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GLOBAL CROSS SECTIONS AND THE DENSITIES OF
MAXIMAL INVARIANTS!

By Uwe KOEaN

The University of Connecticut

This paper generalizes some results of Wijsman concerning the
calculation of the density of a maximal invariant. The idea of the technique
is to represent the sample space as a product space, one factor Z being a
global cross section, i.e., essentially a set that intersects each orbit in a
unique point, and the other factor being a coset space of the invariance
group. Integration over the invariance group then gives the distribution of
the identity function on Z which is a maximal invariant.

Part I of the paper gives sufficient conditions for the technique to be
applicable, while Part II exhibits the technique along with an example.
Part II is on a more elementary level than Part I and may be understood
without a reading of Part 1.

1. Introduction and summary. In this paper we present a method of obtaining an
integral form of the density of a maximal invariant and prove some existence
theorems which show that the method is applicable under general conditions. The
paper is divided into two parts: the first part, which exhibits the existence results,
requires a greater knowledge of Differential Geometry ; understanding of the second
part, which presents the technique and gives an example, is free of a reading of the
initial section.

In order to sketch the ideas and motivation of the paper, let (X, 4, P), P =
{P,, 0€®} be a model for a parametric testing problem, H,:0e®, vs. H,:0€0,,
0, disjoint, ®, U®, = O. The P, are dominated by a o-finite measure u. Further,
let the problem be invariant under the group of transformations G. For the various
definitions, see Lehmann [8], Chapter 6. In this situation the statistician often
invokes the principle of invariance, that is, he restricts his attention to test functions
that are invariant, i.e., ¢(x) = ¢(g9x), ¥x€X, WgeG. The usual method then
followed is to find a maximal invariant function ¥ on X, i.e., a function that is
measurable, invariant and such that if y(x) = ¥(»), then x = gy for some geG.
Calling the sets, Gx = {gx| geG} orbits, we can say that  distinguishes among
orbits. Now the statistician must find the distribution of y under the various P,.
Stein [9] was the first to suggest that this could be done by integration over the
invariance group.

Wijsman [11] introduced the use, in addition to integration over the group, of
global cross sections. Basically, his approach consists of representing the sample
space X as a product space Y x Z where Y is a copy of the orbits and Z is a subset
of X that intersects each orbit in a unique point. Any invariant function can be
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considered as a function on Z and the distributions induced on Z by the P, are
marginal distributions. If X is a submanifold of E?, Wijsman [11] has given
conditions under which such a procedure can be carried out. Aside from some
analyticity and algebraic conditions on G and X, Wijsman’s results require Z to be
generated by a Lie group H that is at least normal in the Lie group GH. In this
paper we derive similar results without requiring the existence of the second group.

I. EXISTENCE THEOREMS

2. Preliminaries. In order to follow this part of the paper the reader will have
to be familiar with some elementary concepts of Differential Geometry, Lie Groups
and Transformation Groups. The necessary definitions can be found in, e.g., Cohn
[3], Chevalley [2], and Wijsman [11]. Our definition of an analytic manifold is that
of Cohn with the added restrictions that the analytic manifold have countably
many components and be a submanifold of Euclidean space. The conditions imply
that an analytic manifold has a topology that is second countable (Chevalley [2],
Lemma 4, page 97). 4, a subset of an analytic manifold, is said to have measure
zero if for every chart 4 and its coordinate neighborhood U, h(UnA4) is a set of
Lebesgue measure zero.

Let f be an analytic map from the analytic manifold M to the analytic manifold
N. fis an analytic diffeomorphism if it is also one-to-one, onto and f~1is analytic.
A point in M at which the rank of £ i.e., the rank of the Jacobian matrix of f, is
less than the dimension of N is called a critical point. A point ne N such that
f~!(n) contains at least one critical point is called a critical value. The following is a
specialization of a theorem of Sard to be found in Sternberg [10].

THEOREM 1 [Sard]. If f is an analytic map from the analytic manifold M to the
analytic manifold N, the set of critical values of f is a set of measure zero.
An easy application of Sard’s theorem gives:

LEMMA 1. If f is a one-to-one, onto, analytic map from the analytic manifold M to
the analytic manifold N, then the dimension of M equals the dimension of N.

