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A MULTI-PARAMETER GAUSSIAN PROCESS!

By WoN JoON PARK

Wright State University
1. Introduction. Let (Q, &, P) be a probability space and let 4 be the p-dimen-
sional unit rectangle (p = 2). Wedenote by (4, <7, u,) the ordinary Lebesgue measure
space. Let {X(u, w): ue A} be a Gaussian process defined on (Q, #, P) with the
properties:

(1.1) X(u,w)=0 as. forevery u in A, where
Ao ={(uy, -+, u,)eA:u; =0 for some j with 1 <j < p}.
(1.2)  E[X(u, )] = [ X(u, 0)dP(w) =0 for every‘ u in A
(1.3) E[X(u, )X (v, )] = min(uy, v,) - min(u,, v,) = R(u, v)
forevery u=(uy,""*,u,) and v=(vy,""*,v,) in A

By considering an expansion in terms of Haar functions on A4, it is shown that
X(u, w) can be realized in the space C(4) of real continuous functions on 4 which
vanish at 4,, i.e.

(1.4) Aimost all sample functions of X(u, w) are continuous.

For p = 2, the existence of the above Gaussian process X(u, w) is shown by Yeh [15]
and Kuelbs [10]. We will call a Gaussian process X(u, ) with the properties (1.1)-
(1.4) the p-parameter Gaussian process. We then examine the interrelationship
between the p-parameter Gaussian process and its reproducing kernel Hilbert space
H(R). Let L*(A) denote the space of Lebesgue square-integrable functions on A
with an inner product (f; g) = [, f(#)g(u)dp,(u) and norm || ||. We also define a
stochastic integral I(f) = [, f(u)dX(u, w) for feL*(4) with respect to the p-
parameter Gaussian process in two different ways and show that they are identical.
From this we show that the p-parameter Gaussian process has an a.s. uniformly
convergent orthonormal expansion.
Defining a Gaussian random set function by

(1.5) X(F, 0) = [, 1) dX(t, )

where Fe o/ and 1y is the indicator function of F, we define the multiple Wiener
integral (see It6 [6]) and show that any L?-functional of the process has an ortho-
gonal representation.

By appealing to the results obtained by Parzen [13], Kallianpur [9] and Oodaira
[11], we can simply deduce the results: a translation theorem, equivalence of
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Gaussian measures and a zero-one law for the -module of the p-parameter Gaussian
process, which are generalizations of some known results due to Park [12], Shepp
[14] and Yeh [16].

2. Haar functions on L2 (4) and construction of the process. Let {g, ;} denote
the Haar functions on L2(I), where I = [0, 1], 1.e.

Goo=1
(2.1) Gn () = 2007072 it selj/2"™Yj+32"h,
= —2-1/2 it se[j+3/2" Y j+1/2"Y),
=0 otherwise;

forn=1,2,---andj=0,1,---,2""'~1.

It is shown by Haar [5] that {g, ;} is a complete orthonormal system (C.O.N.S)
in L2(I). We shall use the following notations:

w=y ", up) for ue A.

1, = the indicator function of [0, u;] x -+ x [0, u,].

D =set of all p-tuples n=(n, -, n,) with nonnegative integers
n(i=12,+,p).

|n| = ny+--+n,forn=(ny, -+, n,)in D.

Sy={j=0U"5Jp:05j; 22" ' =1,i=1,2,-, p} for a fixed
n=(ny, -, n,)inD.

Forue A,ne D and je S,, define
(2.2) gn,j(u) = .‘7;..,;,(“1)' ’ 'gnp,jp(up)

where {7, ;} are Haar functions on L?*(f). Then it is easy to see that {gn.;}
(neD,jeS,)isa C.O.N.S.in L*(4).

For eachne D and je S,, let us define
(2.3) Gy j(u) =1y, gn,j) (ued)

where g, ; is given by (2.2). It follows clearly from the definition that G, ; is a
continuous function on 4.

Now we shall define a multi-parameter Gaussian process. Let {y, ;} (ne D, j€S,)
be mutually independent N(0, 1) random variables defined on (Q, &, P), where
N(m, 6*) denotes the normal distribution with mean m and variance 2.

