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1. Summary. Consider a stationary normal process &(¢) with mean zero and the
covariance function r(t). Properties of the sample functions in the neighborhood of
zeros, upcrossings of very high levels, etc. have been studied by, among others,
Kac and Slepian, 1959 [4] and Slepian, 1962 [11]. In this paper we shall study the
sample functions near local maxima of height u, especially as u — — 00, and mainly
use similar methods as [4] and [11].

Then it is necessary to analyse carefully what is meant by ‘“near a maximum of
height ».”” In Section 2 we derive the “ergodic” definition, i.e. the definition which
is possible to interpret by the aid of relative frequencies in a single realisation. This
definition has been treated previously by Leadbetter, 1966 [5], and it turns out to
be related to Kac and Slepian’s horizontal window definition.

In Section 3 we give a representation of &(¢) near a maximum as the difference
between a non-stationary normal process and a deterministic process, and in
Section 4 we examine these processes as u — —oo. We have then to distinguish
between two cases.

A: Regular case. r(t) = 1—2, t2[2+ 2, t*/41— A4 t°/6!+0(t®) as t — 0, where the
positive 4,, are the spectral moments. Then it is proved that if £(¢) has a maximum
of height u at ¢ = 0 then, as u » — 0,

()-216 _}-42)(),4 _)*22)— 1 {6(()*2)*6 _242)—‘}(24 _222)4% Iu I - 1) _u}
~ | A (= 2204 R B = LR = 1), 2}

where @ and { are independent random variables (rv), o has a standard normal
distribution and { has the density zexp(—2z), z > 0.

Thus, in the neighborhood of a very low maximum the sample functions are
fourth degree polynomials with positive ¢4-term, symmetrically distributed ¢3-term,
and a negatively distributed ¢2-term but without ¢-term.

B: Irregular case. r(t) = 1—A,1%[2+2,t*/4!— A5 |t|*/5!+0(t°) as t—0, where
As > 0. Now

Etu) —u ~ Ju]~ 3 {Aads(Aa = 2297 [HP131+ ) 0() — LA — 2270, T 12}

where w(t) is a non-stationary normal process whose second derivative is a Wiener
process, independent of { which has the density zexp(—2z), z > 0.

The term Ag |t|5/5! “disturbs” the process in such a way that the order of the
distance which can be surveyed is reduced from 1/|u| (in Case A) to 1/|u|>.

The results are used in Section 5 to examine the distribution of the wave-length
and the crest-to-trough wave-height, i.e., the amplitude, discussed by, among

Received July 17, 1969; revised May 11, 1970.
1870

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [&

&4

The Annals of Mathematical Statistics. RIKORS ®

Www.jstor.org



NORMAT., PROCESS NEAR A LOCAL MAXIMUM 1871

others, Cartwright and Longuet-Higgins, 1956 [1]. One hypothesis, sometimes
found in the literature, [10], states that the amplitude has a Rayleigh distribution
and is independent of the mean level. According to this hypothesis the amplitude
is of the order 1/|u| as u > — oo while the results of this paper show that it is of the
order 1/[ul>.

2. Definition of maximum and conditional distributions. Let {£(f), — 0 < ¢ < 0},
where ¢ is called the “time,” be a real, stationary, separable, normal process with
zero mean, unit variance and covariance function r(f). Let 4,, = [ x** dF(x) be the
spectral moments and assume 4, < c0. Then, with probability one, the process has
a continuous sample derivative and we can define a second derivative in quadratic
mean (see Cramér and Leadbetter [2] Chapter 4). We shall consider some sample
function properties in the neighborhood of a time ¢,, given that “£(¢) has a local
maximum of height u at ¢ =1,”. As the last event has probability zero we can
regard it as a limit of a sequence of events with non-zero probability. Using ideas
from [4], we introduce, for A, A’ > 0, the following events, where for the sake of
simplicity from now on we put ¢, = 0:

A(h, B'): “&'(s) has a downcrossing of zero at some time s
=s0€(—h,0) and wu <&(sy) <u+h.”’

(A function is said to have a downcrossing of zero at x = x, if, for some d >0,
S(x) 2 0 for xe(xy—d, x,) and f(x) < 0 for xe(x,, xo+d).)
Now let T=(¢,, ", t,) be a vector of given (positive or negative) times, put
X=(xy,"",x,) and y=(y,,"**,»,) and define the following probability
densities and conditional probability densities.