We shall restrict our attention to Lie groups that are analytic subgroups of the
general linear group, i.e., the Lie groups shall be representable as matrix groups.
Furthermore, if a Lie group G and an analytic manifold M are a Lie transformation
group, the action shall be matrix multiplication of vectors.

The reader should also be familiar with the concepts of tangent space, analytic
differential forms, the effects of mappings on these entities, and with the notion of
an exponential map. Also, it is assumed that he knows that with respect to a
continuous differential form an integral of continuous functions with compact
support can be constructed as is done in Chevalley [2]. Using the Daniell approach,
this fact allows the construction of a Baire measure on the manifold consistent
with the original differential form. If a set is Baire measurable, it is straightforward
to show that measure zero with respect to the Baire measure and with repect to
the previously given definition are equivalent. We shall denote a differential form
on a manifold M by w,, and the corresponding measure by u,. If M is a group or
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coset space, it is tacitly assumed that the differential form and measure are left
invariant.

3. Anzlytic diffeomorphism theorem. The following theorem gives conditions
under which an analytic manifold (in applications, the sample space) can be
considered the product space of a coset space and a submanifold.

Let (G, X) be a Lie transformation group with the restrictions mentioned above,
then

THEOREM 2. If Z is a submanifold of X such that

(1) each point of Z has the same isotropy group, say H, and
(2) Z intersects each G-orbit exactly once,

then there exists an open submanifold, Z *, of Z and an open submanifold of X, call
it X*, such that X— X * is a closed set of measure zero and the map - Y x Z - X
defined by f(g, z) = gz, restricted to Y x Z*, is an analytic diffeomorphism onto
X*, where Y = G[H.

PROOF. Let © be the natural map, n: G — Y. fis well defined since, if g, =g, A,
d1,9,€G, heH, then g,z =g, hz = g,z, ze Z. It is also one-to-one since g, z; =
g, z, implies g, 'g, z, = z, which implies that g, eg, H and z, = z, by condition
(2). (2) also implies that fis onto.

In addition to showing that f is one-to-one and onto, we wish to show that it is
analytic. Let (L, ., ** -, L,) be a basis for the tangent space of H at e, the identity,
and (L,, -, L,) a complimentary set in the tangent space of G at e. (Ly, ***, Ly) is
then a basis for the tangent space of G at e. Furthermore, this choice means that
(Ly, -+, L) is a basis for the tangent space of Y at n(e), the image of the identity.
Using this basis,

gexPZ€=1 aiLieXPZ§=r+1 a;L;—(ay, " ,0,0,41," " .4y
is a canonical chart near ge G and
gexp)i-ia;Li>(ay, ", a,)

is a canonical chart near n(g)e Y. Since X is a submanifold of E?, Z is also and so
the elements of Z have coordinates z(f) = (z,(¢), ***, z,(t))’ in terms of some
orthogonal coordinate system in E? where (¢, -- -, t,) = () is a coordinate system
on some open set in Z. The z(¢) are analytic functions of (¢), since Z is a submanifold
of EP. The range values of the map from G x Z onto X in terms of the coordinate
system (a, t) are of the form

gexpYi-ia;LiexpYio . a; L z(1)

which equals gexp Y-, a; L, 2(f) since expY 5-,+ 1 &; L; - 2(t) = 2(2), €xp) -+ 1 a; Ly
being an element of H. This fact means that the range values of f: Y x Z — X are
gexp Y s-,a;L; z(t) and so f'is analytic. In the above we have used the fact that
group multinlication and group-manifold action is also matrix multiplication.
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So, since f is also analytic, by Lemma 1, the dimension of Y x Z equals the
dimension of X. Call this common dimension n. By Sard’s theorem, f has rank » at
almost every range value in X. The set of points, 4, in ¥ x Z at which the rank of
fis nis an open set since it is the set on which the Jacobian of fis nonzero. Thus, by
the Inverse Function Theorem, fis a diffcomorphism on 4 and so f(4), call it X *,
is open in X. X— X * is a closed set of measure zero.

