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THE CLASSIFICATION STATISTIC W*
IN COVARIATE DISCRIMINANT ANALYSIS
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Iowa State University
1. Introduction. Consider the problem of classification of a multivariate observa-
tion into one of two normal populations I, and IT,, where in addition to the know-
ledge of a discriminator x information is available on a covariate y whose mean is
known to be the same in both populations.

Let
(x.-1>’ .”’<XiN;), i=1,2,
it Yin;

be two random samples drawn independently from IT,: N((%), ), where (x}y, Vi) =
"3 Viap+g)» & = 1, * -+, N;and the covariance matrix

T = (Zu '21 2>
o1 Iy
is positive definite. Suppose B is a sample estimate of the regression matrix B of the
discriminator x on the covariate y. Although the covariate has no discriminating
power by itself, Cochran and Bliss (1948) and Cochran (1964) still propose to
utilize the additional information by replacing x by x* = x— By in the Anderson
discriminant function W. Allowing for the possibility that we have samples from

some more multivariate normal populations having the same covariance matrix X,
the modified criterion is given by

(L1 W* = [x* = 3%, * +X,")](S11— 512577 S21) (%, * — %,%),

where X;* = X,—By,, i = 1,2; B=5,,553, X, and j, denote the sample means

and finally
- Sll SIZ>
S= = Si'
<SZI S22 [ J]

is the best unbiased estimator of T so that nS is distributed according to W(n, X), a
Wishart distribution with n degrees of freedom and covariance matrix X. The
classification procedure is to assign the given observation to the population I1; or
IT, according as W* takes a positive or negative value. The Mahalanobis distance
between IT, and IT, is

(1.2) D*= (1 —12)(Z11 =22 2{21221)"1(u1—u2),

(xial’ T xiap’ yiap+ 15"
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and it is easily seen (see, e.g., [1] page 139) that as N,, N,, n— oo the limiting
distribution of W* is N(3D?, D?) or N(—1D?, D?) according as (§) comes from IT,
or IT,.

The purpose of this paper is to obtain an asymptotic expansion of the distribu-
tion of W* with respect to N; !, N, ! and n™ ! as well as the associated probabilities
of misclassification of both kinds, which will be more useful than the limiting
distribution for moderate sizes of N, N, and » in providing a better approximation
to the true distribution. Since in the special case when g = 0 the statistic W* is
reduced to the ordinary Anderson statistic W, this paper is an extension of the
paper [5] by one of the authors.

2. The main result. We shall state here the main theorem and its corollaries,
leaving the proof of the theorem to Section 4. We shall also give some discussion
on the three classification procedures that may be used in the existing situation.

THEOREM. If D > 0, then an asymptotic expansion of the distribution function of
D~ Y(W*—4D?) when (}) comes from I1, is given by
(2.1) F(z; D)= {1+Y L*(d; D)+4[Y -, L,*d; D)I?

+Z?§j=i 07(d; D)+03}0(2),

where d = d|dz, ®(z) is the cdf of N(O, 1), 05 is the third order term with respect to
Ny YL, N,"Yandn™ ! and

L*d;D)=L(p), Qi(d; D)= Qi(p) Jor i,j=1,2,
(22) L3*(d;D)=Liy(p+9q), Q33(d; D)= Qs3(p+9),

Q13(d; D) = Q13(p)+ (2N, nD*)~'q[7d* +2p(2d* + Dd)],

Q33(d; D) = Q,3(p) +(2N, nD?)™'q[(7d*> — 10Dd + 3D*)d> +2p(2D* — Dd)],
L{(p) and Q;{p) denoting L(d; D) and Q,(d; D) defined in Okamoto [5], page 1287,
and [6], which depend on the dimensionality p.

COROLLARY 2.1. When W* is used as the classification criterion, the probability of
misclassifying an observation into the population I1, when it comes in fact from the
population I1,, is given by evaluating the above distribution function at z = —3D.

Since we obtain — W* by interchanging X, * and X,* in W*, we have the follow-
ing result.

COROLLARY 2.2. The interchange of N, and N, in the probability of misclassifica-
tion evaluated in Corollary 2.1 gives the other kind of probability of misclassification.

In a situation as considered in this paper, one may utilize information on (i)
discriminator x only, or (ii) whole variate (), or (iii) residual x*, to get the dis-
criminant functions

"W = (x— 3%+ %)) ST(EL — X2),

x—%(xl‘l'fz))’ _1<’—Cl—3—‘2)
W, = X1TX) ) g-r [T
2 <y—%(y1+yz) J1—72
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and W*, respectively. The question that naturally arises then is which one of these
three classification procedures is the best in the sense of minimization of prob-
abilities of misclassification.

