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APPROACHABILITY IN A TWO-PERSON GAME

By TieNn-FANG Hou
Bell Telephone Laboratories, Incorporated

1. Introduction. Let M = [|M(i, j)“ be an rxs matrix whose elements M(i, j)
are probability distributions with finite E||-||% ||-|| is the Euclidean norm and
a > 1, in a Euclidean k-space &*. We associate with M a game between two
players, I and II, with the following infinite sequence of engagements: At the nth
engagement, n = 1, 2, ---, player I selects i = 1, ---, r with probability p,(1), -+,
pa(r), Yi— 1 pu(i) = 1, and player II selects j = 1, -+, s with probability ¢,(1), ---,
q.(5), Zj;l g.(j) = 1. Each selection is made without either player knowing the
choice of the other player. Having chosen i and j, payoff Y, € &* is then determined
according to the distribution M(i, j). The point Y, and probabilities

(11) Pn = (pn(l)’ ) pn(r)) and qn = (qn(l)’ ] qn(s))

are announced to both players after each engagement. We call p, player I’s move
and g, player II’s move.

A strategy for player I is a sequence of functions /= {f,},n=0,1,2, -,
where f, is defined on the 3n-tuples (py, g, Yy; - ; P, qn, Y,) With value p,, in

(1.2) P={p=(pQ), - pr):Yip@i)=1 and p(@i)= 0},

and p; = f, is simply a point of P. For player II, a strategy g = {g,} is defined
similarly, except that

(13) gn(pb 91, Yl; 3 Pnolns Yn) ={qn+1 € Q and 41 = 9go € Qa

where
(1.4) 0 ={g=1(q(1),,q(5): 279() =1 and q(j) 2 0}.

For a given M, each strategy pair f, g determines a sequence of random variables
Y, Y,, --- (vector payoffs) in &*.

Our objective here is to investigate the controllability of the center of gravity
of the actual payoffs ¥, = )} Y,/nin a long series of plays.

We denote the Euclidean distance between Y, and a nonempty set S in k-space
by &(Y,, S). For a given M, the set S is said to be approachable (see [1] and 2D
by Iin M, if there exists an f/* for I such that, for every g,

(1.5) 5T, S) >0 as.,

where Y, Y,, --- are the payoffs determined by f*, g. The set S is excludable by
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I in M, if thereexists an f* for [ and a k-space set S’ with (S, S") > 0 such that,
for every g,

(1.6) 8(%,,8)>0 as.

For player 11, approachability and excludability are defined similarly with g*
instead of f* and finstead of g.

Since approachability and excludability for a set S are the same as approach-
ability and excludability for the closure of .S, we may assume that .S is closed. Each
superset of an approachable set is approachable, each subset of an excludable set is
excludable, and no set is approachable by one player and also excludable by the
other player. Moreover, any condition for approachability implies a condition for
excludability by their definitions; hence we may focus our attention only on
approachability.

In Section 2, we introduce the strong law of large numbers for two-person
games with stochastic vector payoffs (Theorem 1). In Section 3, we present a neces-
sary and sufficient condition for approachability (Theorem 3). In Section 4, we
prove that the class of approachable (excludable) sets for a given M depends only
on the matrix of mean values of M (Theorem 5).

Blackwell [1] proposed Theorem 3 and Theorem 5 as unsolved problems. In
[2] Blackwell assumes that the M(i, j) are probability distributions over a closed
bounded convex set of k-space and gives a sufficient condition for approachability.
Under Blackwell’s assumption, we presented these results and introduced a simple
proof to show that Blackwell’s condition was sufficient in our unpublished works
[4], [5], [6]. In this paper our proofs cover a more general case. We assume that the
M(i, j) are probability distribution with finite £||-||* for some & > 1, in k-space.

Examples are given in Section 5.

