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MAXIMUM LIKELIHOOD ESTIMATION OF A UNIMODAL
DENSITY, II'

By EDWARD J. WEGMAN

University of North Carolina

This paper is a sequel to the earlier paper, ‘““Maximum Likelihood Estima-
tion of a Unimodal Density Function.” The MLE of a unimodal density with
unknown mode is shown to agree, for sufficiently large n and on certain
regions, with the MLE of a unimodal density with known mode. The asymp-
totic distributions of the MLE’s then agree. Also a geometrical interpretation
of the MLE of a unimodal density with unknown mode is given.

1. Introduction. Several authors, Grenander [3], Robertson [6], and Rao [4],
have described the MLE for a unimodal density when the mode was known as well
as some of the estimate’s properties. A MLE for a unimodal density when the mode
is unknown was described in [7]. Strong consistency was also established in [7].
We wish to describe some additional properties in this paper.

2. Asymptotic distribution. The estimates discussed in this paper rely heavily
on the notions of ¢-lattices and conditional expectations with respect to o-lattices.
A o-lattice, &, of subsets of a measure space, (Q, &, p), is a collection of subsets
of Q closed under countable unions and countable intersections and containing
both the empty set ¢ and Q. A function is measurable with respect to a o-lattice,
£, if the set, [f > a], is in £ for every real a. If Q is the real line, & is the collection
of Borel sets and u = A is Lebesgue measure, let L, be the set of square-integrable
functions and L,(%¥) be those members of L, which are also measurable with
respect to Z.

DEerINITION. If fe L,, then ge L,(#) is equal to E(f | &), the conditional expecta-
tion of f given %, if and only if

[f-0(g)di=[g-0(g)dA
for every 0, a real-valued function such that 8(g)e L, and 6(0) = 0 and

[(f~hdi<0

for each he L,(Z).

The collection of intervals about a fixed point, m, together with ¢ is a g-lattice
which we denote as #(m). A function, f, is unimodal at M by definition if f is
measurable with respect to £(:M). It is not difficult to see that this is equivalent to
fnon-decreasing at x < M and f non-increasing at x > M. If fis unimodal at every
point of an interval, /, then we call I the modal interval and write £ () for the lattice
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of intervals containing /. Clearly, f has modal interval 7if and only if fis measurable
with respect to £(I).

Now let f, be the maximum likelihood estimate when the mode is unknown as
described in [7], and let £, * be the maximum likelihood estimate when the mode is
known. In defining f,, & = 0 was a predetermined number and f, was chosen to be
the maximum likelihood estimate over the class of densities whose modal interval
is at least ¢ in length. The special case ¢ = 0 was discussed by Robertson [6],
Example 1.2. As far as this author knows, consistency results exist only for ¢ > 0
(see [7]). We shall now describe f,.

If [L, R] is any fixed interval of length ¢ and y, <y, < -+ <y, are the ordered
observations sampled according to the density f, let 4; = [y, ¥2), 42 = [V2, Y1), ***»
A¢my = emy L) Aegy+1=[L, R, Aeys2 =R, Yyml ***5 A= V-1, ¥ul. Here
Vewy and y,, are respectively the largest observations smaller than L and the
smallest observations larger than R. Now Z([L, R]) is the g-lattice of intervals
containing [L, R] and the maximum likelihood estimate with modal interval [L, R]
is given by E(g, | Z([L, R])) where

Gn= 21!‘:1 n; [ni(4))] -t I,

Here n; is the number of observations in 4; and I, is the indicator of 4;. Thus we
have the MLE given the interval. We need only let the interval vary over all
possible intervals of length ¢ to find the MLE, f,. Fortunately, it is shown in [7],
that we do not have to consider all possible intervals, but only those for which
either L or R is an observation. Hence f, is the density which has the largest likeli-
hood product among the 2n candidates obtained by letting L range among
Y1, ", Yy, and by letting R range among y,, '*-, y,. Let us denote the modal
interval of f, by [L,, R,]. In [7], it is shown that L, and R, have limits with proba-
bility one for which we shall henceforth reserve L and R respectively. See [7] and,
in particular, Theorem 5.1 for the exact conditions for this convergence.