Let D%, L,®, 0¥ (i, j, k = 1, 2, 3) denote the Mahalanobis distance, the linear
and quadratic terms appearing in the asymptotic expansion of probability of mis-
classification corresponding to the kth procedure. Then it is easily seen that

D12 é D22 = D32,

LW=L®, o =0, for i,j=1,2
2 3 2 3
L3( ) = L3( )’ Q(33) = Q(33)s
1 3 2 ,
03 s 0P s 0P for i=1,2.

Thus, the third (Cochran and Bliss) procedure has, instead of the nominal dimen-
sionality p, the effective dimensionality p for the terms L; and Q;; (i,j =1, 2),
p+gq for the terms L, and @53, and some values between p and p+gq for Q,, and
Q3. Now we infer from Table 2 of [5] that the probability of misclassification
increases, as p increases or D decreases. It, therefore, follows that the third procedure
is preferable to the second, while its superiority over the first depends on the balance
of the increased Mahalanobis distance and the increased effective dimensionality,
which is not treated in this paper.

The asymptotic efficiency e of the third procedure relative to the second may be
defined as the ratio of the sample sizes for each procedure which yield the same
probability of misclassification. Let (N, N,, n) and (N, *, N,*, n*) be numbers of
degrees of freedom for Procedures 3 and 2, respectively. The principal terms in the
asymptotic expansion of the probabilities of misclassification are the same for both
procedures, in fact ®(—4D). Therefore, if all numbers of degrees of freedom are
large, then the probabilities of misclassification when (j) comes from II; are
determined by the linear terms, which are given by Corollary 2.1 as

(2.3) N;7'ay(p)+ N, tay(p)+n~taz(p+q) and
(2.4) N * lay(p+9)+N,* " lay,(p+q)+n* " as(p+9q)
for Procedures 3 and 2, respectively, where the three functions a,, a, and a; can
be expressed (see Corollary 2 of [5]) as

ay(p) = (2D*)~}(do* +3pd,”),
(2.5) ay(p) = 2D*) ™ (do* ~(p—4) do”),

a3(p) = H(p—1)dy*
with dy’ = d'®(z)/dz'| = _4p. Now N,*|N, = N,*|N, = e by definition and, if all
information about £ comes from the two samples from IT, and IT,, it follows that
n*ln = (N;*+ N,*—2)/(N,+ N,—2) = e. Equating (2.3) and (2.4), we find that
N, la;(p+9)+ N, 'ax(p+9)+n"ay(p+q)

N;7'ay;(p)+ N, ax(p)+n~as(p+q)

(2.6) e=
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In the case N; = N, (= N, say) and hence n = N; + N, —2 = 2N, the expression
(2.6) is reduced to

@7 e=1+4q/[(p+q)D*+4(p—-1)]

in view of (2.5). Table 1 shows values of e by the formula (2.7) for some combina-
tions of values of p, g and D.

TABLE 1
Asymptotic efficiency of the Cochran and Bliss discriminant procedure
relative to Procedure 2

p
D 1 2 3 4 5 . 6 8 10
1 3.00 1.57 1.33 1.24 1.18 1.15 1.11 1.09
2 1.50 1.25 1.17 1.13 1.10 1.08 1.06 1.05
4 1.13 1.08 1.06 1.04 1.04 1.03 1.02 1.02
1 3.67 2.00 1.62 1.44 1.35 1.29 1.21 1.17
2 1.67 1.40 1.29 1.22 1.18 1.15 1.12 1.10
4 1.17 1.12 1.09 1.07 1.06 1.05 1.04 1.04
1 4.00 2.33 1.86 1.63 1.50 1.41 1.31 1.24
2 1.75 1.50 1.38 1.30 1.25 1.21 1.17 1.14
4 1.19 1.14 1.12 1.10 1.08 1.07 1.06 1.05

3. Lemmas. Let

E=(le Ell)
o1 222

be a(p+q) x (p+q) nonsingular and symmetric matrix and 2,,=2,=4(1+9,,) 9/20,,
for r < s a differential operator, where J,, denotes Kronecker’s delta. For any
function of this matrix we denote by the symbol ( ),, an effect of 2, on the function
and by ], the value of the function at £ = I. The meaning of ( ), etc., will be
obvious. Write

(3.1)

Zy= [O'i*j] =Z0i2
Zyx = [044] = Z4(I+BB)Z,,

whereZ,; , =2, X, 2"2_21 2 and B= [Bij] =X, 22'21.

