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ASYMPTOTIC OPTIMALITY AND ARE OF CERTAIN
RANK-ORDER TESTS UNDER CONTIGUITY

By KONRAD BEHNEN

University of Miinster

1. Summary. In this paper we will derive asymptotically optimal rank-order
tests for independence against suitable classes of nonparametric alternatives and
give asymptotic relative efficiencies (ARE’s) of such tests under general contiguous
alternatives of positive quadrant dependence (cf. Lehmann [14]). From Lehmann
[14] one can also see that such alternatives in some respects are more general than
the alternatives considered in Bhuchongkul [1], Konijn [12], Hajek and Sidak [8]
page 221), and others.

For the problem of symmetry and for the two-sample problem we can get com-
pletely analogous results with similar proofs. Details are omitted.

The paper is based on the theory of contiguity that was introduced by LeCam
[13] and Hajek [6].

The results of this paper complement results obtained by Hodges and Lehmann
[9], [10], Chernoff and Savage [3], Hajek [6], van Eeden [4], Bhuchongkul [1],
Gokhale [5], and others.

2. Rank-order tests for independence. For each integer n > 1 let (Y, Z,,), ",
(Y,> Z,,) be n independent pairs of random variables, and suppose that all pairs
(Y, Z,), i=1,---,n, have the same continuous two-dimensional distribution
function F,, n = 1. Then we will derive asymptotically optimal rank-order tests
at level a, 0 < a < 1, (cf. Neyman [15]) for the hypothesis of independence

H:F(y,z) = F(y,z) = F(y, ©0)F(c0, z) forall y,zeR,,n=1

against a suitable subclass of the alternative of positive quadrant dependence
K:F,(y,z) 2 F,(y, ©)F,(0,z) forall y,zeR,,
# for at least one pair (y, z), v, zeR,n=1

and give results on the ARE of such tests.
Now let b;, j =1, 2, be real-valued measurable functions on ]0, I[ such that

6)) [6bz)dz=0, 0<[ib*(z)dz=0;*< o0, i=12,
and let g;,, j = 1, 2, n = 1 be real-valued measurable functions on [0, 1] such that

[591:(»)dy [692:(2)dz 2 0 forall s,1e[0,1]
# 0 for at least one pair s, te[0, 1],

2 J69i(2)dz =0,  [5(g;(2)—bj(2))*dz -0, i=12,
SUPo<y,z=<1 (91n()’).‘12n(z))4/" - 0.
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To such b, j = 1, 2, we define a sequence {¢,} of rank-order tests ¢,, # > 1, in the
following way: Let U,,, - -, U,, be independent random variables, each uniformly
distributed over 10, 1[, and let (U, -, U,y denote the order statistic of
(U,y, -+, Up,), n = 1. Then we put
b;,(i) = Eb (U, i=1-,nnx1,j=1,2
and
@ = Liz,> e T, = Z?=1 by u(ru)ban(sw)/nta; o, nzl,

in which ¢, - u, =07 '(1-0), 0 <a <1, O) =", exp(z3/2)/2n)tdz, teR,,
holds, and r, = (7,1, ***, Fup)s Sy = (Su1, ***, S,s) TESP. are the ranks in y, = (y,, **+,
ynn)a Zy = (ana ) Znn) resp.; X, = (xnla ) xnn) = (ynla Zn1s """ Vomo Znn)eRZn'

Because of Lemma V.1.6.a of Hajek and Sidék [8], one may also work with
b;,(i) = by(i/(n+1)), lsisnj=12.

If we let by(u) = by(u) = u—% we get the Spearman rank correlation, for b,(u) =
by(u) = @ '(u) one gets the Fisher-Yates or the van der Waerden version of the
normal scores test, and finally, by letting b,(u) = b,(u) = sign(u—1%), we get the
quadrant statistic for correlation, considered in Blomqvist [2].