The nature of 4 and X * is seen more clearly if we note that fis equivariant under
the actions of G, i.e., f(ghH, z) = ghz = gf(hH, z), g, heG. Since the action of
any element ge G on Y is an analytic diffeomorphism (Chevalley [2], page 111),
the action g:(y,z)—»(gy,z) on Y x Z is a diffeomorphism. Now, if f is a
diffeomorphism in a neighborhood of a point (y,, z,), then it is one at each point
(¥, z;) as can be seen by considering the action of g € G where y, = gy,. Then f
near (y,, z,) is the composition of the following diffeomorphisms,

(y,2) =,-1(7 'y, 2) >, f(g7 'y, 2) =97 (1, 2) =, f (¥, 2).

Thus, A has the form Y x Z * where Z * is open in Z since Y x Z* is open and
the projection map onto Z is an open map. X * is a union of orbits. []

The above theorem gives us f as a diffeomorphism at almost all points of X.
Wijsman [11] has shown that, under the conditions of the theorem, if Z is generated
by a Lie transformation group, call it X, i.e., Kx, = Z for some x,€ X, and K or
G is normal in the Lie transformation group GK, then fis a difffomorphism on all
of Y x Z. The question arises as to whether the almost everywhere statement in
the conclusion of the theorem is necessary. That it is necessary even in the case
that Z is generated by a group K, provided that GK is not a group, can be seen by
the following example:

Let X = {(1,, z)’| — o0 < y,z< oo} and let G be the group of lower triangular
3 x 3 matrices {(g;;(5)), — 0 < s < o} with 1’s on the main diagonal, g,; = g3, =
s and g5, = 52/2. Let K be the group of lower triangular 3 x 3 matrices, {(k;{?)),
—o<t<o}, kyy=ky=1ky=6€,kyy=tky =e—t—1andk;, =e'—1.
If we let x, = (1,0,0), and Z = Kx, = {(1,t,e'—t—1)', —00 <t < 0}, one can
check with an application of the Law of the Mean that the hypotheses of Theorem
2 are satisfied. Since the isotropy groups of both G and X are trivial, (s, ¢) is a chart
on G x Kxy. At (s, 1) = (0, 0), d/(ds)g(s)x, = (0, 1,0) and dj(dt)k(t)x, = (0, 1, 0)
and so we do not have a diffeomorphism at (0,0). Z could be chosen as
{@,o, t)’| —ow <t<oo} and we would have a diffeomorphism everywhere.
Whether this choice is always possible seems to be unknown.

4. Measure and differential forms. In our applications X is an orientable,
analytic manifold with a non-zero differential form of maximal order (Chevalley
[2], page 158 fT.). This differential form on X allows one to construct an integral
for continuous functions with compact support. Using the Daniell approach one
can then extend the integral and finally construct a Baire measure on X. Since we
will be “factoring” X into the product of two analytic manifolds, ¥ and Z, we
would like to have measures on Y and Z such that the product measure on ¥ x Z
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is equivalent to the measure on X. A method of calculating the Radon-Nikodym
derivative is also desirable. If H is compact, ¥ = G/H has a natural measure
inherited from G, the Lie group, in the following way: let u be “the” Haar measure
on G and n:G — Y, the natural map; we define uy = pun~' on Y by uy(4) =
un~'(4) = pu(n~*(4)), A being a Baire set on Y. uy is a regular measure (Halmos
[5], Theorem G, page 228), invariant under the actions of G and unique up to a
multiplicative constant (Helgason [6], Theorem 1.7, page 369). Although Haar
measure and our other invariant measures are unique only up to a multiplicative
constant, we shall use the definite article in referring to them. To emphasize that a
measure or differential form is invariant under a group G, we shall call it
G-invariant.

In general, even though Y is an analytic manifold, uy is not induced by a G-
invariant differential form, e.g., SO(3)/0(2) = the projective plane (Helgason [6]
page 369). Intuitively the problem seems to be that the =, the natural map, may
join the pieces of G together in a nonorientable way in forming Y. If this is the case,
we can hope to put a differential form on small enough open subsets of Y by
restricting the domain of .