Consider the series

(24) Z;Jo=02|n|=NEjeS”yn,i(w)Gn,j(u) (COGQ, “EA)

where Y|, -y means summing over all possible ne D with [n]| = N.



1584 WON JOON PARK

THEOREM 1. The series (2.4) converges uniformly in ue A with probability one.

PRrROOF. Let
(2.5) In(u, @) = Zlnl =NZjes,. yn,j(a))Gn.j(u) and
(2.6) Yy(w) = max, =n,jes, lyn,_i(w)i
for N=0,1,2,::-; then
2.7 max, ¢ 4 |f1v(“s a))l = YN(“’)(N;EI -z,
since for a fixed ne D, G, ; are non-overlapping for different je S,, max, . 4 |G, ;(4)|

£27(n*P/2 and the number of terms in the summation Y ), =y is (Y }273").
Let ay > 0. Then since y, ; are mutually independent N(0, 1) random variables,
P{w: Yy(w) > ay} ‘
(2.8) < (VFETY2NTRQr) H2 2 exp (—s2/2) ds
< (V32T DN RQm) 420y B0t D
-exp(—ay?/4) [ s*P* 2exp(—s?/4) ds.
Choosing ay = 2[(N+p—1) In2]}, itis easy to check that
2.9 P{w: Yy(@)>2[(N+p—1)In2]*} = C,(N+p—1)"2
where C, is a finite constant which does not depend on N. Therefore
YR=0P{w: Yy(w) > 2[(N+p—1) In2]*} < c0:

hence by the Borel-Cantelli lemma,

(2.10) P{w: Yy(@) > 2[(N+ p—1)In2]?, infinitely often} = 0
ie.,
(2.11) P{o: Yy(w) S2[(N+p—1)In2]%, forall N = Ny(w)} = 1.

NOW Y i = No(w) MAX, ¢ 4 | fn(u, co)l < oo follows from (2.7) and (2.11). Consequently
Y R=omax, 4 | fa(u, a))l converges a.s., i.e. the series (2.4) converges uniformly in
ue A with probability one. This completes the proof of the theorem.

The above result is a generalization of a similar theorem proved by Ciesielski [3]
for the standard Wiener process.

Let Q* denote the set of w in Q such that the series (2.4) converges uniformly in
ue A. We note that P(Q*) = 1. We now define a stochastic process

X(u’ (0) = ZIO‘?=0Zlnl=NZjeS,.yn,j(w)Gn,j(u) (uEA)
(2.12) if weQ*
X(u,w)=0 forevery ucA if w¢Q*.

The following corollary is obvious.
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CoROLLARY 1. All sample functions of the stochastic process {X(u, w): ueA}
defined by (2.12) are continuous.

THEOREM 2. The stochastic process {X(u, w): ue A} defined by (2.12) is Gaussian
with mean function zero and covariance function

(2.13) R(u, v) = min (uy, v;) - min (up, v,) (u, ve A)
and satisfies
(2.14) A, w)=0 a.s. forevery ueA,.

Proor. It follows immediately from the definition of the process that
{X(u, w): ue A} is a Gaussian process with mean functlon zero, and (2.14) holds.

Denote the process X(u, ) simply as
(2.15) X(u, w) =Y %oy (@)Gi(u) as.

Since y{(w)G(u) are mutually independent N(0, G;*(«)) random variables and
Y %0 G *(u) < o, we have

E[X(u, 0)=Y"_oy(@)Gu)]*—>0 as n— 0.
Now it is easy to see that
(2.10) E[X(u, w)X(v, w)]
= 1imy, .  E[{Y =0 ¥ (@)G)}HY =0 y (@)G(v)}].
By identifying the right-hand side (r.h.s) of (2.16) to
i, o, 3 1-0 G(W)G,(v) = %0 (L 9)(1,s 95)
= (1, 1,) = min(uy, vy) - -min(u,, v,)

we obtain (2.13) and thus the proof'is complete.
It should be pointed out that Theorem 2 and Corollary 1 together imply the
existence of the p-parameter Gaussian process defined in the introduction.

3. The realization of the process on C(A4). Here we shall relate the results obtained
in the previous section to those obtained by Yeh [15].

