exponential distributions.

Now Y, and V, have a joint frequency function of the form

J(y,0,01,0,) = exp [y{Q(0,)— Q(02)} + R(y) + R(v— )+ S(0,) + S(02) +vQ(0,)].

For convenience we will assume that we are dealing with the continuous case. The
conditional probability density of Y, given that V', = Y, +Y,, = v is now given by
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exp [y +R(y)+R(v—y)]
fexp[yd+R(y)+R@—y)]dy

where 6 = Q(0,)— Q(6,), and the set of all values of é for which the frequency
function exists is an interval including 6 = 0, J,, and J, as interior points.

Since the conditional probability density in (1) as a function of 6, and 6,
depends only on 8, a Wald sequential probability ratio test could be constructed
directly to test the simple hypothesis 6 = &, against the simple alternative 6 = &,
with specified probabilities of type I and type II errors o and f. However, it seems
difficult to prove the resulting procedure has the desired bounds on the two errors
for testing the composite hypothesis § < 8, against the composite alternative
8 = 6,, and a different approach will be used. Let

_ Jexp[(t+8)y+R(y)+R(v—y)]dy
M50 = fexp[dy+R(y)+R@—y)]dy

denote the conditional moment generating function of Y;, when V, =v. Let
V=, Vs ) let Ag=08,—8,>0, and let g(x, ¢, &|v) = exp(tx)f(x,d|v)/
M(t, 5| v). We now want to show for all < §, that

(2) Plexp(=4oYr=1 Y1) [Ii=1 M(4,0,|V,) <« foratleastonen, n= 1] <a

M J(,0]v) =

Now (2) is clearly equivalent to

G P[ [F-s /(]9 , TTes MGio,3] V)

I—_[:“=lg(er"1'0a5| Vr) ],_[;'=1M(10’51 | Vr)
It follows from a well-known lemma of Wald (page 146 of [2]) that to prove (3)
holds for all & < 4,, it suffices to show that M (4,, o | v) is a monotonically
increasing function of & for any v. If we regard M (4o, 6 | v) as a quotient of two
functions of 8 and let N denote the numerator of the derivative of M (4o, § |v) with
respect to 0, we get

N = fexp[6y+R(y)+R(v—y)dy [ yexp[(1o+8)y+R(y)+R(v—y)]dy
— Jexp[(Z0+0)y+R(»)+R(v—y)]dy | yexp[6y+R(y) + R(v—y)] dy.
This can be written as
N={[(y2—y)exp[dy;+(4o+)y2
+R(y)+R(y2)+Rv—y;)+R(v—y2)]dydy,.

If we let C denote the region in the (y,, y,) plane where the integrand is not zero,
this is clearly symmetric about y, = y,. Let C; = Cn {(y1, ¥2): ¥, > y1} and let
C, = Cn{(y1, ¥2):¥2 <y1}. Then the double integral is equal to the sum of the
integrals over C; and C,, and in C, we can interchange the variables, which
transforms C, into C;, and we get

for atleastone n, n = l:l <a.

N= ijl (y2—y1){exp (Aoy2) —exp(4oy,1)} exp [H]dy,dy,
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where H = 8(y;+y,)+R(1)+ R(y,)+ R(v—y,)+ R(v—y,). Since iy = 6,—5, >0
and y, > y, in C;, we have N > 0, which shows that M (4,, 0 | v) is a monotonically
increasing function of 8, and the proof that (2) holds for all § < , is complete. In
a similar manner it can be shown that for all 6 = 6,

(4) Plexp(Aoyrey Vi) [ Ti=1 M(=20,6,|V,) < B foratleastone n, n = 1] < B.
Let

z ={zoyl,+1og[{CXP(‘S‘Y+R(Y)+R(I/'_y))dy]}.

Jexp 62y +R(y)+R(V,—y)) dy
Noting that M (g, 6, | V,) = [M (=2, 6,| ¥,)]™", we can combine (2) and (4) to
get a sequential procedure for testing H, that § < d, against alternatives § = J,
so that P/[rejecting H0|5 < 6,1 <a and P[accepting H0|5 = 6,] < B. This
sequential procedure is as follows: we continue taking pairs of measurements
(Xy,, X5,) as long as —log(1/B) £ Y ", Z, < log(l/a), and stop the experiment
and reject H, as soon as Y r=; Z, > log(1/x), and stop and accept H, as soon as
Yr-1Z,<—log(1/B). In the discrete case, each integration is replaced by a
summation.

3. Two special cases. For the exponential distribution with probability density
f(x, 8) = Oexp(—0x) = exp(—06x+logh) for x>0, we have P(x)=x, QO)=
—0, and 6 = 0,—0,. The conditional probability density of X;, given X;,+ X,, = v
is
_ dexp(xd)

=———>— for O0<x<w.
exp (dv)—1 of X<

f(x,0]v)

For Z, we obtain

| ’ 3\ 1 —exp {0,(X 1, + X))
r ( 2 1) 1r+ 0g|:<51>1_exp{éz(X1,+er)}

To test the hypothesis that 6,—6, <, against alternatives 0,—0, = d,, we
continue sampling until either Y _, Z, > log(1/«), in which case we reject the
hypothesis, or Y 7-; Z, < —log(1/B), in which case we accept the hypothesis.

For the Poisson distribution, the probability f(x, 6) = exp [xlog0—0—log(x!)]
for x=0,1,2,:--, so P(x)=x, Q(0) =logh, 6 =1log(6,/0,). The conditional
probability that X, = x given X, + X,, = v is

(3) exp (6x)

f =0,1,2,---,0.
(1+expd)’ or X v

f(x,8|v) =
Now

1 o
Z, = (52_51)X1r+(X1r+X2r)10g[ﬂ(’l“)],

1+exp(3,)
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and to test the hypothesis that log(8,/6,) < J, against log(0,/0,) = 5, we again
take one pair of measurements at each stage until ) -, Z, > log(1/a) when we
reject the hypothesis, or until Y-, Z, < —log(1/p), in which case we accept the
hypothesis.
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