First we shall show that we can restrict our attention to G,, the component of
the identity, e, of G. H is a compact subgroup of G and H, = GonH. H, is a
compact subgroup of G, and so of G. x is the natural map, n: G — G/H and =,
the natural map, ny: Gy = Go/H,. m and =, are open and continuous. The set G, H
is an open subgroup of G, since G, is open and a normal subgroup of G (Cohn [3],
Theorems 2.4.1 and 2.8.3). Now, n(G,) = G, H/H and =n~(n(9))nG, = gH,,
g€G,. m, partitions G, in the same way, so that there exists a one-to-one, onto
map f such that f:GoH/H — Go/H,, for|gy=m, and |, =f"'om,. Since
n | G, and m, are continuous and open, f is a homeomorphism and so induces a
one-to-one, onto map of the collection of Baire sets of G, H/H onto the Baire sets
of Go/H,. If p is the Haar measure on G, its restrictions to the open subgroups
Go H and G, are also Haar measures for these groups. Let us denote the G, H-
invariant measure induced on Gy, H/H by p, and the G,-invariant measure on
Go/H, by p,. Because of the equivariance of f under G, i.e., gf(x) = f(gx), g € G,,
xeGoH[H, p,f~" and p, are Gy-invariant measures on Go/H, and so u,f ™! =
kuy,, for some k > 0, due to the uniqueness of the invariant measure. It is also true
that ky,f=p,f'f=p, and so f can also be used to identify the invariant
measures on G, H/H and G,/ H, if we identify the two coset spaces. It is clear that
U, restricted to G, H/H can be used to generate u, on G/H uniquely because of
G-invariance and second countability. Thus, once we have obtained the G-
invariant measure on G,/H, we can generate uniquely the G-invariant measure
on G/H.

Thus, we shall assume that G is connected. Since this does not imply that H,
(now called H) is connected, we must still be careful. While, in general, the
G-invariant measure on G/H is not generated by a continuous differential form,
we shall show that this measure can be generated by a continuous differential form
on an open neighborhood of n(e).
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Let H, be the identity component of H and m,: G — G/H,, the natural map.
Being a closed subset of a compact set, H, is compact in H and G. Since H,, is
connected, Helgason’s [6] Lemma 1.5 and Proposition 1.6, pages 367-368, show
that G/H, has a G-invariant differential form, w, that generates the G-invariant
measure, um, .

To find a differential form that generates the invariant measure even on an open
subset of G/H and its relation to @ on G/H,, requires more work. Let 6 be the map,
0:G/H,— G/H, 6(gH,) = gH, g €G, so that = = fem,. In the following we follow
the notation of Chevalley [2], Proposition 4, page 58. We can choose an open,
connected neighborhood ¥ (in G) of e such that ¥ " 'nHcH,. Let n(V) = W.
Choose a collection A of distinct representatives of Hy-cosets on H so that H =
Y54 0H,, where addition means disjoint union. Since H is compact, A is a finite
collection and so we can write H = Y ¥_, 8, H,, 6, = e. In the proof of Proposition
4, Chevalley shows that the sets U; = mo(V'd;) are disjoint so that 0~Y(Ww) =
non” (W) = no(VH) = ”O(VzéiHo) = ”o(z Vé,H,) = Z”O(VaiHo) or

) 07 (W) =Y mo(V) =Y U;.

Chevalley shows that the U; are the components of 6~ '(W). n(e)e U, and we shall
write U for U,. Furthermore, Proposition 4 states that 0|,:U;—> W is a
homeomorphism. It is useful to show that it is a diffeomorphism and we shall do
this for U. Let (L,, *--, L,) be a basis for the tangent space of G at e such that
(Lp+1> """ » Ly) is a basis for the tangent space of H (and so H,) at e. We can assume
that ¥V is small enough so that

epo?‘: 1 aiLiepo?=m+l a;Li—>(ay, -, a,)
is a chart on V. Then,

”o(eXPzz":l a;L;exp Z?=m+ 1a; L)~ (ag, ,ap)

is a chart on U and

(CXPZ:'”=1 biLiepo?=m+1 biLi) - (bls Tty bm)
is a chart on W. In terms of these charts, b; = 6’ | v@y, s, ay),i=1,+, m,and,
by definition of 6, b; = a; so that in terms of these charts 6 | v is the identity function
and so analytic.