Let (C(I?), B(C), my) be the Wiener space given in [15], where C(I?) is the space
of real-valued continuous functions on I? which vanish on {(s, t): s = 0 or ¢ = 0},
B(C) is a o-field generated by the cylinder sets in C(I?) and my, is the Wiener
measure on C(I?). This measure space is also constructed by Kuelbs [10] by using
different techniques—mainly Prokhorov’s weak convergence of measures. The
existence of the probability space (C(I?), B(C), my,) was also shown by N. N. Cencov
(Akademica Nauk SSSR Doklady 106, 1956).

The triplet (C(I?), B(C), my) can be considered as a stochastic process where the
random variables of the process are given by the coordinate variables x(s, ),

xe C(I%).
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THEOREM 3. The Gaussian process (C(I%), B(C), my) has mean function zero and
covariance function

(3.1) R((81, t1), (52, 13)) = Epnp [X(s1, t)X(s25 12)]
= min (s, t;) min(s,, ¢,)
for (sy, t,) and (s,, t,) inI*.
PRrOOF. It is easy to check that the mean function is zero. (3.1) follows from the
evaluation of the following integral: For 0 < s; <s,and0 <1¢; <1,
Jeazy X(s15 11)X(s2, 5) dmp(x)
= {2n)*[s,(s, —s DI [1: = 1]} H %0 (4) 2 ty1tiza
cexp{—3[udy/sy by + @2 —t11)?/s: (12— 1y)
+(ugy —ty)? /(2 =)t +(Uaz— Uz —Uyptuy1)?(s2 =8 )(t2—11)]}
cduy dugduy duy, = sty

Thus the theorem is proved.

Let {X(u, w): ue A} be the p-parameter Gaussian process and let B(X(u): ue A)
be the o-field generated by the process X(u, ®) and B(X(): ue A) or simply B(X)
be the completion of B(X(u): ue A) under P. We usually replace the o-field & by
B(X) and consider (Q, B(X), P, {X(u): ue A}) to be the p-parameter Gaussian
process. We shall write LX(Q) for L*(Q, B(X), P), the Hilbert space of B(X)-
measurable, real-valued functions square integrable with respect to P with an
inner product

(X, Vo) = ja x(w)y(w) dP(w)

and norm || || 2 From now if it is obvious that X(u, o) is a random variable
then we may write X(«) instead of X(u, w).

Let B(C(A)) or simply B(C) denote the o-field generated by all cylinder sets in
C(A). Let us define a map S: Q - C(4) by

3.2) S(w) = X(*,w) for weQ

and also define a probability measure m,, on (C(4), B(C)) by -

3.3) m,(E) = P{S"Y(E)} for EeB(C).

Then m,, has the following property for a cylinder set in C(4):

(34) m,{xeC(A):[x(uy), ", xu)]eF} = P{loeQ:[X(uy, ), *, X(u,, ®)] € F}

where Fis a Borel set in n-dimensional Euclidean space R” and u;, -+, #, are in 4.
The probability space (C(4), B(C), m,), where B(C) is the completion of B(C)
under m,,, is a generalization of (C(I?), B(C), my) given by Yeh, since the mean
function being zero and the covariance function determines a Gaussian measure
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uniquely and when p =2 (C(4), B(C), m,,) has the same covariance function as
Yeh’s.

4. A stochastic integral with respect to X (1, ). Let X (u, ) be the p-parameter
Gaussian process. We shall use the following notations:

4.1 For u=(uy,",u,) and v=(vy,"**,v,) in A4,
u<v mean u;<vy; for i=1,2,---,p

4.2) Auw=[1P=1lus v) for u,ved with u<o.

4.3) V(u, v, k) denotes the set of p-tuples s = (s, '+, 5,)

such that each s; is either u; or v; and exactly k of
s; are u; for u=(uy, ,u,) and v="vy, '+, v,).