Moreover, to such b = (b,, b,) (or exactly to g;,, n = 1, j = 1, 2) we define a sub-
class K of alternatives such that {¢,} is an asymptotically optimal test for H against
K, atlevel a: To each Fe H and each n€10, A[, 3A€]0, 1[, wecan definean F, €K,
n = 1, in the following way: Because of (2), by

fnr](ya Z) =1 +(77/n%)g1n(F(y, Oo))an(F(ooa Z)), YV, zZ€ Rl:
an F-density with corresponding distribution function F,,€ K is defined for n > 1.
Thus we define K, as the set of all such sequences {F,,},»;, FeH, nel0, A[.
One can show that for each {F,}e K, there exists an Fe H such that the sequence
{0.} is contiguous to the sequence {P,} (cf. Hajek and Sidak [8] page 202),
where Q, and P, resp. are the probability measures on (R,,, B,,) corresponding

to Gn(yh Z1s 7 Vs Zn) = Fn(yla Zl) e Fn(yns Zn) and Hn(yla Z1s " o Zn) =
F(yy, z1) =+ F(y,, z,) respectively, n 2 1. If {Q, }, defined by F,, n > 1, in the above
way, is contiguous to {P,}, defined by F in the above way, we shall say that {F,}
is contiguous to {F}.

THEOREM 1. (a) Fe H=Z[T,| F]- R0, 1).
(b) {@.} is an asymptotically optimal test for H against K, at level .
(c) Fe H and {F,} contiguous to {F} imply
g[n_(n%/al 62)§gln(F(y’ oo))an(F(w’ Z)) an(y’ Z) | Fn] - m(Oa 1)
Proor. Fe H, (1), (2), and Lindeberg-Feller theorem entail
3) Z[S,| F]1- (0, 1)
with
Sn(xn) = z:'= 1 gln(F(ym" <x>))an(Fv(qL Zni))/n%o'l 0'2 s Xn € RZm n g 1
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Moreover, contiguity of {Q,} to {P,} implies
lim SUP,- (SupBeﬁz,. iPn(B)_Qn(B)I) <1,
and therefore we get (cf. Kellerer [11] page 209) from contiguity of {F,} to {F}
“) lim sup, o, (n* supp e, | {5 dF — [5 dF,|) < co.
Thus
Z[S,—(n*/0, 03) [ 91,(F(y, ©))g2,(F(e0, 2)) dF (v, 2) | F,] > N(O, 1),
according to Lindeberg-Feller theorem.
Contiguity of {Q,} to {P,}, Q, and P, respectively defined by F, and F respec-

tively, as mentioned above, n = 1, concludes the proof of part (a) and part (c), if
we prove

(% {(T,—S,)?dpP,— 0.

On the other hand, we get for {F,} € K, from the definition of K, an Fe H such that
the likelihood ratio of the corresponding Q, and P, has the form

Ln(xn) = dQn/dPn = H?= 1 (1 +(n/n%)gln(F(yni’ oo))gz,,(F(oo,z,,,-))), a" > 0
An easy application of a Taylor-expansion then implies
06,06, S,~logL,—n*c,%3,%2—p 0.
Therefore, by using (3) and Hajek and Sidak [8], Corollary VI.1.2, the proof of
part (b) is concluded, too, if we prove (5). But (5) is a consequence of Héjek and
Sidak [8], Theorem V.1.4a and of the independence of r, and s, under P,.
Now we assume the existence of nonnegative (or nonpositive) real integrable
functions g},, j =1, 2, n 2 1, defined on [0, 1] such that

(6) i) =g, (D)=l gh(z)dz forall te[0,1], j=12nzLl

Then we can prove the following lemma, which is very useful for deriving results
on ARE’s.

LeMMA 2. If Fe H and {F,} contiguous to {F}, F,eK, n = 1, then
(7) 5n = (ni‘/o.l 02)I(Fn(y’ Z)_Fn(y9 w)Fn(wa Z))
*gEF(y, 00))g3,(F(e0, 2))dF (y,2) 2 0

85— (n*/0, 03) | 91,(F(y, 20))g5,(F(c0, 2)) dF ,(y, 2) = 0.