Denoting the diffeomorphism ™! |y by ¥, we define the differential form o,
on W by w, = dy(w). We want to exhibit the relation between w, and un~ L. Let
D be a measurable subset of W and let V, = Vnn~!(D). Then, n(Vp) = D since
a(Varn~Y(D))cnn~ (D) = D and since for any de D, there is a ge ¥ such that
n(g9) = d implying that ge VAan~!(D) so that n(Vnn~!(D))> D. Replacing in (1)
V by ¥V, and W by D (only the fact that ¥ ~'VnH< H, is used to establish (1)
and V), has the same property), we get

2 6~'(D) = Y mo(Vp )
and so 1~ (D) = m,"'07 (D) = Y. V), 6, H,. Thus,
u(n~ 1(D)) = Zﬂ(VD 6;Hy) = Z#(VD Hyd;) = kw(VpHo) = kﬁmo_l("o(VD))a
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the second equality occurring because 6, H and H,, is normal in H and the third
because H is compact and thus the modular function is equal to 1. To write
mo(¥Vp) more conveniently, observe that the ith term on the right in (2), 7,(V, d;) =
no(Vd;) = U, Thus, 07'(D)nU;=no(Vpé;) and, in particular, mo(Vp)=
0”1 (D)NU = y(D), (Y = 67| ). Thus,

3 pn~t = kpmy ™.

Since w generates um, ', w, = dY(w) and if Hy is the measure generated by w,
on W, then it is easy to show that u, = un,~'y. Comparing this equation with (3)
gives us

4 pr~t =kp, .

Thus, kw, generates the G-invariant measure, un~!, on W. In the future we shall
write w, for kw,. Due to the G-invariance, the measure on the subsets of W
determines the un~! measure on all measurable subsets of G/H.

We summarize these results in the following theorem.

THEOREM 3. Let G be a Lie group with countably many components and Haar
measure, p, and let H be a compact subgroup of G with n being the natural map,
n:G — G/H. There exists an open neighborhood of mn(e)e G/H on which the G-
invariant measure, pn~"', on G|H is generated by a differential form.

Now let us return to the situation where Y x Z is diffeomorphic to X. We show
that in this situation where an orientable analytic manifold can be represented as
a product manifold of two analytic manifolds, the factor manifolds are necessarily
orientable.

LEMMA 2. Let U, V, and W be analytic manifolds such that U x V is diffeomorphic
to W. Furthermore, let wy, be a nonzero analytic differential form of maximal order
on W. Then, U and V also possess such analytic differential forms, say, oy and oy,
and

oy =3(", oy Aoy, where 0 is analytic and 6 > 0.

PROOF. Let the dimensions of U, ¥, and W be n, m, and p, respectively, so that
n+m = p. Let u, be an arbitrary but fixed point of U with (u,, - - -, u,) a coordinate
system around u,. If v, is a point of V, let (v, -*, v,) be a coordinate system
around v,. Thus, (4, -, u,, vy, ***, v,) can be regarded as a coordinate system
around (uo, vo) in W. We can express wy as

oy =h(-,")duy A Adu, Adog A+ Ado,

in terms of this coordinate system. We define a differential form on ¥ in a neighbor-
hood of v, by

oy = h(ug,*)dv, A -+ A dv,.