4.4) DupX(0) = Zf=o(‘ l)kz:eV(u,u,k)X(sa w) (u <v).
@.5) Vn,j,k)y=V(j+42"" % j+1/2" " k) for neD and jeS,,

where V inthe r.h.s. isgiven by (4.3)and,

for n=(ny, >+, n,) and j=(jy," ", Jjp)s

JHE2 =G 32m T /2 and

JH12" = +12m "',jp+l/2""—1).
(4.6) Vin,j)=Ul-oV(n,j, k) for neD and jeS,.
4.7 For seV(n,j) with s=(ry2""% - 1,271

s—% means (r,—%/2"71, - r,—%/270).

ForanyneDlet0=ul <u' < <uM<1(=1,-,p)be a partition of 4.

(4.8) S*¥={i=Up i) 1Sj;sn for 1=1,2,---,p}.
4.9) w= W= u e A=y, L i) €S
(4.10)  If j=(jy, " ",j,) in S,% then j—1=(j;—1,-,j,—D.
(4.11) Fnj(@) = 2=P2 50 o (= DY e Fm by Los— 1,5 X (@)
forne D andjeS,.

LeEMMA 1. Foru,v,sandtin Awithu <vands <t
E[Au,v X((D) .As,t X((D)] = ”p(Au,vnAs,t)'

LeMMA 2. {j, (w)} (neD,jeS,) are B(X)-measurable and mutually independent
N(0, 1) random variables.

The proofs of Lemma 1 and Lemma 2 are purely computational and they are
omitted here. Now we shall define a stochastic integral with respect to the p-
parameter Gaussian process X(u, »), denoted by I(f) = [, f(u) dX(u) for fe L*(4).
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We first define I(f) when fis a step function. If

4.12) fw)y=c¢; for uepyi-1, (ued,)
where A,;-1 ,;and a partition 4, are given by (4.2) and (4.9), then we define
4.13) I(f) = Laf(u) dX(u) = Zjes,,* ;N1 X(@)

where S, * is given in (4.8).

In fact, we shall accept as I(f) any random variable equal almost surely to the sum
on the right. As defined in (4.13) the integral is determined uniquely by f, neglecting
I(f) values on a set of zero probability. For each step function f, I(f) is clearly
B(X)-measurable. Let g be a step function of the same type as (4.12).

LeMMA 3. The stochastic integral satisfies:

4.14) I(af+bg) = al(f)+bI(g)

for real numbers a and b;

(4.15) ELI(N - 1(9)] = (/, 9),

(4.16) I(1,) = X(u) ' a.s.,

4.17) I(g,;) = Jn; as., (neD,jeS,,)

where g, ; are Haar functions as defined in (2.2) and y, ; as defined in (4.11).

PROOF. (4.14), (4.15) and (4.16) are trivial. To show (4.17) let ne D and je S, be
fixed. Since

G f(u) = (—1)f20=P12 if yep,_y, and seV(n,j, k) for k=0,1,-"",p
=0 otherwise;

and since {A,_; ;} (s€ V(n,))) are mutually disjoint, we obtain by the definition of
the stochastic integral (4.13)

I(gn.j) = 2(|n| P2 2£=0 ( - 1)'\ Zse V(n,j,k) As—%.s X((D)
= )7”’_,’ a.s.

This completes the proof of the lemma.
From the property (4.15), it follows that

(4.18) E[{I(NH}] =/

and this implies that the correspondence between fand I(f) is an isometry between
L*(A4) and L*Q). Now suppose that fis a limit (in || || norm) of a sequence {f,} of
step functions of the above type. Then Li.m. I(f;) exists defining a random variable
Y. This random variable, as a limit in the mean (in || ||z2jq; norm), is defined
uniquely, neglecting values on a set of zero probability. Also Y is independent of
the particular sequence {f,} chosen, since two sequences converging to f in Il
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norm can be combined to form a single sequence converging to fin || || norm. We
define |, f(u) dX(u) as the limit obtained in this way. For fe L*(4) I(f) can be taken
to be B(X)-measurable. Now since the family of step functions on A is dense in
L%(A4), we have defined a stochastic integral

4.19 I(f) = [f(u)dX(u) for feI*(4),

which satisfies all properties listed in Lemma 3.

