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A MOMENT PROBLEM FOR ORDER STATISTICS

By JosepH B. KADANE
Center for Naval Analyses and Carnegie—Mellon University

Necessary and sufficient conditions are given for a triangular array of
numbers to be expectations of order statistics of some nonnegative random
variable. Using well-known recurrence relations, the expectations of all
order statistics of the largest sample size, n, in the triangular array, or the
expectations of the smallest of every sample size up to and including » are
sufficient to determine the whole array. The former are reduced to a Stieltjes
moment problem, the latter to a Hausdorff moment problem. These results
are applied to show that for every sample size, there is a positive random
variable with geometrically increasing expectations of order statistics with
arbitrary ratio and expectation of smallest order statistic. However, only
the degenerate distributions have geometrically increasing expectations
of order statistics for more than one sample size, even when the ratio and
mean of the smallest order statistic can depend on the sample size. These
results were required for a study of participation in discussion groups.

1. Introduction. Consider a triangular array of nonnegative numbers

a1
ay,2 4,2
ay3 dy3 4z
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Could such an array be expectations of order statistics from some positive random
variable ? That is, is there a distribution function F, with F(0—) = 0, such that if
X1« £ Xy S - £ X, are order statistics of a sample of size k from a popu-
lation with distribution function F, then
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Section 2 reviews the linear recurrence relations known to apply between
expectations and distribution functions of order statistics. Theorems 1 and 2, in
Section 3, give necessary and sufficient conditions for (2) to hold. In Section 4,
Theorem 2 is applied to show the existence of a nonnegative distribution with
geometrically increasing expectations of order statistics at a sample size n, where
the distribution can depend on the ratio and n (Theorem 3). Finally Theorem 4
shows that only degenerate distributions have geometrically increasing expectations
of order statistics for more than one sample size. Theorem 5, due to Kemperman,
gives an elegant inequality which proves Theorem 4.
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Mallows [4], considers whether the triangular array (1) could be expectations
of order statistics on [, f], —c0 < « < f < 0. His conditions are different
from those here, however.

2. Recurrence relations. Linear recurrence relations have been established for
distribution functions, and hence integrals, of order statistics for arbitrary
exchangeable random variables, discrete or continuous. The following are two
ways of expressing them (for means):

(3) -k_'()Z( 1)1('11) A1, k—i+j+1 1sigk=n
k— l+]+1
n—k (P— _; i l‘l"j 1

4) ai,k_z( )G 1igkgn.

— s
=0 ® e

Formula (3) expresses an arbitrary element of the array (1) as a linear combi-
nation of expectations of smallest order statistics from various smaller sample
sizes (See Young [8]). Thus the array (1) is a vector space of dimension at most
n; {a;x, 1 £ k < n} spans this vector space, as (3) shows. Furthermore, if there is
a distribution function F for which {a, 4, 1< k < n} are expectations of smallest
order statistics, and the array (1) satisfies (3), then (1) represents expectations of
order statistics from F.

Formula (4) expresses an arbitrary element of the array (1) as a linear combi-
nation of expectations of order statistics of sample size n (see McCool [5] and
Sillitto [7]). Thus {a ,, 1 £k < n} also spans the vector space of array (1), as
shown by (4). Again, if there is a distribution function F for which {apq 1 =
k < n} are expectations of order statistics of sample size n, and if the array (1)
satisfies (4), then (1) represents expectations of order statistics from F.

3. The reduced problem. The results cited above allow reduction of the search for
necessary and sufficient conditions to the following two questions:

(i) What sets of numbers {a; ,, 1 < like k¥ < n} can be expectations of smallest
order statistics of various sample sizes from some distribution F?

(if) What sets of numbers {a;,, 1 < k < n} can be expectations of order
statistics of the sample size n from some distribution F?

If necessary and sufficient conditions for (i) [or (ii)] can be found, then those
conditions and (3) [or (4)] give necessary' and sufficient conditions for the array
(1) to be expectations of order statistics from some distribution.

For the remainder of this section, the possible random variables are restricted
to be nonnegative; that is, F(0—) = 0. Some element a;, of (1) equals zero if and
only if X, is zero with probability one, which occurs if and only if F(0) = 1
Therefore without loss of generality, take all a;,’s to be positive and assume
FO) < 1.
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To begin question (i), consider F; ,(x), the probability that the smallest of k
is less than or equal to x. This happens except when all k are larger than x. That is,
Fy (x) = 1—(1—F(x))*. Hence.

