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0. Summary. In this paper we are concerned with a generalization of the concept
of Latin squares and orthogonality of Latin squares. The condition that every
element appears once in each row and each column is replaced by the condition
that it appears the same number of times in each row and each column. We call
such squares F-squares. The usefulness of introducing and investigating the
properties of F-squares could be justified in two directions. F-squares have
meaningful applications in laying out experimental designs as exhibited previously
by some authors. Their properties prove to be a useful tool in the studies of existence
of orthogonal Latin squares and other combinatorial problems.

1. Introduction. The concept of F-squares is not entirely new. It has been
considered directly or indirectly by Finney [3], [4], [5], Federer [2], Freeman [6],
and Addelman [1]. However, these authors considered the F-squares as a by-
product of their general interest in experimental designs and were not concerned
with the theory of F-squares per se. The first author of the present paper was
inspired by the examples of F-squares brought forward by the previous authors.
Having in mind the usefulness of the F-squares for research in the theory of the
designs and its application in practical problems, he defined the concept of
F-squares and mutually orthogonal F-squares and obtained some results concerning
them [7]. The purpose of this paper is to develop further the theory of F-squares
and bring it to closer attention of mathematical statisticians. We plan to further
the research in this area and present more results for publication shortly.

It may be worthwhile to point out at this stage that the theorems proved thus
far aim at classifying some types of Latin squares making use of their relation to
F-squares. The concept of orthogonality of Latin squares is generalized to F-
squares and some of its implications to the problem of existence of orthogonal
Latin squares are investigated. It is pointed out here that using the concept of
F-squares one can distinguish between two types of Latin squares both mateless in
respect to orthogonality but different in respect to their use in a broader sense of
experimental designs.

2. F-Squares.

DEFINITION 2.1. Let A = [a;;] be an n x n matrix and let £ = (¢y, ¢,, **, ¢,) bE
the ordered set of distinct elements of A. In addition, suppose that for each
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k=1,2,---, m, ¢, appears precisely A, times (4, = 1) in each row and in each
column of 4. Then, 4 will be called a frequency square or, more concisely, an
F-square on X of order n and frequency vector (4, 4, ***, 4,).

We now .introduce some notation. A matrix 4 will be said to be an
F(n; Ay, A5, **+, Ay) square if A4 is an F-square of order »n and frequency vector
(A1, 43, ***, A,). This notation may be contracted by the use of powers to denote
successive equal values of A’s. Thus F(n; A™) represents F(n; A, A, --+, A) while
F(n; 442, A3, 442, A, *++ Ay) TEDTESEDtS F (11 Ay, Ay A3y Mgy Mgy Mgy =" * 5 Am). In par-
ticular, in an F(n; A™) square, m is determined uniquely by # and A; hence we will
represent such a square simply by F(n; A).

ExaMPLE 2.1. Let = {1, 2, 3} then

1 2 3 3 21
2311 3 2
312213
312213
231132
1 23 3 21
is an F(6; 2) square on X.
ExXAMPLE 2.2. Let £ = {1, 2, 3, 4} then
1 2 3 4
21 4 3
341 2
4 3 2 1
is an F(4; 1) square on X, while
1 2 3 41
112 3 4
4 11 2 3
3411 2
2 3 41 1

isan F(5;2,1% on X.

Note that F(n; 1) square is simply a Latin square of order n and thus exists for
all n. Consequently F(n; Ay, 45, -+, A,) square on X =(a,, ' -, a,) exists if and
onlyifn=>m, A,

The necessity of this condition is obvious by the definition of an F-square.
Sufficiency can be proved as follows: Construct an F(n; 1) square on an order set
Q = (b, by, -+, b,). Partition Q into m disjoint subsets S;, S,, ***, S,, such that
S; contains 4; elements. Define a many-one map ¢ from Q into X as follows:

o(x)=a; if and onlyif xeS,, i=1,2,---,m.