We shall show now that the stochastic integral (4.19) can also be defined by a
different method. Let {g, ;} (ne D, jeS,) be the Haar functions on 4 and {y, ;} be
a sequence of random variables given in (4.11). Consider the series

(4.20) Yi=0Lini=nDies.(fy Gn)Pn; for *fELX(A).
The above series converges a.s. by the Three Series Theorem since
(@.21) Y= Lini=n Lyes, ELS gn )70 31 = |17 < c0.
Let us write

(4.22) 1) = $m0TmionLies,(f Gn )V for [EL(A).

We shall accept as I( /) any random variable equal almost surely to the series on the
right.

THEOREM 4. The stochastic integral defined by (4.22) satisfies:

(4.23) I(af+bg) = al(f)+bl(g)

for real numbers a and b and f, g e L*(A).

4.29) E[I(f)-1(9)] = (£, 9).

(4.25) I(f) isan N(O,||/|j®) random variable.
(4.26) 1(g,,j) = Vnj

where g, ; are Haar functions on A.

PRrOOF. (4.23) and (4.26) are obvious from the definition of the stochastic integral.
(4.25) follows easily from (4.21) and (4.24) is obtained immediately by using the
Parseval’s Theorem.

LemMA 4. Let I,(f) and I,(f) denote the stochastic integral defined by (4.19) and
(4.22) respectively for fe L*(A). Then

(4.27) L(f)=I,(f) as.

ProOF. From (4.17) and (4.26), I,(g, ;) = ya,; = I.(gn,;) a.s. Since {g,;} is a
C.O.N.S. in L?(A), the lemma follows from the isometry given by (4.18) and (4.24).
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COROLLARY 2. Let
(4.28) X(u, @) = Y ¥=0 D in1=N 2oj e 5u P, G, j(W) (ued)
where G, (1) = (1,, )
Then X(u, w) = X(u, w) a.s. for every ue A.

PrOOF. Since X(u, w) = I,(1,) a.s. from (4.22) and X(u, w) = I|(1,) a.s. from
(4.16), the corollary follows immediately from Lemma 4.

The above corollary gives an orthonormal expansion of the p-parameter Gaussian
process. Furthermore, by Theorem 1 this expansion converges uniformly a.s.

We define a random set function

(4.29) X(F, 0) = [, 15(u)dX(u, ®) as.
for Fe o/, where 1 is the indicator function of F. Then clearly from (4.24)
(4.30) E[X(F, 0)X(F*, ®)] = (15, 15s) = p(FAF*)

for F, F*e«/. Thus X(F, ) is a normal random measure on Lebesgue measure
space (4, &, p,). According to Itd [6] it is now possible to define the multiple
Wiener integral with respect to the normal random measure X(F, )

(431) Iq(fq) = IA (q)jqu(ul’ Ty uq) dX(ul) Tt dX(uq)
for f,€ L*(4%) and positive integer ¢ = 1.

5. The closed linear subspace L* (X (u): ueA). Let L*(X(u): ue A) or simply
L*(X) denote the closed linear subspace in L*(Q) spanned by all finite linear
combinations of the form Y'7_; ¢,X(u;) where c;’s are real numbers, u;€4, and
X(u, w) is the p-parameter Gaussian process. Let H(R) denote the reproducing
kernel Hilbert space with the reproducing kernel R, where R is the covariance
function of the process X(u, w), with the inner product {, g, and norm

” “H(R) (see [1], [13]).

THEOREM 5.
5.1) H(R) =, L*X) with JR(:,u))=X(u) (ue A).
Furthermore, if fe HR) and J(f) = &, then
(5.2) f(u)=E[{-X(u)] forevery ueA.

Here H(R)~,L*(X) means that J is a congruence (inner product preserving
isomorphism) from H(R) onto L*(X).

Proof. First we note that for each fe H(R) there corresponds a unique & e L*(X)
such that /() = E[¢X(u)] for ue A, since if ¢ and 5 in L*(X) both correspond to fin
H(R) then E[(£—n)X(u)] =0 for every ueA, hence £ =n as. as X(u), (ued)
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span L*(X). Let J denote such a map, then clearly
(5.3) JR(*,u))=X(u) forevery uecAd, and
(5~4) <R( T U), R(' s U)>H(R) = R(u’ U) = E[X(u)X(U)] (ua IJGA).