LeEMMA 3.1.
(s = —Y(o% Y +0% ) if r,s<p,
(32) = 3301 Bus-p(ok o+ oo if r<p,s>p,
=—33F - ﬁk,r—pﬂl,s—p(ai;: o +a% o if r,s>p.

(3.3)

(aiﬂ{)rs 0= %(aiﬂ{*)rs 0= _%(61'1' 5sj+5is 5rj) for any i’ j’ r, s.
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ProoOF. From theidentity 2, X, , = I, we have
B4 (Zsds = _E*(zl 1.2)rs2*-
Let E,, be a matrix such that the only non-zero element is the (r, s) elementand that
itis 1. Substituting
(zll.z)rs = %‘(Ers'*'Esr) if r,s= b,
= _%(Er,s—pB,""BEs—p,r) if r =p,s>p,
=4B(E,_ps—p+Es_p,—p)B’ if r,s>p
into (3.4), we obtain (3.2). Also as
(o";kj*)rs = Zg,h =1 [(a*iy)rs cgh o*hj + o*ig(cgh)rs o'*f'j + o,*ig cgh(a*hj)rs] ’

where [c,,] = I+ BB’', the proof of (3.3) follows immediately from above.
Although the matrix functions involved are considerably different, we can obtain
the following

LeEmMMA 3.2. All formulas in Okamoto’s Lemma 4 in [5] hold true with ¢ and o,
replaced by 6, and 6., respectively.

4. Proof of the main theorem. We can use the Fourier transform (e.g., Cramér
[4]) for obtaining the distribution function of D™ !(W*—4D?) for (;)eIl, from its
characteristic function

(4.1) $(1) = E{exp [itD™'(W* —4D¥)] | I1,}.
In order to evaluate ¢(¢) we first consider the conditional characteristic function
(42) l//(219 fz, .)_)1’ )72’ S)

= E{exp [ltD_l(VV*_%Dz)] I 551& g29 )—]1’ YZa S’ Hl}a
which is related to ¢(¢) by the equation
(43) ‘P(t) = E[w(xla X2 V15 Y2» S)]

Since the statistic W* is invariant under any nonsingular linear transformation of
the type

B
@ e e

we may suppose u; = 0, u, = o, v =0, = I, where u, is a p-vector with the first
component D and the others 0. Then, we find that

Y(Xy, X35 Y15 V25 S)
= exp {4D0+31D " '0[%, + X, — B(J, +72)]
4.5) * 811 a[% — X, — B(F; — 72)]
+4D7%0%[X, - X,—B(7, - 7)1
* 812 (I+BB)ST !, [%, — %, — B — 7)1}
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where 0 = —it and S;; , = S;;—S1,552S,:. By using now the Taylor expansion
for the multi-dimensional case we have from (4.3)

(46) ) ¢(t) = G)'//(/*‘l’ Has Vi, V2 2:)]Oa
where
4.7 @ = E(exp M),
P ptq 2
4.8) =Y %+ 'y % — )
( iS1 oy i=§r1 & Vii =1 #01)91121
ptq p+q
+ Z y21—+ Z (si] 61})
i=pt+1 Vai i,j=1 U

t = (igs s Bip)s Vi = Vips1s " Vipsg) for i=1, 2 and ], means the value
when ’

4.9) py =0, K2 = Ho, vy =v,=0, =1

Note that for notational convenience we will mean the operator (1 +9,,)2/20,,
whenever we write 2/26,,. We know that (), (}?) and nS are distributed indepen-
dently according to N ((3), N, ~'I), N((%), N, 'I)and W(n, I), respectively. Hence,

E,—m{exp<)?1,~ j‘)} = exP(%Nl -1 322 ),
Ay Ui
22

E:—cu{exP [(xZi_”Oi)é— } = €Xp <%Nz 3#2.>’

1i
)
Ha;
I 1 ? .
E%{“P()’ﬁ;j—i)} <%N, 1—;};) for j=1,2,
and
ptq 2 2 2 4 E
—5——— = lt JR— - "zt- oo 4
Es{exp[i’j;(sij ”)Wﬁ:l} exp{ '[ ]+3 '[Wif] " }

If we write
(4.10) Hir = Vir for p<r=sp+gq,i=12,
then it follows from (4.7) and (4.8) that
I ACIPLINE B AP W AP
4.11 0= — 4= 2
@10 P [2N1 rzl 9ﬂ1r+ 2N, rgl ouj, n r,sz= 1902

4 ri 2
+— Z L GEETP RN B
3n rst=1 90,590y 0y,

which can be put in the form of equation (3.17) in Okamoto [5], where each
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subscript runs over therange 1, - -+, p+¢. We may rewrite (4.6) as

(412) ¢(t) = ®exp A(ﬂl, Has V15 V2, Z):IO,
where

(4'13) A(lu'l’ H2s V15 V2, Z)
=4DO+1D7'0[p + py — B(v; +v2)] Tty — s — B(vi —v,)]
+4D7%0*[uy — py — By, —V2)] sty —p2 =By — V1)),

3, and X, being defined in (3.1).