If we now apply ¢ to the elements of F(n;1) square then we obtain an
F(n; Ay, A, -+, A,) square on X. '
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Before proceeding further, it should be noted that this idea is not entirely without
practical importance. For example, if we let the elements of the m-set T to be
treatments then an F(n; 4,, 4,, -**, 4,,) square on X is an experimental design
having the properties that:

(a) Treatment effects | row effects (read treatment effects are orthogonal to row
effects),

(b) Treatment effects | column effects, and if 4,=4, i=1,2,---, m, then we
also have

(c) Treatment arrangement is balanced within rows and columns

(d) Row effects |_column effects.

An experimenter may consider such a design for two reasons. One of the reasons
may be that he learned from past experience that the difference between some of the
treatments considered in previous experimentation as distinct is negligible and
could be ignored. This means that he would consequently change the structure of
his design from a Latin square to a proper F-square. An F-square may also to
begin with be preferred to a Latin square especially when the number of treatments
is smaller than the order of the square and one would like to take advantage of the
available experimental units in order to improve the precision of the estimates of
at least some of the treatment effects.

The practical importance of a Graeco-Latin square design or in general a
design consisting of ¢ mutually orthogonal Latin squares for the elimination of 3
or t+1 sources of variations is well known. However, there are two severe
limitations attached to any such design. Firstly there may not exist such a design
for the given number of treatments. Secondly the experimenter is unjustifiably
forced to use the same number of treatments in each Latin square. To overcome
these difficulties the experimenter may have available orthogonal F-squares which
could exist even when not that many mutually orthogonal Latin squares are
known to exist.

3. On the orthogonality of F-squares. We now introduce the concept of the
orthogonality of F-squares and then of Latin squares as a special case of F-squares.

DEerINITION 3.1. Given an F-square F,(n;A;,4,,°*,4) on a k-set X =
{a,,a,, ", &} and an F-square Fy(n; uy, uy, ", u)onat-set Q = {by, by, -, b,}.
Then we say F, is an orthogonal mate for F; (and write F, | F,) if upon super-
position of F, on F,, a; appears A ;u; times with b;.

ExAMPLE 3.1.

F1(6’ 1) F2(6, 19 2, 13)
123456 123425
216543 452312
341265 232541
4651321214253
532614 541232
6 54 3 21 3251 2 4
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DEerFINITION 3.2. Let S; be an nset, i=1,2,---,¢. Let F; be an F-square of
order n on the set S; with frequency vector 4; = (4;;, 4,5, ***, 4;;,). Then we say
{F\, Fy, -+, F,} is a set of ¢t mutually (pair-wise) orthogonal F-squares if F; LF;,
i#j, 1, j=1,2,---,t In particular, if n;=n,i=1,2,--+,¢, and every F; is of
type F(n; 1), i.e. a Latin square of order », then we denote such a set as a 0(n, ¢)
set.

ExAMPLE 3.2. The following three F-squares are mutually orthogonal.

F1(59229 1) F2(59 12, 3) F3(5, 13, 2)
1 231 2 1 23 3 3 1 2 3 4 4
21 2 31 331 23 3441 2
12123 1 233311412314
31 21 2 312 3 3 2 3 4 41
231 21 33312 4 41 2 3

DEerFINITION 3.3. Let X be an n-set. Let F be an F-square of order »n on the set T
with frequency vector 4 = (4, 4,, -, 4,). Then, we say F is of degree r with
respect to the decomposition n = u, +u,+--*+u, if there exist r—1 F-squares
Fy, F,,--+, F,_, on an s-set Q with frequency vector u = (uy, u,, ** -+, u,) such that
{F, Fy, -+, F,_,} is a set of r mutually orthogonal F-squares and r is the largest
such integer. In particular, if A, =1;u;=1,i=1,2,--+,t=n,j=1,2,*, s =n,
ie. F, F|, F,,- -+, F,_, are Latin squares we say that F is of type E(n, r). F is said
to be orthogonally mateless with respect to the decomposition n = u, +u, +-- - +u,
if its degree is one. F is said to be orthogonally rich if its degree is at least two with
respect to every decomposition of ».

