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NOTE ON BAYES-FIDUCIAL INTERVALS FOR PROBLEMS
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1. Introduction. It is a well-known result of Welch and Peers [4] that for location
parameter problems Bayesian a-level confidence intervals based on Lebesgue
measure priors have probability a of covering the true parameter. Many scale
parameter problems can be easily transformed to this case. Furthermore it follows
as special cases of the general theory given by Hora and Buehler [3] that this
result holds for any scale parameter problem with Lebesgue measure prior on the
logarithm of the parameter, and that for problems of both location and scale the
result holds for confidence intervals on certain scalar functions of the two para-
meters, which they call invariantly estimable functions. Bayesian methods in all
of these problems lead to the same result as fiducial methods [3] and are essentially
frequentist methods if one adopts the principle of conditioning on ancillary
statistics (see, for example, Fraser [2]).

This note extends the work of Hora and Buehler [3] by exhibiting an important
class of functions of the location and scale parameters which are not invariantly
estimable but for which Bayesian intervals have the nominal probability of cover-
age. In addition an example is given to establish that there do exist functions for
which this property does not hold (Fraser [2], Hora and Buehler [3], point out that
the Behrens-Fisher problem provides such an example for the two sample problem).
Finally an argument is presented which is useful in comparing the Bayes-fiducial
intervals with those obtained otherwise. ’

2. A special non-invariantly estimable function. Let X represent the observations
in a random sample from a population with unknown and unrestricted location
and scale parameters  and ¢ > 0. For any specified scalar function (6, ¢) and
any realization x of % consider the a-level upper Bayesian confidence limit (x, «)
such that

(2.1) Ps s <[W(x,0) 2 Y(0, 6)] = «,

using the prior n(6, o) oc 1/0.

Hora and Buehler classify (0, o) as invariantly estimable if y(0,,0,) =
Y(0,, 6,) implies that y(al,+b, as,) = Y(al,+b, as,) for all numbers a > 0
and b. Such a function is ¥(0, 6) = h(cf+do), where ¢ and d are arbitrary
numbers and /i is any [-1 function. They then prove that if (i)  is invariantly
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estimable, (ii) (2.1) has, for each x, a unique solution of 1, (iii) for all numbers
a > 0 and b, y(a0+b, ao) increases as (0, o) increases; then '

22 Psjo,00(%,0) Z Y(0, 0)] = «

for all (6, o).

The primary purpose of this note is to point out that for any number ¢, (2.2) is
satisfied with y(0, o) = (t—0)/o, provided that (ii) above holds. (This function is
not invariantly estimable, but does satisfy a similar criterion; if (t—0,)/o, =
(t—0,)/o, then for any a > 0 and b,

[(at+b)—(al, +b)]/ac, = [(at+b)—(ab,+b)]/ac,.

This form of invariance could probably be used to generalize Hora and Buehler’s
theorem in their more abstract setting.) This enables, among other things, deter-
mination of confidence intervals for the cdf of % at any fixed point, the application
of which to reliability problems having led to this extension.

A proof of this can be obtained through the often useful expression

(2.3) Py, [0 (X, 0) Z Y(0, 0)] = P£|o,a{P0,a|x[¢(g, o) £ Y(0,0)] £ al.

For any numbers ¢ and d, (6, o) = c0+do satisfies (i) and (iii) above. Provided
that (ii) above holds, the results of Hora and Buehler yield, in conjunction with
(2.3), that for all (0, 6)

2.4) Pglo’d{Pg’ali[cg—*—d& < B+do] = a} = a.

In particular, if c = —1 and d = (0—1)/o,

(2.5) Pﬂo,a{Pé,au[(f—g)/& S(-0)fcl o} =«

for all (0, o) and thus (2.2) is satisfied with (0, 6) = (t—0)/s.

3. Failure of frequency property. The above results lead to consideration of
whether there are functions i for which (2.2) does not hold. An interesting example
of such failure is given by Y/(6, o) = 0+ ¢?/2 which arises in analysis of lognormal
data,  being the mean of a lognormal variable in terms of the mean 0 and variance
o2 of its normally distributed logarithm.