2. The strong law of large numbers.

THEOREM 1. Let M = ||M(,j)|| be defined as in Section 1; let w, =
E(Y,|P1, 91 Y1.P2:425 s Yuo1sPardn)s 1 =1,2,--, denote the conditional

expectation Of Yn given (pl’ ql’ Y19 PZ’ qZ’ Tt Yn—l’ Pn> qn); and let 6n = Z'{ CUm/n'
Then

2.1 8Y,,@,) =0 as.
Proor. For each n = 1, let
2.2 X,=Y,—,
and let &#,_, be the o-field generated by (py, ¢, Y1, P2,925 ' Yu—15 Pns 4s)> then
@3) 0, = E(Y,| #,-1)

and {d1} X,/m, #,,n 2 1} is a martingale.
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Let o* be the upper bound of E||-||* of the distributions M(l, j), « > 1. Then
we have

2.4 Y7 E|| XY’ £ Y. Fo%n’ < oo with 6=min(x,2) and
2.5) Y1 X,/m  converges a.s.

by the martingale convergence theorem [3]. Moreover

(2.6) " Xpu}/n = Y,—@, converges to the zero vector a.s.

by the Kronecker lemma [8]. []

The statement (2.6) is, in a sense, a particular form of the strong law of large
numbers for stochastic games.

Moreover, this theorem is also true for the weak approachability and weak
excludability [7].

3. Necessary and sufficient condition for approachability. Ler M = ||M(i, j)|| be
the rx s matrix whose elements M(i,j) are the mean values of distributions
M(i, j) defined in Section 1, Q be the convex hull of the r x s elements of M,

(3.1) o(p,q) = Yioy 3 5=1 P(D))M(i,j)q(j)  for peP and geQ,

and w,, n = 1, be defined as in Theorem 1. Then Q is a closed bounded (compact)
convex subset of & with diameter K < oo,

(B2) W, = E(Y, | pus ) = Vi1 L= 1 PDMG, ) = 0Py, qn) €,

and , € Q. Let

(3.3) R(p) = {w(p,q):q € @} for peP,
(3.4) T(q) = {w(p,q):p € P} for geQ,
and 0!, 1 <] < k, be the /th coordinate of a point

(3.5) o = (0!, -, o) e &~

Then R(p) (T(q)) is the range of the conditional expected payoff of one engagement
given that I selects p (II selects g).

According to Theorem 1, we may focus our attention on @, (instead of Y¥,) for
the investigation of approachability, and we may use the following sufficient
statements: For a given M, a nonempty set S in k-space is said to be approachable
by I in M, if there exists an f* for I such that, for every g, 3(@,, S) — 0 a.s. Sis not
approachable by I if there exist a g* for II and a A > 0 such that for every f,
8(@,, S) = A infinitely often a.s. Since @, €Q for all » = 1, we have that S is
approachable by one player if and only if S~ Q is approachable by him (by
Theorem 1), where S represents the closure of S. Hence we may assume that S is a
closed subset of Q. )
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DEFINITION 1. A nonempty subset B of Q is said to be an insufficient subset of a
closed set S <= Q for player I, if there exist an open set U(B) in & and a number
A > 0 such that

(1) S~ U(B) = Band

(i) for each integer n > 10K/A and u € U(B), there exists a strategy g* for II
such that for every strategy f for I

(3.6) Prob{ <§u+<1—-}$> By s) > A

for some integer N = n | f, g*} =1.

An insufficient subset B of .S for I has the following implication. If after n plays
of the game @,e U(B), n > 10K/A, then there is a sequence of moves
Gn+1sGn+2, -+ for II such that, for any strategy of I we have with probability one
that there is a random integer N = »n such that (@y, S) = A.

_ n_ n 1 X
Note: a)N=Na),,+ I—N N—n,;le'

n > 10K/A is used such that the distance 6(@,, @,_;) = w,, @,_)/n < K|n is
much smaller than A and this restriction depends only on A.

We write A(B) for the supremum of all values of A for which the above con-
ditions are satisfied.

DEFINITION 2. Let 4 denote the collection of all insufficient subsets B of S,
3.7 B* = (Jpea B, U* = | Jpeg U(B), and §' =S ~ B* =
{w:weS and ¢ B*},

then B* = § ﬂ U*, §" =S ~ U* and S is a closed subset of Q. S’ is called the
sufficient subset of S.
Let
3.9) B, ={B:Be# and A(B)]2 = l/k}, B* = Uaeak B,
and  Uy* = (pep, UB)
for kK = 1, then

(3.9) B* =S\ UX U2 B* = B* and [J2, U* = U

THEOREM 2. S’ contains no insufficient subset.
We may assume that S’ # . The proof of this theorem is established through
two lemmas as follows.