P) for &)
poluy  for E(0)|E0)=u
) Pu,0,2)  for &0), £(0), £'(0)

p(z|u,0)  for &"(0)|&0)=u, &O) =0

Py, 4, v,2) for &(ty), -+, &(t), £(0), £'(0), £(0)

Py, 0,2) for &1y, -+, &(t)|40) = u, E(0) = v, &'(0) = z.
Furthermore, let
()] Py, u) = [2 o |2| Py, 4,0, 2) dz/[° | 2| p(u, 0, 2) dz.

By using A(h, k') as an approximating condition for a local maximum of height
u at t=0, we arrive at a conditional distribution, which, following Kac and
Slepian, we call “the conditional distribution given maximum in vertical-horizontal
window sense” (= vh-sense).
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"THEOREM 1.
(3) limy-olimy o PEt) S X, i=1,+++, n| A(h, "))

= I)'téh pt(Y! u) dy = F,(X, u).

The proof follows the lines in [5] with the modification that we have introduced
the process values at the times ¢, and it is deferred to the Appendix. (A heuristic
proof is obtained by using Rice’s classical differential method [9].)

Now we have

p(u,0,2) = pwp(0|u)p(z|4,0) and p,(y,u,0,2) = pw)p(0| w)p(z| u,0)p,(y | 4,0, 2)

so we have common factors p(u) and p(0 | ) in the nominator and denominatorin (2)
which are not involved in the integration. Cancelling these factors and introducing
the density

4) q(z, u) = |z|p(z| u, 0)/f% , |¢|p( | u, 0)dC (z<0),
we can write the density for the distribution in (3) in the following simple form.
) (%, u) = [, 4(z, w)p,(x | 4, 0, 2) dz.

To justify our choice of A(h, k') in the definition of a maximum we give the
~ following ergodic frequency interpretation of the distribution F(x, ) in Theorem 1.
Let &(¢) be a realisation of the process in 0 < ¢ < T and put

Nq(u, h) = the number of local maxima ¢ of &(-) in [0, T]
with u<&é(f) <u+h;
Ny(x, u, h) = the number of local maxima ¢t of £(+) in [0, T']
with u<é(t)<u+h and E(+t)=sx;, i=1, --;, n.

The appropriate sample distribution is then the quotient Nr(x, u, h)/Ny(u, h) and
we have

THEOREM 2. If the process is ergodic, then with probability one
lim,_ o limy_, o N(X, u, h)/N(u, h) = F(x, u).

The proof is deferred to the Appendix.

We see that if we want to make frequency statements about a single realisation,
observed over a long time, we have to use the distribution (5), i.e., vh-sense. Other
definitions of a maximum will give results similar to those considered here. Since
it is impossible to give a natural ergodic frequency interpretation of these definitions
we do not give details.
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3. Explicit formulas for a normal process. We shall now make full use of the
normality of the process and derive an explicit representation of the process given
a maximum of height u at ¢ = 0. We begin with some definitions.

1 0 "‘12
Sl] = 0 2-2 0
_}.2 0 14

1 rtz—t) - r(t,—ty)

) S,, = r(t .—tz) 1 e "(tn:—tz)

rti—t) =) 1
rty) - r(ty)
Spz=|=r(t) - —r't)
r(ty) s r(t)
S21 =51
@) (G1G,G,) = S21S1_11
In(7)then | 1 matrices G,, G,, and G, are the columns in S,,S7;'. As the function
r is even, S,, is symmetric.
A1) = Qar() + 227" (0)[(Ra —A27)
® B(t) = (Ar() + 1" (0)/(2a — 4,%)
C(s, 1) = r(s = 1) = {Ax(Aa = 4,2)} ™ {2 AP (S)r() + A, r(s)r" ()
+ (A= @) + A (S)r(t) + Ao (s)r"' (D)}
The densities in (5) can now be evaluated.

LemmMa 1. (a) p,(x | u, 0, 2) is the probability density of an n-variate normal variable
with mean and covariance matrix
(9) m=u'G1+Z'G3

» S3.1 =S22_S21S1-11S12'

(b)
(10) q(z, u) = —zexp (—(z+A,4)*/2(As — 4,*))[k(u) (z<0),
where k(u) = [§ zexp(—(z— A, u)?/2(A4—2,%) ) dz.