We shall now evaluate the coefficients in the expansion of ¢(¢). First, on sub-
stitutingX,, = Ointo(4.13)itis found that the resulting expression is independent of
Vi, v, and Z,,. The coefficients of N°, N, !, N,”!, N,72%, (N,N,)"! and N, ?
therefore remain the same as those in [5] for the Anderson statistic W, which
implies that L*(d; D) = L(p), Qii(d; D) = Q,/(p) fori,j=1,2.

Calculation of the terms of order n~ ! and n™? is based solely on the lemmas in
Section 3, which are formally identical with'the lemmas given in [5]. Hence these
terms can be derived from those in [5], or rather its corrected version [6], by chang-
ing the dimensionality p into p+q. This means L;*(d; D) = Ly(p+q), Q33(d; D) =
Q33(p+9).

We shall now determine the coefficients of (N;n) ™! and (N,n) ! in ¢(¢). Similarly
with the equation (5.27) in [5], we have

s ot
St 2 3
U190 Jo

2A A 2 2A A 2 )
(4.14) - z,{[f’—z +<a—> ] [a 2+(a ) ] +R,s,} L
U1y \%H1:) _ol20rs \20ys/ o

= [2N, nL,*(9; D)L;*(0; D) +Zf,:,tq 1 Ryg] et”,

where

415) R,=4—
( ) ’ 1490,

Ol1420,59L1490 ¢
2A °A a4 %4 %A
+2| — 2+'_ 2 + 2 2|
14941490, 90,591,905 9111905 o

2A 24 %A ( %4 )2
+2

Now it holds that
(4’16) Ztl',,:,tq= 1 Rrst = Zf,s= 1 Zf:llerst+2ZtI-,,t= 1 Zf:§+ 1 Rrst
+22)I"= 1 Zs’;;;qp+ 1 Rrst+z'l",:=qp+ 1 th:lqusra

which can be evaluated from the following results which will be proved later.
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%, 51 Rose = D™ 2[40%(26> — DO) +2(5p + 7)0* — D*6° + (p* + p)(36* + DO)]

if 1=rs=p,

(4.17) = D™ ?[3q0* +1pq(36*+ DO)] if 1Srt<p,p<s=<p+q,
= D" ?[4q6*+}pq(6* + DO)] if 1Sr<p,p<st=p+q,
=0 if p<r,s=p+gq.

Combining (4.14), (4.16) and (4.17), we obtain

atet

(4.18) (N;m) 'Y

= [L,¥(0; D)L;*(0; D)+ Q15(6; D)] %,
,,s,,a,uf,aofs]o [LC 37( 13( ] ‘

where
(4.19)  0%(6; D) = (2N, nD?)~'[40°(20? — D0) +(10p+7q + 14)6*
—D?0%*+ p(3p+4q+3)6*+ p(p+2q +1)DO],

which can be rewritten as in (2.2). The expression for Q33(8; D) is derived in a
similar fashion.

We mention here briefly the method for finding the value of Z, ; ; R,, in the four
situations in (4.17). Since differentiation appearing in (4.15) is not concerned with
%,, in the first and fourth situations, we may substitute Z;, = 0 into (4.13) before
application of the differential operators. In case of the second and third situations
we may put £,, = I and £,, = /in (4.13) and then apply the differential operators.
For example, in the third situation, on substituting p; = 0, p, = o, v, = 0 as well,

we have
A=1D0—-1D"'0a’s, b+31D720°b'T 44 b,

wherea’ = (ay, a5, -+, a,), b’ = (by, by, *++, b,) and
— +
a; =D&, =Y 104104V
=DJ pt
by=Doy+Y 0104V

Since all partial derivatives of a;, b;, 04" and g%, by vy, or 6, vanish at the point
(4.9), it follows that

A A
(4.20) i_] _? ] —o.
Vi o 90k o
Next, using
a%a, 2%b,
& = - — = —%6#630
V1,90, 3V1,90,
we have
%24 a*A
4.21) =1D"16%45,,4,,, —— | = 1D~ %(0%+ D) by,
3V1t30',.s 0 avlt rs_JO

The value of I, ; , R, in case of the third situation can now be easily obtained from
(4.15),(4.20) and (4.21).
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