LeMMA 1. For every A’ > 0, there exists a 0 > 0 such that w eQ ~ U* and
w, ") = A imply é(w, S) = 0.
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PROOF. Suppose that this lemma is not true. Then there exists a sequence of points
{w;:i = 1} in Q ~ U* such that é(w;, S’) = A’ for each i and é(w;, S) = 0 as
i = oo. Let s; be the closest point in S to w; for each i, then é(w;,s;) - 0 as
i— oo and {s;:i = 1} is a sequence of points in the compact set S. Hence there
exist an infinite subsequence {s;:j 2 1} of {s;} and a point s € S such that

(3.10) s;; > s and &(w;,s)—>0 as j— oo.

w;,, ") = A’ for all j imply s¢ S, therefore se B* = S U*. But d(s,Q ~
U¥*) > 0 for s € B*, which contradicts (3.10). []

LEMMA 2.
(3.11) Ok = SUP 4, canus~u,s 0@, Q ~ U*) > 0 as k — oo,
where 6, = 0if Q n [U* ~ U,*] = .

ProoF. U, < U, implies 6, = 0, foreach k = 1. Hence we may assume that
QN [U* ~ U*] #  for each k.

Suppose this lemma is not true. Then there exist a A > 0 and a sequence
{w,: 0, e [U* ~ U*] and k = 1} such that §(w,, Q@ ~ U¥) = A for each k.
The compactness of Q implies that there exist an infinite subsequence {w,,:i = 1}
of {w,} and w" € Q such that w,, > " as i - o0 and é(w’, Q@ ~ U*) = A. Hence
@' €Qn U* and o' €eQ n U for some finite positive integer k&’. But this con-
tradicts the assumption of the existence of w,eQn [U* ~ U,*] for each
kz1. [

Lemma 2 implies the following corollary.

COROLLARY 1. For each ¢ > 0 there exists a positive integer j(€) such that
3.12) SUPgeanpur~ue] O(@, Q@ ~ U*) S ¢ forall k = j(e).

PRrROOF OF THEOREM 2. Suppose S’ does contain an insufficient subset B’, U(B') is
the associated open set and A’ is the associated positive number defined in
Definition 1. If @, € U(B") for some sufficiently large n, then there exists a sequence
of moves ¢, 1,4,+2, - for Il such that, for any strategy of I there is an integer
N = n with probability 1 such that

(3.13) Ny, S') = A'.
If oyeQ ~ U*, then
(3.14) ooy, S)=0>0

by Lemma 1; if @y € Q n U, for some positive integer j(¢) with 0 < ¢ < A’/2
defined in Corollary 1, then there exists a sequence of moves gy, gy+2, -+ for
IT such that, for any strategy of I there is an integer N’ = N with probability 1

such that
(3.15) @y, S) = 1/j(e)
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by the definition of U{,,; and if oy e Q n [U* ~ Uyl then 8@y, Q ~ U*) < ¢
by Corollary 1. In the latest case, let u be the closest point in Q ~ U* to @y, then
oy, u) e o, S') = AN—e= A2, and 6u, S) = 0’ for some 6 >0 by
Lemma 1. & can be chosen so small that ' —¢ = 6#” > 0. Hence

(3.16) Sy, S) = 0/ —e = 0.

Therefore, if @, € U(B’) for some n > 10K/A”, A” = min {A’, 6, 0", 1/j(¢)} > 0,
then there exists a sequence of moves ¢, ,¢,+2, -+ for II such that, for any
strategy of I there is an integer N’ = n with probability 1 such that 6(@y., S) = A”.
Thus S~ U(B’) > B’ is an insufficient subset of .S, which contradicts the
definition of S’. []

THEOREM 3. A set S < & is approachable by player 1 if and only if S', the
sufficient subset of S N Q, is nonempty.

Without loss of generality, we may assume that S is a closed subset of Q by
Theorem 1, thatis SN Q = S.