ProOOF. As the process is normal with covariance function r(¢) it is known that

the (n+ 3)-variate rv (£(0), £'(0), £"(0), &(¢,), * - -, &(t,)) has a normal distribution
with mean zero and with the covariance matrix

St SlZ)
S= .
(321 S22
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Now, by a well-known property of the normal distribution (Rao [8], page 441),
(&(t1), 5 E(ty) | £0) = u, £'(0) = 0, £"(0) = 2)’ has an n-variate normal distribution
with mean and covariance matrix

m = S,,81{'(4,0, 2)’
S, = Szz"snsfllslz-

This proves (a).
Part (b) follows in a similar way from the fact that (£"(0) | E0)=u, £'0)=0)
has a normal distribution with mean — A, u and variance ,—4,% so that

p(z|u, 0) = (2n(As—2,2) ¥ exp(—(z+4,4)*/2(Rs = 1,%))-

LeMMA 2. The elements of Gy, G, S,., are given by (G,), = A(t,), (G,), = B(t,),
(S2-1)vp = C(tv’ t”).

The proof is straightforward.
Now it is convenient to determine the characteristic function (ch.f)) of the
probability density (5). Put s = (s, ***, 5,)’. Then we have the ch.f.

@.(s) = fexp (i s'X)px, u) dx
= [° o a(z, w){f exp (i s'X)p,(x | u, 0, 2) dx} dz.
Lemma 1 and the ch.f. for a normal distribution give
©(11) 0(s) = [ a(z, u)exp(i-s'(u* Gy +z* G3)—13s'S,.18)dz
= exp(iu*s'G, —4s'S;.18)" 2 , 4(z, w)exp(iz-s'G;) dz.

Here the first factor is the ch.f. of an n-variate normal variable with mean u- G,
and covariance matrix S,.;, while the second factor is the ch.f. of an n-variate rv
¢ - G where { has the probability density g( -, u). Thus we find that ({(¢,), -+, £(2,))’
can be written as a sum of two independent n-variate rv’s, a normal variable
(Ay(ty), =+, Ay(2,)) with E(A((8)) = u~(G,), = u- A(t) and Cov (A(2)), () =
(S2.1)x=C(t;, t,) and a singular variable (Ay(#y),""", Ay(t)) with A,(t) =
- (Gs) = L B(t,) where { has the probability density g(-, u). Changing sign in
g(-, u) and replacing A,(r) by uA(t)+A,(t) we get

THEOREM 3. Given a maximum of height u at t =0, {(t) has the same finite-
dimensional distributions as the process uA(t)+A,(t)—A,(t) where A, and A, are
two independent stochastic processes, A, a non-stationary zero-mean normal process
with the covariance function C(s, t) and A, a deterministic process given by A,(t) =
{B(t). The rv { has the probability density

zexp (—(z—2,u)")[2(A4 — 4,7))/k(u) (z>0).

4. The process in a neighborhood of a very low maximum. In Theorem 3 we saw
how a maximum of height u affects the sample functions. Now we shall study this
influence in a special case when it can be suspected to be particularly strong, viz.
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when u— —oo. It seems plausible that after a very low maximum the sample
function will soon turn upwards again and therefore we can expect the process to
be very well determined in a neighborhood of the maximum. The strength of this
influence depends on the covariance function near ¢ = 0. Therefore let

EX(t, u) = ey |u]"(Cleat|u] ™) —u)

be a normalization of the process &(f) conditioned by a maximum (in vh-sense) of
height u at ¢ = 0. Here a, b, ¢,, and ¢, are positive constants to be chosen later.

LEMMA 3.
u?k(u) = u*[§ zexp (—(z —A,u)*/2(A4 — A,2)) dz
= exp (=" u* 20—, N{(As = 2.2)*/2,° +0(1)}  u——oo.
PROOF.
J& zexp (= (2= 2,u)*[2(As — 4,%)) dz = (A4 — A,2) exp (— A,2u?/2(A, -1,%
+2n)*2,u(As — 2,7)P0(u(As — 2,%) )

where ® is the standardized normal distribution function. As we shall let u —» — oo
we can use a well-known expansion of @ (see e.g. Feller [3], page 193):

n)*(A,u(ia—1,%)7)
= exp(— 44?204 = 1.~ (Aa = 42"V a1 + (Ay — 2,2)¥/ 2, + o(u™ %)}

which will give the result.
To be able to examine A(¢), B(t), and C(s, t) when s, - 0 we must make some
further assumptions about r(¢) for small z.