) ayx =[5 (1-F(x))*dx.
The form of (5) is reminiscent of a moment problem, except that the unknown
function is involved in the power, and the measure is fixed. Thus a change of

variable is suggested. Proceeding formally, let y = 1 —F(x), so x = F~'(1—y).
Then

(6) ay = Joyd{—F7'(1-y)}.
If F is monotone increasing, F~'(1—y) is well defined on (0, 1]. More generally,

let 7(y) = — inf,, o{x [ F(x) Z 1—y}. T is monotone non-decreasing and right
continuous. Also
@) ay, =[5 (1=F(x))dx = 5., y*dT(y), 1<kzn
Notice that the mapping from possible F’s satisfying (5) to possible measures
dT satisfying (7) and T(1) = 0 is 1—1 and onto. Therefore there is a dT satisfying
(7) and T(1) = 0 if and only if there is an F satisfying (5).
Formula (7) is in the form of the classical Hausdorff moment problem except
that d7 need not be a probability measure. Therefore define

dT
d#(y) = 2470) on (0,1].
a
Now d4% is a probability measure satisfying
1
a
®) *‘k=f yE~1dA(y) 2<kgn.
ai,1 o+

Again notice that the mapping form d7 satisfying (7) to d4 satisfying (8) is 1 —1
and onto. This proves

THEOREM 1. A necessary and sufficient condition for (1) to represent expected
values of order statistics from some nonnegative distribution is that the array (1)
satisfy (3) and that my = ay ,,/a; , be kth moment (1 < k < n—1) of a prob-
ability distribution on (0, 1].

In the above treatment, there is no reason why n cannot be taken to be infinity.

From some theorems in Krein [3] (see also Mallows [4] and Karlin and Studden
[2] page 106 ff) the following can be derived:

Let uy =1, uy, p5, -+ be a sequence of numbers and consider the following
four determinants:
A2K=|lli+j' i,j= 0,--,K K=0,1,--
A21<+1=|.Ui+j+1| ,j=0,-,K K=01,--
r2K=|#i+j—1_/1i+jl Lj=1,-,K K=12-"-
r2K+1:|:ui+j_#i+j+1' i,j=0,1,-,K K =01,
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Then a necessary and sufficient condition for the existence of a measure d%
satisfying

™ = fo+ £dB(1) i=1,-,n<w

is that one of the following holds:

@) Ty, Ag, Ty, s A, [y >0, A, =y =+ =0 and k is odd iff there
is a d2 satisfying (*) and having exactly (k + 1)/2 points of rise, one of which is one.
In this case, there is only one d# satisfying (*).

) Ay, To, -, iy, Ay >0, T, = Agyy = --- = 0 and £k is even iff there is a
d# satisfying (*) and having exactly k/2 points of rise, none of which is one.
In this case also there is only one d4 satisfying (*).

(©) Ay, Tg, -+, A,, T, > 0. Then there are many d%’s satisfying (*).

To begin examination of question (ii) above, consider F; ,(x), the probability
that k& or more of the nX’s are less than or equal to x. Then

Feo(x) = Yok (DF(x)(1 = F(x))" ™" = 1= Y6 (DF ()1 = F(x))" ™"

Using the same integration by parts,

Gy = J§ LI (OF(x)(1=F(x)y " dx,

=Yiz0 (Dfor (1=p)y"1dT(y) L<k<n,
using the argument preceding (7).
Then
©9) An— =10 = (1) Jor (=) 1y" ¥ 1 AT (), 2sksn

ay, =[o+y"dT(y).
Rewriting (9),

1 k—1
Agn— Ak—1,n 1—-y
—_ ~ = = —_— "dT 25k=n.
(1) Jo+< y ) Y )
Letdy(y) = y'dI(y)/a .
Then
1 k=1
Ayn— Ak—1,n I—J’)
Sl — dv(y 2Zk<n
al,n(k-l) fo‘r( Y Y(y)
and dy(») is a probability measure. Finally let z = ((1—y)/y). Then
Agn— Ck—1,n “
——-———;l——— = 2z d,@ z 2 S k é h
al,n(k—l) Jo (2) -

and d4(z) is a probability measure. This proves



A MOMENT PROBLEM FOR ORDER STATISTICS 749

THEOREM 2. A necessary and sufficient condition for (1) to represent expected
values of order statistics from some nonnegative random variable is that the array (1)
satisfy (4) and that

A+ 1,0~ Ak,n
al,n(;)

be kth moments (1 £ k < n—1) of a probability distribution on [0, ).

Recalling the definition of A,x and A,k , the following can be derived from
Krein [3] or Shohat and Tamarkin ([6] page 6):

A necessary and sufficient condition for the existence of a measure d'¥ satisfying
* w = (& Ed¥(1) i=0,1,--,n< o

is that, for some k, 0 < k < n,

my =

Ag>0, A >0, A, >0, Apyy=-=A,=0.