In a similar manner, let A4;* =[y,, y2) AYy = Wayy M), AJmy+1 =
[M9 yq(n)+ 1]’ A:(n)+2 = (yq(n)+ 1 yq(n)+2]’ ) n - (yn 1 yn] HereMls the knOWn
mode and y,,, is the largest observation smaller than M. Notice with probability
one, M # y; for each j. If #(M) is the g-lattice of intervals containing M, the
maximum likelihood estimate, f,*, is given by E(g,* | L(M)) where

—Zl=1ni ["l(Ai*)]_l I,

Of course, n;* is the number of observations in A;*. In [7], it is shown that
Me(L, R), hence g, and g,* agree except possibly on [y,(), ¥vm]- A similar situation
was the case in Lemma 5.4 in [7]. If we require only that some neighborhood of
L, say N, is a set of points of increase of fand similarly some neighborhood of
R, say Np, is a set of points of decrease of f, we may use the arguments of Lemma
5.4 in [7] to obtain

LEMMA 2.1. Let n > 0 be an arbitrary number such that L —n and R+ n ar e elements
of N, and Ny, respectively. Then with probability one, for sufficiently large n, f, and
J.* agree on (L—n, R+n)°.
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Before we give the proof of Lemma 2.1, we reproduce part of a result of Robert-
son [5] upon which we shall rely. This result characterizes conditional expectation
when the underlying measure space has finite total measure. (This will apply to our
situation since we may restrict our attention to [y,, y,].) If & is any o-lattice and
g is a function in L,, then E(g | &) = f may be represented by

(2.1) J(yo) = infy g, (ry [M(T;—L)] 7" ’_"T,—Lgd'1 and

(2.2) J(¥o) = SUPL e ooy [AL—P)] ™" fL_p,gdA.

Here 1=f(yo), P,=1[f>1], T,=[f21t], H(T)={L'eZ:T,—L') > 0} and
Hy(P) = {L'e&:A(L'— P, > 0}. Robertson’s theorem is more general than stated
here, but this is sufficient for our needs.

PROOF OF 2.1. We shall first consider agreement to the left of L. Pick ¢, in
(L—n, L)c N;. Let 6e(0, L—t,). Since the underlying density f has a point of
increase in (to, L—39), f, and £,* must both eventually have a jump in (¢y, L— )
since they are both consistent estimates of f(x) for x < L. Let y; be the smallest
observation greater than #, at which £, has a jump and let Y be the smallest
observation greater than #, at which f,* has a jump. (A result of [6] is that jumps
occur in f,* only at observations. Similarly in [7] it is shown that jumps in f, occur
only at observations or at L, or R,.) Without loss of generality, we may assume
Vie 2 y;- Let ;. be the largest observation smaller than or equal to ¢, at which there
is a jump in f,*. Thus we have y;. < t, < y; < y;». We wish to show equality holds
in the last inequality. Assume y; < y... Let t =f£,*(t,) and T, = [f,* = ¢], so that
T, = [yje» sl But [y;, yis]€ £(M), s0 by (2.1)

t= (yi_yi‘)—l 'j[yJ"Yu] gn* da.
In a similar manner using (2.2) we can show
t g (yi‘_yi)_l * j[y(,yn]gn* dl‘

Since g,* and g, agree except possibly on [y, Vo) (here, of course, Ysmy Yrm
and g, are defined with respect to [L,, R,]) we have for sufficiently large n,

(2.3 =y~ 1. j[y' yi1dndA < (J’i—}’r)_ ' j[y,, vi19n di.
Now let ¢ = f,(t,) and P, = [f, > t]. Again by use of (2.2), we have

(2.4) futo) 2 (}’:_}’j‘)—l 'I[y,.,yd gndA.

Finally letting ¢ = f,(y;) and using (2.1), we have

(2.5) ) 2 =) finiyi1 Gn A

Using (2.3), (2.4) and (2.5), f,(t5) =f.(»). But y; is a jump point in f,, so
f.(to) < f.(y). Thus our assumption y; # i is false. Robertson [6] shows that there
is an L = [u, v] such that Le #(M) and

fu¥(t0) = ML—P) ™' [, _p. g, * di.
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Rewriting this
LX) = (i—u+v—y)" - j[u,y;] Ulyier,o] gn* dA.
But by (2.2),
f¥(to) 2 (v— Ye) ' j[yk.,v] gn* di.
From these two displays we may obtain f,*(t0) < (y;—u) ™' [, ,,; 9.* dA.

Hence for sufficiently large n

fn*(tO) = Supué)’l {(yi_u)—l .I[u,yi]gn* d},}

Similarly, for sufficiently large n,

fn(to) = supu<Yt {(yi_u)—l .J[u,yi] gAn dj'}

Since g, and g,* agree eventually in this region, f, and f,* must be equal eventually
at t,. For any ¢ < t,, by virtue of the fact that f,(¢,) = f,*(1,) and by use of (2.1)
and (2.2), we obtain the desired conclusion to the left of L. We may obtain similar
results to the right of R to complete the proof.

Hence, for any x¢[L, R], for sufficiently large n, f,(x) = f,*(x). An immediate
theorem follows

THEOREM 2.1. For x¢[L, R], f,(x) has the same asymptotic distribution as f,*(x).

Rao [4], through some very clever but rather tedious arguments, develops the
asymptotic distribution of f,*(x). Arguments similar to these could be applied to
£.(x), but are avoided by use of Lemma 2.1. Rao assumes a non-zero derivative of
the density, f, at each point x where the asymptotic distribution is to be found.