CasE A. Let r'V(¢t) = 44— A6 122+ 0(t?), t > 0 so that r(t) = 1 — 1, 12[2+ A, t*/4! —
A6 15/6!+0(#). With probability one, this process has a continuous second derivative
with the nice covariance function A,—Ag#%/2+0(t%) and it can be expected to
behave very regularly. It will be found that the spectral moments affect the
distributions only through the following functions.

(12) o = (A2hs—A42) /(A —25%)
B = (24 —25%)/4,.
LEMMA 4. As 5, t >0 ‘
A(H) = 1—at*/4! +o(1*)
B(t) = t*[2+o(t?)
C(s, ) = afst3/3131 +o((s, 1)°).
In the last expression o((s, 1)) = Y, ;=6 0(s't).

PrOOF. A(t) and B(t) are simple consequences of the above expansion of r(?).
C(s, t) is somewhat more tedious to handle and the details are omitted.
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It will now turn out that the finite-dimensional distributions of the normed
process

(13) E*(t, u) = o|ul>{&"Ht|u|™ ") —u}
can be expressed in terms of a stochastic polynomial defined by
(14) L () = £*/4! + wp¥®[31 - (12

where o and { are independent rv’s with the probability densities (27) “* exp (— w?/2)
and zexp(—z), z > 0 respectively. We then have the following theorem where
L(&,) = £(&) means convergence in law.

THEOREM 4. For any set of times (t));-,
LEFu),i=1,,n)> LI (t),i=1,---,n) when u——oo.

ProoF. Consider the n-variate rv —u(&(ty/|u])—u, -+, &(t,/|u])—u). Using the
ch.f. (11) and Lemma 2 we can write the ch.f. of this variable as

exp (iu*)s,)0l, (—u-s)
1s) = exp(iu*Y s, — iu*Y, s,A(t,/|u) —4u® Y. 5,5,Ct,/|ul, 1,/|u]))
2o a(z, wyexp(—izuy s,B(t,/|u)))dz = F F,,  say.

Lemma 4 gives

55— A ) = O 5,0 (1 =t A o™

=a) s,(t,*/4!+o(1)) > a- s'(t, 441 -+ 1,4/40).
In the same way we get
u®y 5,5,C(t,/|ul, t,/ju]) = u®Y s,s,(Bt,>t,> 313 1u® +o(u™°))
B s (133 1231330 1,33 Ds.

Hence we find that F, tends towards the ch.f. of an n-variate normal variable with
mean and covariance matrix

a(t,*/4!--- 1,441 and  af(t 33! 1,3/31)(t,3/3! - 1,3/3)).
This is a singular variable and it can be expressed as
a(t,* 41 1,441 + (@Bt 33! 1,331

where  is a univariate normal variable with mean 0 and variance 1. To simplify
the factor F, in (15) we use Lemma 4 which gives

u® Y s,B(t,/|u]) = u ¥ s,(1,/2u% +o(u™?)) = ¥ 5,(1,%/2+0(1))
so that
F, =%, q(z, u)exp(—izuy s(t,%/2+0(1))dz.
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Recalling the representation (10) of ¢ and Lemma 3 we substitute z for uz, (u < 0),
expand the exponent in ¢ and get
Fy = [§ z{u?k(u)} ™" exp (—(z/u+A,u)*[2(As — 1,%))
-exp(—iz Y 5,(t,%/2+0(1)) dz
= [§ zexp(=2*/2u*(Ay —1,9)-exp(—2zp?)
-exp(—iz Y, s,(t,%/2+o(1) dz{f* +o(1)} *
> [§ B *zexp(—zp~")exp(—iz Y s,t,%[2) dz.
(Dominated convergence makes it possible to pass to the limit under the integral

sign.)

This is the ch.f. of an n-variate rv —{B(¢,%/2 - - - t,2/2)’ where { has the probability
density zexp(—2z), z > 0.

Since the limit-ch.f. is factorized, w and { are independent and we have derived
the limit distribution of |u|*{&(¢/|u)—u}. The proof is complete if we change the
scale in the appropriate way.

We can observe that this choice of norming constants, a =3 and b = 1, is the
only one which leads to a non-trivial limit of F;.