Now R(-, u), (ue A) span H(R) and f(u) = {f, R(*, W))y(r) = (&, X(u)) = E[EX(w)],
hence the Basic Congruence Theorem (see [13]) implies (5.1). This completes the

proof.
Let L*(1,: ue A) denote the closed linear space spanned by the elements of the

form Y}-, ¢;1,(+) for real numbers ¢, - -, ¢,and u, **+, u, arein A4.
THEOREM 6.
(5.5) H(R) 22, L*(1,: ue A) = [X(A) and
Ji(R(:,u))=1,) foreach ueA.
Furthermore, if fe H(R) and J,(f) = g, then
(5.6) fw)=(l,,g) foreach ued.
The proof'is similar to the proof of Th eorem 5.
THEOREM 7.
(5.7 L'(X) = {U(f):fe (A}

Proor. Clearly I(f)e L*(X) for each fin L*(A4) by the definition of the stochastic
integral I(f). Let £ L*(X). Then by (5.2) there isan fe H(R) corresponding to £ with
f() = E[EX(u)] and in turn there exists g in L%(4) corresponding to f such that
fw)=(g,1,) by (5.6). Let n=1I(g), then for each ued f,(u) = ElnX(w)]=
E[Il(g)X(w)] = (g, 1) =f(w), i.e. E[I(9)X(u)] = E[EX(u)] for every ueA. Hence
¢ =1(g)as.and Ee {I(f): fe L*(A)}.

COROLLARY 3. Let ¢ be in L*(X). Then there exists a function g in L*(A) such that
(5.8) (=J,a9u)dX(u, w) as.

Furthermore g can be found under the congruences J and J; given by (5.1) and
(5.5) respectively.

6. Applications. In this section we shall simply deduce a few results regarding the
p-parameter Gaussian process from the results in [6], [9], [11] and [13].

Let (X, B(X)) be the measurable space where X is the space of real-valued con-
tinuous functions on 4 and B(X) is the o-field generated by the cylinder sets in X.
Let (X, B(X), P) be the p-parameter Gaussian process with the mean function zero
and the covariance R where B(X) is the completion of B(X) under P.

(A) A translation theorem. For me X, the transformation a,,: X — X defined by

6.1) OpX =X+m
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clearly sends B(X)-measurable set into B(X)-measurable set. The probability
measure P,, given by

(6.2) P,(E) = P(s, 'E) for EeB(X)

is Gaussian with the mean function m and the same covariance function R as P.
By a direct application of a result from [13] the following theorem is obtained:

THEOREM 8. P,, = P relative to B(X) if and only if me H(R). If me H(R), then the
Radon—Nikodym derivative is given by
dP,,
(6.3) —d—P_(x) = exp {Un(x) — 1 ||m||frry}
where u,(x) is in L*(X) which corresponds to me H(R) under the congruence of (5.1).
The notation P,, = P means that P, and P are mutually absolutely continuous.
Now from Corollary 3 and (5.6) there exists g in L*(4) which corresponds to m
in H(R) such that u,(x) = [,g(u)dx(u) and ||m||m, = ||g||- Hence the Radon-
Nikodym derivative in (6.3) becomes

) dpP,, .

(6.4) —p = epr 9(u) dx(u)—%llgilz}.
A

For p = 2 similar results are obtained in Park [12] and Yeh [16] but their approaches

differ from ours.

(B) Equivalence of Gaussian measures. Let (X, B(X), Q) be a Gaussian measure
space with the mean function m and the covariance function I'y. Then we can
deduce the following theorem from a result of Oodaira [11] using the same method
as Kailath [7].

THEOREM 9. Q = P relative to B(X) if and only if there is a symmetric kernel
KeL*(A x A)such that

(6.5) Co(u, v) = R(u, 0) = [ 4x 4 1)LLK, 1) dp(s) dpy(0),
(6.6) i ¢a(K) and
(6.7) me H(R)

where a(K) denotes the spectrum of the operator K given by
(6.8) (Kf)(u) = [ K(s, w) f(s)dp,(s), ueA and fel?(A).

We note that if me H(R) there is a function k in L*(4) such that m(u) =
4 T()k(s) dp,(s), by Theorem 6. Let A; and ¢; (j=1,2," ") be eigenvalues and
eigenfunctions respectively of the operator K and let D(-) be the Fredholm deter-
minant of X i.e.