DEFINITION 3.4. A set of r F-squares {F,, F,, ***, F,} is said to be a mutually
(pair-wise) orthogonally rich set if F; is orthogonally rich and F; | F;, i#j,
Lji=1,2,-,r.

Now we give some examples to clarify the above definition.

ExAMPLE 3.3. The degree of

1 23456
2361 435
36251 4
F=4 1526 3
5416 3 2
6 5 4 3 21

is at least 2 with respect to the decomposition 6 = 1+1+1+1+2. An orthogonal
mate with respect to this decomposition is

2

19 Hh L W WL —
W W H ==
—_— N R W W
H LW =N W
NN = bW
W= L wundhH
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Indeed the degree of the above F-square is at least 2 with respect to any de-
composition of 6 except 6 =1+1+4---+1.

ExampPLE 3.4. The following F-square

123 4
4123
F=3 41 2
23 4 1

is orthogonally mateless with respect to the decomposition 4 =1+1+1+1.
However, its degree is at least 3 with respect to the decomposition 4 =2+2. A
pair of mutually orthogonal mates for F with respect to this decomposition is:

F, and

_— NN
N == N

2
2
1
1

_—— N N

1
1
2
2

_— N N =
NN =

1
1
=2

2

The following property is often useful in the development of the theory of
orthogonality of F-squares.

An F-square R on an n-set T is orthogonally rich if and only if it has an orthogonal
mate with respect to the decomposition n = 1+1+---+1. To prove the sufficiency
let A be an F(n; 1) square such that 4 | R. Then it is easy to see that all other
orthogonal squares for R can be derived from A4 by the transformations introduced
in Section 2.

DEFINITION 3.5. A sub-F-square of order ¢ and frequency vector (4, 4,, ***, 4;)
denoted by SFS(¢; A,, A5, - -+, A) is an F-square of order ¢ and frequency vector
(A4, Ay, +, 4) embedded in a larger F-square. If an F-square has only the trivial
SFS(1; 1), then we say F contains no SFS.

ExAMPLE 3.5. The bold face cells in the following F-square form an SFS(2; 1).

1122
1 2 1
2 2
2 1

- — N

1
2.

ExaMmpLE 3.6. The following F-square has no SFS of any order.

1 2 3 45
2 3 4 51
34512
4 51 2 3
512 3 4

THEOREM 3.1. If L is an F(n; 1) on an n-set X then: (a) L cannot have an SFS(t; 1)
ifnisoddand t 2 3(n+1), (b) L cannot have an SFS(¢; 1) ifnisevenandt = in+1.
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"ProoF. (a) Suppose that L has an SFS(¢; 1). We may assume without loss of
generality that this SFS (¢; 1) is formed by the first # rows and columns of L. Then
the rectangle formed by the first # rows and the remaining n— columns could not
include any element of the SFS(¢; 1). On the other hand, ¢ = 4(n+1) implies
n—t £ ¥(n—1). Hence in each row some of the elements would have to appear
more than once which contradicts the property of L. The proof of (b) is analogous.

It is obvious that if an F-square F(n; Ay, 4,, **+, 4,) is orthogonally mateless
with respect to the decomposition n=1+4+1+---+1, then it is not necessarily
mateless with respect to a coarser decomposition of n. However, if Fis orthogonally
mateless with respect to any decomposition then it is orthogonally mateless with
respect to the decomposition n =1+1+--+1.

Mann [9] among other results proved that if a Latin square L of order n = 4¢+2
has a sub-Latin square of order 2¢+1 then L is orthogonally mateless. In the
language of the theory of F-squares Mann’s result states that any F(n; 1), n =41+ 2,
containing an SFS(2¢+1; 1) is orthogonally mateless with respect to the de-
composition n = 1+1+---+1. The following theorem provides us with a much
stronger result, viz. it says that such an F-square is orthogonally mateless with
respect to a coarser decomposition of n than n = 141+ -+ 1. Therefore, Mann’s
[9] result turns out to be a special case of this theorem.