Case B. Modifying the assumptions about r(¢) we require r'V(¢) = A, — A5 |t| +o(t)
with 15> 0, so that r(t) = 1=, 122+ 2, t*/4!—As |t|5/5!+o(t’), t = 0. Now the
process has a second derivative with a covariance function of the same form as that
of a normal Markov process. Then £(¢) can be expected to behave more irregularly
than in Case A. Indeed, we must choose @ = 5 and b = 2 to get a non-trivial limit
of £*(¢, u) when u - — 0.

The result can be expressed in terms of a non-stationary, zero-mean, normal
process with the covariance function

R(s, 1) = (—|s—1|*+s° +1° — 5s*t — 5st* + 105> + 10s*¢*)/2- 5! whensand ¢ > 0,
=0 whens -t <0,
= (—|s—t|*—s°—1°+55s*t + 5st* — 105> — 10s*t>)/2- 5! whensand t <0.
It is easily proved that such a process can be represented as
(16) o(t) = [ (5 e(x) dr) ds

where {&(?), e R} is a normed Wiener-process with g(0) = 0. We now proceed as
in Case A and arrive at the following lemma, the proof of which is omitted.

LEMMA 5. As s, t >0
A1) = A As(Ag— A2~ |t]/31+0(t?)
B(t) = t2[2+0o(t?)
C(s, t) = 2A5R(s, t) +0((s, 1)°).
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The limit-distributions of the normalized, conditioned process
Ep*(t,u) = |u|*{E(t/u®) —u}
can be expressed in terms of the process
Tp(f) = AaAs(Aa—2,") 7" [1]*/3!+(24s) (D) - Br?/2

where w(t) is given by (16) and the rv { is independent of the process w(¢) and has
the probability density zexp(—z), z > 0. The constant § is given by (12).

THEOREM 5. For any set of times (1;)}=,
L(E*(tu),i=1,---,n) > LTy(t),i=1,---,n) when u-—— 0.
ProOF. The ch.f. of the n-variate rv —u’(&(¢,/u®)—u, -+, &(t,/u?)—u) is
exp(iu’® . s,)py.(—u?-s)
=exp(iu®Y s, —iu®Y s, A(t,/u®)—3u'® Y s,5,C(t,/u?, t,/u?))
(2 wa(z,u)exp(—izu®Y s,B(t,/u?))dz = H,H,, say.

If we introduce the notation y = A, 15(A,—4,%)~! and use Lemma 5 we get the
following limits for the terms in H,:

u®y s,—usY s, A(t,/u?) = u®Y s,(y |t,|*/3uS +o(u~%))

> yp-s'(Jt,*/3! - [23Y and
u'®y 5,5, C(t,/u%, t,/u?) = u'°Y 5,5,(24sR(t,, t,)u~ 1 + o(u~1°))

- 245 5,5,R(1,,1,).

Hence H, tends to the ch.f. of an n-variate normal variable with mean and co-
variance matrix

Aads(Ra =22 (0231|633 and  244(R(t,, ).

This gives the first two terms of the limit process I'p. The last term follows from H,
as in Theorem 4.

S. Applications. Let the process £(¢) have a maximum of height u at 7 = ¢, and
the next minimum at ¢ = ¢,. Put

T, =11y 0, = &(t)—&(ty).

Then we call 7, the wave-length and §, the (crest-to-trough) wave-height. We shall
consider the ergodic distribution of these variables given a maximum at ¢, = 0. In
order to describe their limit-distribution as u - — o0 we define the corresponding
quantities for the stochastic polynomial I ,(¢) given by (14), i.e.,

7 = the unique positive zero of I"/(¢)
0=-I4(v).
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Under the conditions of Theorem 4 we then have the following theorem.

THEOREM 6.
ZL(o* |u 7, ¢ |u|?5,) > L(z, ) as u——oo.

OUTLINE OF PROOF. A natural way to prove this theorem is to expand the process
A,(t) of Theorem 3 in a power series around the origin and use the expansions of
Lemma 4 for the functions A(¢) and B(¢). In this way we can approximate &, *(¢, u)
by a polynomial and then it is not difficult to prove the convergence stated. A
complete proof, using a function space model for A;, can be found in [7].