(6.9) D(A) =[5 (1= A4y
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For each value of 1 for which ™! ¢ 6(K) there exists a unique kernel H;e L?(4 x A)
called the Fredholm resolvent of K at A satisfying

(6.10) HA_K-:AR,H;'K:).KH;'.
We denote H, by H.
THEOREM 10. If Q = P, then

(6.11) j—g(X) =D(1)_*exp{—%lz(ﬂ)—%f H(s, s5)dp,(s)
A

H(s, )k(s) dp,(s) dx(t)}

-3 ”k” —3(Hk, k)+1(k)+f
AX
where I,(*) is the 2nd degree multiple Wiener integral.
PRrROOF. Define
(6.12) ;= Japs)dx(s).

Then clearly £; are independent N(0, 1) random variables under P and independent
N(k;, 1—4;) random variables under Q where k; = (k, ¢)).

Let
(6.13) Fyx)=(1 —Aj)_% exXp [“%(51' - kj)z/(l “Aj)]/exP ["%‘szj’
then it can be shown by using the same method as Shepp [14]:

6.14) F(x) =[]/ F;(x) converges a.s.(P),
oy 40
(6.15) F(x) =—5(x),
(6.16) Y1 k2 i(L=2)) = (k, k)+(Hk, k),
(6.17) YO AR (L= A) = L(H)+ [ H(s, ) dp(s), and
(6.18) Y0k &L= A;) = I(k)+ | 4 4 H(s, £)k(s) dpu,(s) dx(t).

Hence we can obtain (6.11) and the theorem is proved.

Shepp [14] has recently proved the same results for the standard Wiener process.

(C) A zero-one law. We shall obtain a zero-one law for the r-module of the p-
parameter Gaussian process by a direct application of the result of Kallianpur [9],
which we shall state here first.

Let Q be a Gaussian probability measure on the measurable space (X, B(X)),
where X is a family of real-valued functions x(-) defined on a set T, B(X) is the
o-field generated by the cylinder sets in X, and B(X) is its completion under Q. Let
I’y denote the covariance function of Q and assume the mean function to be zero.
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A subset M of X is called an r-module if for every x; and x, in M and rational
numbers r, and r,, ryx;+r,x,€M. Kallianpur [9] shows that if M is a B(X)-
measurable r-module, then Q(M) = 0 or 1, under the following general assump-
tions:

(6.19) T is a complete separable metric space,

(6.20) X is a linear space of functions under the usual operation
of addition of functions and multiplication by real scalars,

(6.21) Iy is continuouson 7' x T,

(6.22) HTp)<X.

THEOREM 11. Let (X, B(X), P) be the p-parameter Gaussian process and let M be
a B(X)-measurable r-module. Then P(M) = O or 1.

Proor. The assumptions (6.19)-(6.21) are clearly satisfied by the process
(X, B(X), P). Let he H(R). Then there exists a function ge L*(4) such that h(u) =
(1,, g) by (5.6). Now # is clearly continuous and h(u) = 0 for ue 4,, ie., heX.
Thus (6.22) is satisfied and the conclusion follows from [9].

(D) Homogeneous chaos. We shall give an orthogonal expansion of the L2-
functional of the p-parameter Gaussian process (X, B(X), P). It is easy to see that
& is a L2-functional of the normal random measure X(F, ) (in the sense of It [6])
if and only if & e L%(X, B(X), P). The following theorem is deduced from Itd [6].

THEOREM 12. Let é€ L*(X, B(X), P). Then & can be expressible in the form.

(6.23) E=Y0s0l(J)

where I(*) is the multiple Wiener integral, f, is given by the following orthogonal
development

(6.24) fttgs = g = 2 T s g S oo B
gl](ul) Tt gl,(“nl)glz(un1+l) o 'glz(un1+n2) .
ylr(unl +ctne- g+ 1) ot 'g/'l,-(un1+- . ~+n,.)s

{g,} is a C.ON.S. in LX(A), and {a%.""""s.} is the Fourier Hermite coefficient given
in[2].
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