Since A(uy, +) is analytic and nonzero by the properties of wy, w, is a nonzero
analytic differential form near v,. w, is defined on all V by piecing together the
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above forms defined in a neighborhood of each point of V. To see that this
definition is consistent, let (vy, -+, v,) and (v,’, - - -, v,,) be two coordinate systems
with common domains of definition on ¥ and let

dvy A Adv, =J(")dv) A+ Ado,

where J is the Jacobian of the transformation from (v,’, ---, v,’) to (vy, **, v,,).
Being a change of coordinates, J is nonzero in the domain. The corresponding
change of coordinates in W from (uy, * -, u,, v,’, ***, v, )0 (Uy, =, Upy Vg, ", V)
gives us

) duy Ao Adu, Adog A Ado,

’

=J(,)duy Ao Aduy, Adoy A A do,
where J can be and is identified with the Jacobian given above. Now,
Oy =hy(*,)duy A - Adu, Advg A A do,
and
ww = hy(*,)duy A Ado, Ado A Ady,,.
By (5), hy(+, - )J(*) = hy(-, -) and so, in particular, h,(uy, * )J () = hy(uy, *) giving
op(*) = h(ug,")dvy A -+ Adv,, = hi(ug,")J(*)dvy A+ Adv,
= hy(ug,*)dvy’ A -+ A dv, .

Thus, the definition of w,, is consistent on V.

By symmetry, a nonzero analytic differential form, wy,, exists on W.

oy A oy and wy are both nonzero analytic differential forms of order p on W.
Since at each point, the forms are a one-dimensional vector space, wy =
d(+,)wy A wy with d being analytic since the forms are. By possibly changing the
sign of wy, on some or all W components, é can be chosen positive on all W and so
the lemma is proved.

Note. Throughout the proof the analytic differential forms can be repiaced by
continuous differential forms with the only change in the conclusion being that d is
continuous. []

The above lemma implies that if X has a nonzero analytic differential form so
do Y=G/H and Z.

II. METHOD
This section of the paper describes a method of finding the density of a maximal
invariant. While references are made to Part I, a reading of that part is not necessary
for an understanding of the technique. The method is first described for the case
that X, the sample space, is a submanifold of Euclidean space and G is a matrix
Lie transformation group. We then specialize to X being an open subset of Euclidean
space as the technique is simpler in this most common situation.
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‘5. Method. Let X, the sample space, be a submanifold of Euclidean space EP
with p, a density (integrable function is sufficient) with respect to a g-finite measure
x> My generated by a nonzero analytic differential form wy. Let G be an analytic,
e.g., closed, subgroup of the general linear group GL(p, R) on EP® such that
GX=X.

We wish to find a maximal invariant under G and its distribution under p. Let
Z be a submanifold of X that intersects each G-orbit in a unique point and has the
same compact isotropy subgroup at each point, i.e., {geG | gz=z}=H, YzeZ.
Clearly, the identity map on Z is a maximal invariant. Furthermore, if ¥ = G/H,
7:G — Y being the natural map, Y x Z and X are isomorphic under the map
(n(g), z) - gz. In fact, Y x Z and X are diffeomorphic a.e. (uy) (Part I, Theorem 2).

We will now see how to represent the integral, [xP(x)ux(dx), as an iterated
integral on Y x Z. The integration over Y will give us the marginal distribution on
Z, i.e., the density of a maximal invariant. Let u, be a measure on Z generated by
a nonzero analytic differential form w; and let py(= pgn~!) be the left invariant
measure on Y. If wg and pg are the left invariant form and measure on G, then py is
generated in a neighborhood of n(e) by the differential form wy (Part I, Theorem 3)
and so in a neighborhood of 7n(g) by 6g~*(wy). Thus wy = f(y, 2) 89 Ywy) A 0y
in a neighborhood of (y, 2), y = n(g). So py = |f (3, z)| uypz. f is essentially a
Jacobian that will be zero only on the null set where Y x Z and X are not
diffeomorphic.

Now

6 Ix PG x(dx) = [ [y Py, 2) | f (¥, 2)| oY) p2(d2)

where py, py and p, are Baire measures, p is Baire measurable, p(x) = p(y, z) and
x is the image of (y, z). If p is a density,

Q) Jy P, 2| f(0, 2)| y(dy)
is the density with respect to p, of the identity function on Z. Since integration
over G is usually more symmetric, we note that if 4: ¥ — R is integrable (uy), then

jy huy(dy) = IG honug(dg)
(Lehmann [8], Lemma 2, page 38.) Writing 4 for hom, (7) becomes

®) Jo P(92) |f(9,2)| ne(dg)

where gz = x and f(g, z) = f(n(g), 2).