The interpretation of & is as follows:

k < nis odd iff there is a measure d'¥ satisfying (*) and having exactly (k+ 1)/2
points of rise, none of which is zero. In this case d'¥' is the only measure satisfying
*).

k < nis even iff there is a measure d'V satisfying (*) and having exactly (k +2)/2
points of rise, one of which is zero. In this case d'¥' is the only measure satisfying
().

If £ = n, there are many measures satisfying (*).

4. An application. In a study of participation rates in small groups, Kadane and
Lewis [1] encountered the following problems

(i) For what values of #, f, and s are there nonnegative distributions such that
ay, = fs*7! 12k <n?

(ii) For what values of f, and s, are there distributions such that @, , = f,s, ™"
forallnand 1 £ k £ n? The first question is in the form of Theorem 2. It makes
sense only for f > Oand s = 1. When s = 1, the distribution is degenerate, placing
all its mass at f. Thus the only interesting case is s > 1.

To apply Theorem 2, consider
fsk—fsk1 k(s—l)
My =—=m—— = S\ v 1=k=Zn-1.
g . s(k)
Does there exist a probability distribution d%(z) such that

J‘ zid.@(z)=si<s—_—l->—,l,— 15isn-1?
0 s J() o

Lety = z/s. Then we wish to find a distribution y satisfying [% ' dy(y)
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= (s—1/s) 1/(}), or a measure ¢ satisfying [ y'do(y) = 1/() 1 £i < n—1 and
& da(y) = sl/(s—1) = [+1/(s—1).
Consider the measure
(n+1)dy
d ="
#(y) (1+y) 2
As is well known, [du(y) =1 and [y du(y) = 1/(}). Adding a jump of size
1/(s—1) at zero does not change any of the moments, but does increase the total
measure to 1+1/(s—1) = s/(s—1), as desired. This proves

THEOREM 3. For every f = 0, s = 1 and n = 1 there is a nonnegative distribution
such that a,, = fs*"' 1 <k £ n.
The second question above is answered in a strong way by the following theorem:
Let X'be a nonnegative nondegenerate random variable, and let X;, < X,, <
-+ £ X, be the order statistics for X of order k. Assume that a;;, = E(X) < oo.

THEOREM 4. (a) If for some n > 3
(10) Qin =/fs'1 i=1,-,n

and for some m satisfying n—3 2m >0, a;,_,, = td'"' i=1,---,n—m, then
the distribution F is degenerate.
(b) If (10) holds and F is nondegenerate,

(11) a,-_l’kai+1’k<a,-2,k 3§k§n—'landi=2,',k—‘1

REMARK. Let 4, ;. be the set of all nonnegative distributions satisfying (10).
If n 2 2, s = 1iff the distribution is degenerate with all its mass at /. For f = 0,
s 2 1 and n 2 1, Theorem 3 shows that 4, , is non-empty. For f> 0, s > 1
and n = 3, Theorem 4 shows that any two distinct A’s are disjoint.

ProOF OF THEOREM 4. Since (a) is implied by (b), only (b) need be proved. My
somewhat cumbersome proof of (b) can be replaced by the following result of
Kemperman, which he has kindly allowed me to include.

THEOREM 5 (Kemperman). (11) is implied by
(12) iy nliv1,n < Ay (i=2,+,n=-1).

Proor. It suffices to show that (12) implies
(13) Aot 1 it net < G ney (i=2,-,n=2).
Removing a random member from a sample of size n one obtains a sample of
size n—1, so that X;,_; equals X;, with probability 1—i/n, X;., , with prob-
ability i/n. In this way we have the recurrence relation.

Ain—1 = (1- i/n)ai,n+(i/n)ai+ 1,n (i=1,---,n _1)

which is a special case of (4).
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Using that a;_, , < a},/a;1, , and a;,,, < a},, ./a;,, we obtain that

i—1 ) i—1
it n—1 it 1,n—1 = 1—7 ai,n/ai+1,n+7 i n
{ i+1 i+1 5
~a Gitv 1ot N ai+1,n/ai,n
. i—1 i—1 | i+1 i+1
= _— a;nt n Gitn — Ain+ n Gitin

< [ai, n— 1]2,

since  xy < ((x+»)/2)* for x # y. [
Professor Kemperman remarks that a sufficient condition for (12) is that

11 .
a,-+1,n=.-.f ul e du J=0,1,"+
J Jo

where g(u) is convex. A boundary case is when g(u) is linear, which happens
when (10) holds.
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