Let X denote a random sample from a normal population with mean 6 and
variance o2. To see that (2.2) fails in this instance for (6, o) = 0+02/2, one can
study the right member of (2.3) for § = 0 using the relation that for any set 7 in
the parameter space and for any a > 0

(3.1 P@,Fr[ax[(g9 o)eT] = Pé',&lx[(aga ac)eT].
Thus for any ¢ > 0
Pi|9=0,a{P§,6|i[g+&2/2 < 0%2] £ o}
(3.2) = Pi|0=0,d=1{P5,5|ai[0~+62/2 S o212}
= Pi|0=0,a=1{P§,5|2[00~+0252/2 < o*2] S a}
= i|0=0,a=1{P5,5|£[g+652/2 < 0/2] S a}.
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It follows from (2.4) taking ¢ = 1 and d = o, that for any ¢ > O,
(3.3) PiIO:O,azl{Pé,ﬁli[g+65 <ol sa} =

Let R, = {(6,6) | 0+06%/2 < 0/2} and S, = {(,6) | 0+06 < o} and note that
R, is a proper subset of S, the boundary of S, being a supporting line to the
strictly convex set R,. Thus for (0, o) = 0+02/2

P)?|0=O,a[$(x$ o) 2 ¥(0, 0)]
= Pi|0=0,a=1{P5,6|fc[Ra] < a}
(3.4) . = Pr9=0,0=1{Ps.5:[S:] = ¢} +Pzg=0,6=1{Ps.5:[S,]
> o, Py 5 :[R,] < o}
= a+e(a, 0),

where ¢(a, o) is defined as the second summand in the preceding line. Thus the
probability of coverage is at least a for all ¢ > 0 (it is easy to verify that this also
holds for all ). That for any given ¢ > O there exists an « such that &(a, 6) > 0
is a consequence of the relation Psjg-¢ o= 1{Pszs:[R,] > P ;5:[S,]} > 0, which
certainly holds for the case of normality or any other setting in which the posterior
density is everywhere positive. It is intuitively apparent that in this case &(«, 6) > 0
for all (o, ) but this seems difficult to prove.

4. Comparison with other methods. Suppose that J*(x, «), defined for all x,
is an a-level upper confidence limit, meaning only that it satisfies (2.2). To avoid
more clumsy notation consider « as fixed in the following. Suppose further that
Y*(x, o) is invariant, as is Y(x, «), in the following sense. Let ax+b represent a
transformation of scale and location of the data and for each x let (8,,0,)
represent any solution to (6, 6) = y*(x, «). If Y is invariantly estimable require
that y*(ax+b, a) = Y(al,+b, ac,) for all x; if Y = (t—0)/c require that
V*(ax+b,a) = (t—al,—b)/ac,. This restriction on J*, along with the fact that
J(x, y) satisfies the same condition for all y, implies that for any y the event
A, = {x |y*(x, ®) = ¥(x, y)} has the property that x belongs to 4, if and only if
ax + b belongs for all @ > 0 and b.

It follows that if X has a location and scale.parameter distribution then the
conditional distribution of X given A, is also of this form. Also ¥(x, y) remains the
Bayesian confidence limit for the conditional problem, and (2.2) holds for the
conditional distribution of X. Thus, for all (6, ),

(CRY) Prjo, o[0H(X, ) Z (0, @) [ (R, @) = Y(X, )] = ».

It would seem, then, that when an % in A4, is obtained the appropriate “confidence
level” of y*(%, «) is not « but y. A cogent discussion of this notion, which has been
considered by many writers, is given in Buehler [1], where the 4, would be called
relevant subsets of the sample space. It should not be supposed that (4.1) presents
an objection to orthodox theory, however, because when V is invariantly estimable
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there seems to be no y* different from  which satisfies any kind of frequentist
“optimality” considerations. The intent of (4.1) is to provide a cogent argument for
rejection of any ad hoc J* such as those based on standard pivotal quantities,
(0—0)/6 and /o, when there is no sufficient reduction of the data. Presumably a
more appealing frequentist approach in such problems is to condition on the
ancillary statistics, which leads to the Bayes-fiducial solution.
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