ProoF oF NECEssITY. Let S’ = ¥, then {U(B): Be 4} is an open covering of
the compact set S. Hence this open covering contains a finite covering {U(B)):
B;e % and 1<i<j<oo} of S. Let A=min{A(B): 1 <i<j} and
A" = (S, 8% ~ [ Ji. | U(B))), then A” = min (A/2, A’) > 0. Based on Definition
1, there exists a strategy g* for II such that, for every strategy of I,

(3.17) 8(@,,S) = A" i.o. as.

Where g* can be constructed as follows: Let g, be arbitrary if » £ 10K/A” or
0(@,-1,S) = A”. Let Ny be the first n > 10K/A” with §(@,, S) < A”, then
w, € U(B;) for some 1 <i < j;let gy +1,qn,+2, > qn, be the associated moves
in the definition of the insufficient subset B; of S such that N, is the first n = N,
with o(w,, S) = A”. For n > N,, q, can be constructed in a similar way. (3.17)
implies that S is not approachable by I. []

The proof of the sufficiency is established through Theorem 4, Lemma 3 and
Lemma 4.

THEOREM 4. A closed nonempty set S = & is approachable by player 1 if the
Sfollowing condition is satisfied: For each k-space point v ¢ S, let u be the closest
point in S to v and H be the hyperplane of k-space through u and perpendicular to the
segment vu, then there exists a move p* € P such that H separates v from R(p*).

PRroOF. Let K be the diameter of Q and {u, v) represent the inner product of the
vectors u and v. Let player II use any strategy and let player I use the following
strategy: Let p, be arbitrary and let p,, n > 1, be an arbitrary element of P if
@,-1€S. Ifw,_; ¢S,n > 1, let u,_, be the closest point in S to @,_,, H,_; be
the hyperplane through wu,_; and perpendicular to the segment @,_,u,_,
Ay—1 € P such that H,_, separates ®,_; from R(A,_,), and p, = 4,_,. For



APPROACHABILITY IN A TWO-PERSON GAME 741
@y 1 ¢S9 we have w, € R(pn) = R('ln—l)s and (6"_1—14,,_1, wn_un—1> = 0.
Since w,, ®,_, € and 6(®,, ©,_;) = dw,, ®,_,)/n < K/n, we have
52((’—071’ S) § 62(C_Un’ un—l)

= 52(5,.—1, Uy 1)+ 2{@Dy_ 1 —Uy_1, 55,:‘@.—1)‘*‘52(63", @y—1)

< (1-2/n)é*(@,— 1, S)+K?[n? for n=2.
If we assume that 6*(@,_,, S) < K?/(n—1), then we have
(3.18) 52@,, S) < K?In.

If @,_, €S, then

64 (@,, S) £ X(@,, @,-,) < K*[n* £ K?n.

Since we must have S n Q # (I to satisfy the given condition, (3.18) is true for
n = 1. Hence (3.18) is true for all » = 1 by induction. Thus é(@,, S) - 0 and
8Y,,S)>0as. [

LEMMA 3. For a given k-space hyperplane H[Y % o'w'+a°® = 0 for some finite real
o and a®), let

A={w:weé& and Yidw'+a® <0} and A° =&~ A.
If R(p) & A€ for all p € P, then there exists a g* € Q such that T(q*) < A.

PRrROOF. R(p) ¢ A°, p € P, implies that there exists a ¢ € Q such that w(p, q) € 4.

Without loss of generality, we may assume that H is ' = 0 by a linear mapping.
Under this assumption, we may rewrite the hypothesis as follows: For every
p € P, there exists a g € Q such that w!(p,q) < 0, where w'(p, q) is the first co-
ordinate of w(p, q).

Let M* = ||M'(i,j)|| be the matrix of finite real numbers whose elements
M'(i, j) are the first coordinates of M(i, j). Then there exists a finite real number
", the value of M*, such that by the von Neumann Minimax Theorem [9],

(3'19) maxpeP minqu Zl’= 1 Z§= 1 P(’)Ml(l,J)Q(J) = V
= min,, maXpEpZ =1 Zj: L PM(E, )g()).