THEOREM 3.2. Let L be an F(n; 1) square on an n-set T, n = 4t+2, t a positive
integer. Then L is orthogonally mateless with respect to the decomposition n =x+y
if L contains an SFS (2t +1; 1) and x is an odd integer.

ProOF. Let m = 2t+1. Denote the given SFS(m; 1) by L;. With no loss of
generality we can assume that L, occupies the square formed by the first m rows
and columns of L. Partition L as follows:

L, | L,
L =

L, | L,

Note that L,, L,, and L, are also SFS(m; 1). This is so because L is an F(n; 1)
square. Note also that, the squares L, and L, (and similarly L, and L;) contain the
same elements of £. Now if L has an orthogonal mate with respect to the de-
composition #n = x+y, then this will mean that there is an L' = F(n; x, y) on say
Q = {4, B} such that L’ | L. This implies that upon the superposition of L’ on
L, A will appear x times on each row, column and element of £. Assume that r 4’s
appear on L,. This implies that r A’s will also appear on L,. Since the contents of
L, and L, are the same, this means that, under the orthogonality assumption of
L and L', x(2t+1) A’s should appear together on L; and L, or 2r = x(2t+1).
Therefore, r = x(2t+ 1)/2. But if x is odd, x(2¢+ 1)/2 has no integer solution, hence
a contradiction.
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As an immediate consequence to this theorem, we have:

COROLLARY 3.1. Any Latin square of order n = 4t + 2 containing a sub-Latin square
of order n|2 is orthogonally mateless with respect to the decomposition n =
I+14-+1.

A very natural way of writing F(n; 1) squares are the cyclic ones. For this reason
this family of F-squares has received a considerable amount of attention. For
example, it is known that if L is an F(n; 1) square based on a cyclic permutation
group of order n, then (a) L is orthogonally rich if » is odd, (b) L is orthogonally
mateless with respect to any decomposition of » as long as “1” is in the de-
composition (for instance see Hedayat and Federer [8]). While cyclic F(n;1)
squares are orthogonally mateless with respect to many decompositions of n if n
is even, they are at least of degree 2 with respect to the decomposition n =
2+2+---+2 as the following theorem shows.

THEOREM 3.3. If L is an F(n; 1) square and if L is based on a cyclic permutation
group of order n (even) then L is at least of degree 2 with respect to the decomposition
n=2+42+4-+2.

Proor. By construction. There is no loss of generality if we let G be the cyclic
permutation group generated by

1 2 “ee n
nl - n=1)

If we now consider the entries of the cells on the main diagonal and the diagonals
parallel to the main one we see that the entries of each diagonal together with its
complement are occupied by the same elements. Considering each diagonal
followed by its complement as an entity we shall construct presently a square L’
orthogonal to L with respect to the decomposition n = 2+2+--++2. Filling in its
n diagonals parallel to the main diagonal as follows: Take an ordered tuple of /2
distinct elements say Q = (ay, a5, * **, a,,). Fill in the n spaces of the main diagonal
of L’ repeating each element of Q twice in the prescribed order. Permute cyclically
the elements of Q and fill in the diagonal starting with the second position in the
first row as before. Continue the process until all the n diagonals are completed.
The following example elucidates the content of the above procedure.

123456
6123 45
56123 4
L=y 56123
34561 2
23456 1

A
O\ =
- N
[SS VS
w A
S
wm
\/
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Ah orthogonal mate for L with respect to the decomposition 6 = 2+2+2 on the
set Q= {4,B,C}is

b:

I
AwmAaaa
WAAOA N W
AhX O
RN NN
WAOA A W
Ax X O

COROLLARY 3.2. Let n be an even integer. If L is an F(n; 1) square and if L is based
on a cyclic permutation group G of order n, then L is at least of degree 2 with respect
to any decomposition of n as long as every component of the decomposition is even.

THEOREM 3.4. Let L be an F(n; 1) square based on a cyclic permutation group G
of order n on an n-set . Then L contains an SFS(t; 1) if and only if t divides n.