The general distribution of the wave-length and wave-height is not easily
evaluated. However Theorem 6 is strong enough to disprove a hypothesis some-
times found in the literature [10]. According to this the wave-height &(¢,)—&(z,)
and the mean-level (&(¢,)+&(2,))/2 are independent rv’s with the probability
densities o, ~2xexp(—x2/20,2), x > 0 and (2ng,%) " * exp(—x2/20,2) respectively,
where ¢, and o, depend on the spectral moments, i.e., are Rayleigh- and normal-
distributed rv’s. A simple consequence of the hypothesis is that |u| d, has an
asymptotic gamma-distribution when u — — o0. Since this conflicts with Theorem
6 the hypothesis is wrong.

APPENDIX
PROOF OF THEOREM 1 AND THEOREM 2.

ASSUMPTIONS. {&(7), te R} is a real, stationary, separable, normal process with
fourth spectral moment 4, < co. With probability one its sample functions are
continuously differentiable and the second derivative exists in quadratic mean. The
distribution of (£(0), £'(0), &"(0), &(z), €'(¢), £"(¢)) is non-singular.

Let £ and A’ be positive numbers, 7= (¢;,"*, ) and x=(x;, ***, x,) given
vectors, and define the events

A(h, h'):“E'(s) has a downcrossing of zero at some time s
=soe(—h,0) and u <&(sp) <u+h”,
A(X,h,h"):“A(h,h’) and (@) <x;, i=1,-:-,n",
B(x,h,h'):“A(h,h’) and &(so+t)<x, i=1,---,n".
Let the number of local maxima be
N(u, h) = N,(u, h) = the number of local maxima ¢ of ¢(+) in [0.1]
with u<&(f)<u+h
N(x,u,h) = N,(x,u, h) = the number of local maxima ¢ of &(+) in [0, 1]
with u<&é(t)<u+h and &(t+t) < x;,

i=1,---,n.
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Since the process has a continuous distribution we can replace the non-strict
inequalities &(¢;) < x; in A(x, h, k') by strict ones and obtain
(A1) P(E(t) S xpi=1,-+,n| A(h, b)) = P(A(X, h, h"))[P(A(h, h")).
In order to prove Theorem 1 we have to determine the limit
lim,, ..o P(A(x, h, 1"))/P(A(h, I)).

LemMma Al
lim,, ., o (P(A(x, h, h'))— P(B(x, h, h")))/h’ = 0.
LemMMA A2.
limy, o P(B(x, h, h"))/h’ = E(N(x,u, h)),
lim,_, o P(A(h, h"))/h’ = E(N(u, h)).
LEMMA A3.

limy, o P(A(X, h, h"))/P(A(h, h")) = E(N(x,u, h))/E(N(u, h)).
Lemma A3 is a direct combination of Lemma Al and Lemma A2.

PrOOF OF LEMMA Al. For arbitrary events A and B we have |P(4)—P(B)| £
P(A—B)+ P(B—A). Hence

(A2) |P(A(x, b, k') — P(B(x, h, )| < P(A(X, h, k) — B(X, h, "))
+P(B(x, h, h')— A(x, h, I")).

Now the event A(X, h, h')— B(x, k, h’) implies that £'(-) has a downcrossing of
zero in (—A’, 0) and that, for some i=1,---,n, (+) has a downcrossing of the
level x; in the interval (¢;— /', t;). Let us introduce the event

"~ A(h'):*“A(h,h") and &(-) hasa downcrossing of the level x;
for some tin (t,—h',1,)”.
Then we have
(A3) P(A(x, h, ") — B(x, h, ")) < P}~ A(h") £ Y-, P(A()).

If we can establish that P(A4, (/') = o(h') we have proved that P(A(x, h, h')—
B(x, h, k'))/h' - 0 as i’ — 0; a similar discussion of the second term in (A2) gives
Lemma Al. But a little reflection shows that 4(h") € E, UE, UE, where the events
E,, E,, E; are defined as follows.

E;:“¢'(—h)>0>¢&(0) and &(t;—h) > x; > &),
E;:*“¢'(-) has more than one zeroin [—h’,0],”

E;:“((+) has more than one crossing of x; in [t;—h,t].”
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Since the streams of zeros and crossings are regular the probabilities P(F,) and
P(E,) are o(k’) as i’ —0. The probability P(E,) is obtained by integrating the
density of &'(—h'), &'(0), &(t;— k'), &(t;) over a certain region in R*, and since we
have assumed these densities to be non-singular it is not difficult to prove that
P(E)/W — 0 as b’ — 0. The details are omitted.