In many applications X is an open subset of E? and then f(y, z) has a simple
form. Let uy be Lebesgue measure. At (3, z), ux(dx) = | f(, z)| Uy(dy)uz(dz) and,
at (g, 2), px(gdx)=|f(gy, z)| n(dy)u(dz) using the invariance of p,. Since
#x(g dx) = |g| ux(dx), where |g| is the Jacobian of the linear map, g:X — X,
9||f», 2)| = | f(gy, z)|- Letting y = n(e) = & and then § = n(g) = y, we obtain
9|1/, 2)| = |f(3, z)|. The choice of the representative of n~!(y) is immaterial
since g, €g, H implies that |g,| = |g,|, H being compact. Writing f(z) for £z, z),
(7) becomes

® (@) [y p(y,2) |g| n(dy).
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In order to evaluate f(z) we make some calculations in a neighborhood of (¢, z).
Let (x;, - -, x,) be the coordinates on X; (y, ***, y,), those on Y; and (zy, -, zy),
those on Z. Also let wy = I1dx;, wy = kI1dy;, and w,=h(z)I1dz, at (&, z). Since
wy = +f(Z)wy A wz at (¢, z), we see that kf(z)h(z) is the Jacobian of the change
of coordinates, (xy, ***, X,) t0 (¥1, ***5 Vs Z15 """ Z9)-

These last remarks show that we have essentially found a nice change of
coordinates; nice in the sense that the Jacobian need only be evaluated at special
points and that integration need only be carried out over some of the coordinates.
We also note that the factoring of | f(», z)| into |g| | f(, 2)| occurred because of the
invariance of py and the fact that the Radon-Nikodym derivative, u(g dx)/u(dx),
at x did not depend on the z “coordinate’ of x. Thus in cases where, for example,
X is a coset space of G*, uy is the invariant measure and G is a subgroup of G*,
e.g., rotations of the sphere, similar results are to be expected.

Returning to the previous paragraph, we now wish to write (9) in terms of
integration over G. Assuming p¢ is known and that uy is Haar measure on H, we
need to find k in the expression, wy = kI1dy; at e. If [ is ug integrable, then

(10) J61(9) e(dg) = [y [u Agh) pu(dh) py(dy)

where py = pugn~! and py(H) =1 (Helgason [6], Theorem 1.7, page 369). In a
small enough neighborhood V of eeG, where (YNnV) x (HnV) is diffeomorphic
to V (Chevalley [2], pages 109-110), (10) implies that pug = puypy and so, in a
possibly smaller neighborhood, wg = +wy A wy allowing us to evaluate k. Note
that we do not need to know the form of wy. (9) now becomes

(an f(2) e P(g2)|9| 1e(dg).
We now exhibit an example of the procedure.

6. The distribution of the roots of |A —1B| =0, A and B positive definite. Let X
be the collection of the ordered pairs of p x p positive definite matrices (4, B) such
that the eigenvalues of 4B~! are distinct. The group G acting on X is the general
linear group, GL(p, R), with the action being C:(4, B) - (CAC’, CBC'), CeG. A
candidate for the role of Z is the set of all (D, I,) where D = diag(4,, -, 4,),
Ay>Ay > 2> A, >0. (44, , Ap) is the chart we shall use on Z.