3. A characterization of f,. Grenander [3] gives a characterization of the MLE of
a strictly monotone density. Reid (see [1] and [2]) gave a geometrical interpretation
of a conditional expectation with respect to a o-lattice, ¥, when % consists of
intervals with the right (or left) endpoint fixed. If the g-lattice is £ (M), the con-
ditional expectation may be characterized by applying Reid’s method individually
to the right and to the left of M. To find E(h| £(M)), the conditional expectation
of some function / with respect to £ (M), determine H(x) = fi- w,x1 1 dA. To the left
of M, E(h|$(M)) is given by the slope of the greatest convex minorant of H
restricted to (—oo, M) and to the right of M, by the slope of the least concave
majorant of H restricted to (M, o).

Let us assume that & has bounded support, {x:A(x) # 0}. Let L and R be fixed
with R—L = ¢. We want a geometrical interpretation of the conditional expecta-
tion of & with respect to #([L, R]).

We shall use the theorem of Robertson [5] mentioned in Section 2. Recall
that Robertson’s theorem is stated for a finite measure space, hence the re-
quirement here that we have bounded support. Let E(h | PL)(x,) =y, and
Py, = {x:E(h| £)(x) > yo}. Let o = {L*€ £L: A(L*—P,;) > 0}. Then recall

yO = Suche* [A.(L* _PYO)] -1 jL‘—Pyoh d}u
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If welet & = Z([L, R)) it is clear that since E(h | £) is by definition #-measurable,
it achieves its maximum throughout [L, R]. Hence if x,€[L, R], P,, is empty so
that

@3.1) Yo = Suppe g (AL*)™ ! - fLahdA.

In fact, this supremum is a maximum and 3 = #([L, R]). Let L* be the maxi-
mizing interval so that

(3.2) Yo =(AL*)" [ hdA.
Since for any xe[L, R], E(h | L)(x) = E(h | Z)(x,), we have
E(h| £)(x) = (ML*)™ " [L.hdA.

Assume xe L*—[L, R] and assume

3.3) E(h| £)(x) < (ML*)™* - [LhdA.
Ify=Eh | Z)(x), then it is clear that P, is not empty and by (2.2)
E(h| £)(x) 2 ((L*—=Py)~ " - L. p,hdA, or

[;u(L* - Py)] -1 IL‘_Py h d/i < [AA.(L*)] -1 IL‘ h d}..
Let P,* = P,nL*. By some elementary algebraic manipulations, we obtain
[ALH] - fehdi < [AP*]7 fphda.

But since P,*e %, this is a contradiction to (3.1). Hence (3.3) cannot hold. So for
any xe L*,
E(h | LY x) = [ML*] - ehda.

Leta =infL* and b = sup L*. As in the case of the conditional expectation with
respect to £(M), it is not difficult to see we may apply Reid’s method individually
to the left of a and to the right of 5. Thus we have,

THEOREM 3.1. The conditional expectation of a function, h, with bounded support,
with respect to a o-lattice, #([L, R)), is given by the following procedure.

Find the interval [a, b] containing [L, R)] such that (H(b)— H(a))/(b— a) is maxi-
mized. On [a, b], the conditional expectation is given by (H(b)— H(a))/(b—a). To
the left of a, it is the slope of the greatest convex minorant of H restricted to (— o0, a)
and to the right of b, it is the slope of the least concave majorant of H restricted to
(b, 00).

The application of this theorem to the finding of MLE is of particular interest
since this would give an algorithm for computing the MLE. Let [L, R] be an
arbitrary interval of length ¢ and the sets 4; and the function g, be defined as in the
first part of Section 2. Finally let G,(x) = (- o xn dA-

COROLLARY 3.1. If h = §, in Theorem 3.1, E(g, | ZL([L, R))) may be computed by
the procedure set forth in Theorem 3.1. Moreover, the function G, may be replaced
by F,, the empirical distribution function, in the procedure of Theorem 3.1.
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Noting that g, has bounded support, [¥1, ya); is sufficient to prove the first part
of this corollary. To the left of L, G, is a minorant of F, and to the right of R, G,
is a majorant of F,. Using these facts, it is not difficult to see that the procedure in
Theorem 3.1 gives the same result whether it is applied to F, or to G,.

It is interesting to note that Theorem 3.1 implies Theorem 3.1 of [7] if the con-
dition of f being continuous is exchanged for f having bounded support. The
author is indebted to the referee of [7] for pointing this out.

Finally, the author would like to point out that in [7] a printing error was made
in Figure 1. Part of this figure was left out, the maximum values of the estimate,
which illustrate the peaking of f, *-type estimates. This is one reason for considering
estimates f, with & > 0. Table 1, fortunately, reflects this peaking in tabular form.
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