ProoF OF LEMMA A2. Both limits are direct consequences of Korolyook’s
theorem for stationary streams. By Dobrushin’s lemma these streams of down-
crossings are obviously regular, and hence their intensities are equal to the mean
number of events per time unit. This is the content of Lemma A2. (For Korolyook’s
theorem and Dobrushin’s lemma, see [2], 3.8.)

LEMMA A4. For a normal process we have
E(N(x,u, b)) = [4**f, <. [% o |2| (¥, 7,0, 2) dz dy dn
where p,(Y, u, v, z) is the density of &(ty), -+, &(t,), £(0), €'(0), £"(0).
ProOF. Define
N'(x, u, h) = the number of local maxima ¢ of ¢(-) in [0,1]
with u<é(t)<u+h and &(+t)<x;, i=1,---,n.

Dropping X, u, h we have to prove that E(N) = E(N') and that E(N’) is given by
the asserted formula. We first prove that E(N—N') = 0.

Since the process has a continuous derivative every crossing of a given level is,
with probability one, either a downcrossing or an upcrossing, and a little reflection
shows that

0SN-NZY1D+)1U;

where D, and U, denote the number of times a downcrossing zero of the derivative
is followed by an x;-crossing (down- and up- respectively) of the process after
exactly the time ¢;. Such events are very rare and all D; and U, have zero expectation,
which will now be proved for D;.

Let a, = k2", k =0, --+, 2"—1, be a division of the interval [0, 1], and put

n=1 if &(u4)>0>¢ (%) and
Elo+1) > x; > &t +1)
=0 otherwise:
Zn= ZI% iy
The process is stationary and therefore
E(Z,) = Y. E(u) = 2"E(xo) = 2"P(xo = 1)

where P(xo = 1) = P(£'(0) > 0 > &'(2™™) and &(t) > x; > &(t;+27™)). In the same
way as in the proof of Lemma Al it can be shown that 2"P(y, =1) > 0as m — ©



1882 GEORG LINDGREN

which gives that lim E(Z,,) = 0. Now, almost certainly and for m sufficiently large,

there is one positive y; for every time contributing to D; which implies D; <

liminf Z,,. It follows that E(D;) = 0, and we have proved that E(N) = E(N’).
With the same technique as above we can now calculate E(N'(x, u, 4) ). Define

Y,=1 if &(o)>0>¢&¢(+,) and u <&(y)<u+h and
E(og+1) < x; i=1,---,n,
=0 otherwise;
V=240 V-
It is then easy to prove that
E(V,) = 2"P(Wo = 1)~ [i™* [, <, [2 o 2| Py, 1,0, 2) dz dy dn

and that limV,, = N’ with dominated convergence. (In that proof the strict
inequalities in N’ in contrast to the non-strict in N are essential.) Then

E(N(x,u, b)) =E(N'(x,u, b)) =lim E(V,,)

which together with the expression above proves the lemma.
Since N(x,u, )T N(u, h) as ming(x;) > oo(a.c) we have E(N(u, h)) =
lim E(N(x, u, h)). Then the following lemma is a direct consequence of Lemma A4.

LeEMMA AS.
E(N(u,h)) = [4*"[° , |z| p(n,0, z) dz dn.

PRrOOF OF THEOREM 1. Lemma A4 and Lemma A5, in combination with Lemma
A3 and the statement (Al), give

(A4) limy o PE(t) < xi,i=1,---,n| A(h, 1))
=4t <2 w 2| Paly, 1,0, 2) dz dy dn/fs*" [ , |z| p(n,0,2) dz dn.
When 4 — 0, the right-hand side of (A4) tends to
F(x,u) = [y 5x, Py, u)dy
where p, is given by (2), and Theorem 1 follows.
Proor oF THEOREM 2. If the process is ergodic, then with probability one
limy., o N{(X,u,h)/T = E(N(X,u,h)), limg,,Ng(u,h)/T = E(N(u, h)),
and hence
limy., o, Np(X, u, h)/N(u, h) = E(N(x, u, h))|E(N(u, h)).

Since the left-hand side of the last relation is exactly the quotient (A4) and tends to
F(x, u) as h — 0, Theorem 2 follows.
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