In order to determine Y = G/H we first need to know H. If Ce H, then (CD C’,
CC")=(D,I) for all (D,I) and so C is orthogonal and CDC’' = D. Since
DCD™ ' =C, c;; = A;¢;;4;~" and, since A; # A; unless i = j, ¢;; =0 if i #j. So C
is diagonal with the diagonal elements being +1’s and —1’s. If C has this form,
clearly Ce H. To see that we have a one-to-one mapping from the coordinates of
Y x Z to those of X we show that gz, = z, implies that ge H. Let Ce G, (D,,1)eZ,
(D,,1)eZ and (CD,C’,CC') = (D,,I). The last equation implies that C is
orthogonal and that D, and D, have the same eigenvalues. Since the ; are ordered,
D, = D,. That the map is onto, i.e., GZ = X, is seen by letting (4, B)e X and
C=TQ where TT' = B and Q is orthogonal with QT 'AT’~'Q = D. Then
(CDC’, CC") = (4, B) since the eigenvalues of T 'AT’~! and AB~!' are the
same. Thus, GZ = X since the other inclusion is trivial.
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~On X our chart consists of the lower left triangular elements of 4 and B and
Lebesgue measure is uy(dx) = [[;5;da;;db;;. On Z the chart is (4, ", 4,),
Ay>-++>2,>0 and the measure is puz(dz) = [[’-,dA;. On G, the chart at Cis
(c115 ** "5 ¢pp), all the elements of the matrix C. Referring, if necessary, to Deemer
and Olkin [4], it is easily seen that us(dg) = |C| "Il dc;;. Since H is a finite group,
we can identify a neighborhood of n(e) in Y with a neighborhood of e in G and
thus use the same chart there. Furthermore, since H contains 2P elements, each
element of Y is the image of 2” elements of G and so uy(dy) = 2°|C|~*I1dc;; near
n(e). Thus k = 27,
To evaluate f(z) we use the equations 4 = CDC’, B= CC’ and so at (n(e), 2),
dA = (dC)D+dD+DdC’, dB =dC+dC’. Thus

Hié] daudbu = 2pHi>j(}'j_j'i)ndcijl_Iip=l dli

at (n(e), 2). Since h(z) =1, f(z) = [[i>;(4;—A). As |g| = |C|*®*D (Deemer and
Olkin [4]) and if p is a density on X, (11) shows that the density of (4,, '+, 4,)
with respect to I1dJ,; is

[Ti>i(A;—=2) Jo |C*P®* P p(gz) T dey;, Ay >+ >4,> 0.

A common situation occurs when p(x) is the product of two Wishart densities
with different population covariance matrices. Because of the action of G on the
parameter space, we can, without loss of generality, let one of the parameter
covariance matrices be the identity and the other diagonal. So, let 4 have a
Wishart (n, p, T) distribution with T = diag(#,,-*-,0,), 6, 20,=>---=>6,>0
and B, an independent Wishart (m, p, I') distribution. The joint density on (4, B) is

p(A, B) = k(p, n,m) |T|~ /2| 4|¥=p=D|B|¥m=P=Detr —L(AT "' + B),
where
k(p,n,m) = $2*megdre=DTTe_, [T(3(n—i+1) TE(m—i+1))].
As a function on GZ,
p(g2) = k(p,n, m)|T|~#"|C|m*"~ 2@+ D|p|2n=p~Detr —4(CDC' T~ + CC).

Not writing the constant, k(p, n, m), the marginal density, i.e., the density of D,
with respect to [ |7, dA; is

(12) (ITr=1 A7 O Lis s A= )T TP=1 6)
felC|™*metr—3(CDC' T~ * +CC)|C| " []cdey; -
In the special case that T = ¢°1, the density of D, (12), becomes

(13 o7 (= 27O [Lis (2= 4)
Jo|C|m*metr—3(C(e~2D +1)C") |C| P [[cdes; -
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Making the transformation, C - C(6~?D+1)* = R, the integral becomes
|I+672D|¥™*™ [ |R|"*"etr —4RR’ |R| *[[r dry;
= |[I[+072D| ¥ m*m pdp* 2dm+mp T0_ (T4 (m4n—i+1)TE(p—i+1))]
and so the density (13) becomes
P T (Y man—i 23m=p=1) g2y~ t(m+n)
e s Dy Rim s D)2y ™ o G4

which is to be found with ¢2 = 1 in Anderson [1] page 315. The distribution in the
general case (12) has been found by Constantine in terms of hypergeometric
functions of a matrix argument and is listed in James [7], page 484.
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