Proor. Clearly the first column of L forms a group isomorphic to G provided
that we make each element of G correspond to the element of L into which it maps
the unity of L. Obviously the subgroup of L corresponding to a subgroup of G of
order ¢ will form an SFS(¢; 1) within the rows formed by the subgroup of G. The
same will apply to the cosets of the subgroup of L.

REMARKS. If n = 4142, ¢ a positive integer, then any F(n; 1) square based on a
cyclic permutation group of order n has an SFS(2r+1; 1). Such an F-square by
Theorem 3.2 is orthogonally mateless with respect to the decomposition n =
x+(n—x) as long as x is odd, however, it is of degree 2 for those decompositions
of n considered in Corollary 3.2.

The result of Theorem 3.3 gives a temptation to conclude that a similar result
might hold for the family of F(n; 1) squares, n =41+3, t a positive integer.
Namely, if L is an F(n; 1) square, n = 4¢+3, then L is orthogonally mateless with
respect to the decomposition n = (2¢+1)+(2¢+2) if L has an SFS(2r+1; 1). We
found out that this is not the case as the following example shows:

1 2 3|14 5 6 7
2316 7 45
31 2|5 476
L=46 57 3 21
574 361 2
6 47 2153
756 1234

which is an F(7; 1) square with an SFS(3; 1). Note that L is not based on a cyclic
group (see Theorem 3.4). Indeed this square has an orthogonal mate with respect
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to the finest decomposition of 7 viz., 7= 1+1+---+1, and the following F(7; 1)
square is an example.

1 23 456 17
4 17 3 256
561 2 7 3 4
L'=2 5416 73
34617125
7356 41 2
6 7 2 5 3 41

Note however, that L’ is based on a cyclic permutation group generated by
1 23 456 7
4 17 3 256)
DErINITION 3.6. A directrix (transversal) of an F(n; 4, 4,, -+, 4,) square on a

t-set £ = {a,, a,, "+, a,} is a collection of n cells such that the entries of these cells
contain A; times a;, and every row and column of F is represented in this collection.

ExaMPLE 3.7. The bold face cells in the following F(5; 2, 1, 2) square form a
directrix.

H = -
—n = B W
BN - K-
(T N SV R N
— B U — W

Note that not every F-square has a directrix. For instance, the following F(4; 1)
square has no directrix.

1 2 3 4
4 1 2 3
341 2
2 3 41

It is apparent by now that the concept of a directrix serves as a useful tool in the
theory of construction of orthogonal F-squares as it did in the theory of special
F-squares, the Latin squares. Moreover the search for directrices could be motivated
because of their applications in actual experiments. Suppose e.g. that an experi-
menter is laying out an experiment in a Latin square of order n, and he would
consider taking additional observations in order to obtain some information
regarding the variance and interactions. He could achieve his goal with n extra
observations attached to a directrix of his design as it was pointed out by Youden
and Hunter [11] and also emphasized by Scheffé [10].

Next we shall state two propositions, the first one indicates a sufficient condition
for the existence of an F(47+3; 1) square with a directrix. The second proposition
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rules out the existence of orthogonal F-squares of certain combinatorial structure.
This can be used for the enumeration of orthogonal F-squares.

PROPOSITION 3.1. Let L be an F(n; 1) square, n = 4t+3, with an SFS(2t+1; 1).
Then L has a directrix if the SFS (2t+1; 1) does.

PROPOSITION 3.2. There does not exist a pair of orthogonal F(n;1) squares,
n = 4t+ 3, having a pair of orthogonal SFS (2t+1; 1).

These propositions can be easily verified.

CoNCLUDING REMARKS. We would like to emphasize that we do believe that
concepts introduced in this paper and akin to them could serve as useful tools in
the theory of design of experiments and related combinatorial problems. For
example, to determine whether or not a given F(n; 1) square, viz., a Latin square
of order n has an orthogonal mate, one can first, as a necessary condition, check
whether L has an orthogonal mate with respect to some conveniently chosen
coarser decomposition than n = 1+1+---+1. Note that in general it is much easier
to search for an orthogonal mate for L of order n with respect to a coarser de-
composition of n than with respect to the finest one, viz., n=1+1+-+1.
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