PROOF. If we pUt Fl(y) = F(y9 w)a FZ(Z) = F((X), Z), Fnl(y) = Fn(y9 w)’
F,y(z) = F,(0, z), then Fubini’s theorem, (6), and F,(y,2) Z Fi(»)F,x(2),
91.(»)95,(2) Z 0 imply

§g1n(F1(J’))92n(F2(Z)) dF,(y,z) —f!hn(Fl()’)) an1(J’)Igzn(F2(Z)) dF,,(z)
= [ (5100 910() d3)([Foz) 92,() A)(AF (v, 2) — dF 1 (y) dF,12(2))
= [ § - w py - 19t D= 0,72 10y (DNAF Ly, 2) = dF 4 () dF,5(2))g1,(5)g3.(1) ds dt
= [(F(y, 2) = Fas(DF2(2)91:(F 1(0))92(F2(2)) dF (y, 2) 2 0.

and
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On the other hand, we get from (2) and (4)

12 ([ 914(F () dF 1 (9) [ 924(F2(2)) dF 12(2)|
= n*([ g1, (F1(DNAF1(y) = dF \())| [ 92n(F 2(2))(dF,2(2) — dF (2))|
<nt SUPo<s<1 Igln(s)l SUPgesm, ”A dF,, —IA dFlI SUPo<r<1 |an(t)|
*SUPgewm, ”A dF,, _jA szI
S n*supo<gi<1 |914()920(1)| SUPg e,/ [ dF, — [ dF|> = 0.
3. Examples.

3.1. For Spearman rank correlation (b,(x) =b,(u) =u—%) we can choose
Jin = g2n = by and g}, = g5, = 1. Therefore we get from (7)

(8) 5n(1) = 12’1% j(Fn(y, Z) - Fn(y, CX))F,,(CX), Z))dF(y’ Z)‘

3.2. For the normal scores test (b; = b, = ®~!) we can choose g,,(#) = g,,¥) =
O wife,Susl—g,; =0 () +clu—g,)if0Su<e,; =0 (1—¢,)+c(u—
(1—g)) if 1—g,<u=gl, g=®—-n*), 0c<ow, and g}, =g5Ww) =
1/®'(@ () if e,Su=<l—¢,; =cif 0Su<e, or 1—¢g, <u < 1. By putting
¢ = 1/@'(0) = 2n)* we get 5, = 6,Vn/6 from (7) and (8). This fact, together with
Theorem 1, implies that the ARE of the Fisher-Yates (van der Waerden) rank
correlation test to the Spearman test is not smaller than (n/6)* under contiguous
alternatives from K. This result seems to contradict the results of Gokhale [5], who
stated specially that there is no lower (positive) bound for the ARE of the Fisher—
Yates test to the Spearman test. His result depends on the use of alternatives which
do not correspond to positive (or negative) quadrant dependence. On the other
hand, these tests are “one-sided’ tests.

3.3. For the quadrant statistic (b,(u) = b,(u) = sign(u—%)) we can choose
91iW) = g2,(w) = c,(u—1%) if j—-1/c,<u<i+l/e,; =-1if 0susi-lc,;
=+1if4+1/c,fu<1,¢,=2, c,— o and gi,(u) = gru) =c, ifued,; =0if
u¢A,, A,=1—1/c,, $+1/c,[, n = 1. Therefore we get from (7)

0, = n*[(F(y,2) = F(y, ©)F,(e0, 2))c, 1 4, (F(y, 00))1 4,(F(0, 2)) dF(y, z).

From this formula we can easily derive the following result: If we assume that there
is exactly one point (y,, zo) so that F(y,, ) =1, F(00, z,) =% holds, then

(8,) = 4D <> n*(F(yo, 20) = Fo(¥o, 0)F,(00, 20)) = D).
Further consequences of the stated facts are the following ones:

(L) For each positive real number z there exists a subset K, of the set of all
sequences from K so that the ARE of the Fisher-Yates (van der Waerden) test to
the #-test is equal to z.

(IL.) The same is true for the ARE of the Spearman test to the Quadrant test,
the Spearman test to the #-test, the Fisher-Yates (van der Waerden) test to the
Quadrant test, the Quadrant test to the ¢-test respectively.
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(II1.) For the ARE of the Fisher—Yates (van der Waerden) test to the Spearman
test an analogous result is true, if we choose z from [(7/6)?, ©].

(IV.) For the set {{F,}: {F,} contiguous to {F}, F,eK, n = 1, Fe H, F being a
distribution function of a normal distribution} of approximately normal alterna-
tives the ARE of the Fisher—Yates (van der Waerden) test to the ¢-test is equalto 1,
if the ARE exists.
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