Since

ming.o Yioy Y 5=1 PA)M (i, j)q(j) < 0 foreach peP
by the hypothesis, and since P and Q are closed bounded convex subsets of r-
and s-space respectively, we have ¥~ < 0. Hence, there exists a ¢* € Q such that

maXpEP Z:: 1 Zj: 1 p(l)Ml(l’J)q*(]) < O,

that is, ! < O for all w € T(g*). Thus T(g*) = A and the proof is completed. []
For a special case, r = s = k = 2, a direct proof of Lemma 3 without the use
of the von Neumann Minimax Theorem was given by the writer [5].
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LEMMA 4. Let u be the closest point in a closed set S = Q to v € [§* ~ S]. More-
over, for some real o' and o°, let Y% o' +a® = 0 be the hyperplane H through u
and perpendicular to the segment vu such that ¥ % a'v' +a° < 0 (i.e., v € A). If there
is a g* € Q such that T(q*) < A, then u € B for some insufficient subset B of S.

PrOOF. Let V' = {w: w e &* and 8(v, w) < §(v, u)} and V* = {w: w e &* and
o(v, w) = (v, u)}, then S ¥V = F by the hypothesis.
T(g*) = {w(p,q*): p € P} is the convex hull of the r points

ti= Y5 M(i, )g*(j), i =1,
Foreach 1, ¢ V, let L, be the tangent line of ¥'* from ¢, such that 6(u, L;) < 8(u, L)

for all L, e {L;: L is a tangent line of V* from ¢,}. Let L, be one of these L,
such that

6* = 8(u, L) < 8u, L) forall 1<i<r  and ¢V
and let 6* = o(u, v)ift;€ Vforalll i< r.
Since T(g*), V < A, and 6(u, v) > 0, we have 6* > O and U = {w: w € & and
o(u, w) < 6*/2} is a nonempty open set in k-space including u.
If @, e U for any n = 1 and ¢q,, = g* for m > n, then for m > n, ®,, will move

toward T(g*) through V, where V is an open set disjoint from S. Hence there
exists a A > 0 such-that for each n > 10K/A and @, € U

Prob {6(@y, S) = A for some integer N = n

foqm =q*form>n} =1

for every strategy f for I.

We conclude that B = Un S with ue B is an insufficient subset of S by
Definition 1. []

PROOF OF SUFFICIENCY OF THEOREM 3.

LetueS' # J,ve [ ~ S'], HY% do'+a® = 0] be defined as in Theorem 4
suchthatve 4 = {w: we &*and Y% «'w’'+a® < 0}. Since S’ contains no insuffici-
ent subset, we must have 7(q) ¢ A4 for all ge Q by Lemma 4. T(q) ¢ A4 for all
g € Q implies that we cannot have R(p) ¢ A° for all pe P by Lemma 3. Hence,
there exists a p* € P such that R(p*) = A°. So that H separates v from R(p*).
Thus S’ is approachable by player I by Theorem 4. []

If we replace M by M’, the transpose of M, then we have a necessary and suffi-
cient condition for approachability for player II.

4. Approachability for games in /.

THEOREM 5. For a given M, the class of approachable (excludable) sets for player
I (I1) depends only on M.

Proor. For each n = 1, the move p, ., of player I in the proof of sufficiency of
Theorem 3 and the move g, of player II in the proof of necessity of the same
theorem can be written as functions of (w,, -+, ®,) only, where

0, = Va1 Yot )G, ))3,0).
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Hence the condition described in Theorem 3 is also the necessary and sufficient
condition for approachability in M. Thus a set S < &* is approachable by I (II)
in M if and only if S is approachable by I (I) in M. []

5. Examples.
5.1. Suppose M is given as
W= |(1, 1) (0, 1)“ .
1, 0) (0, 0)

Let s be the collection of all subsets H = {(x, h(x)): 0 £ x < 1}, where A(x)
is continuous on 0 < x < 1 with the following conditions:

(i) 0 = h(x) =1,

(i) max {—h(x)/(1 —x), [A(x)—1]/x} < [A(x")—h(x)]/(x"—x)

< min {[1-A(x)]/(1 —x), h(x)/x}

forO0<x<x'"<1 and 0L x <x <1,

(iii) —A0) = [A(x)—h0)]/x' £ 1—-h0) for 0 < x' =<1,

@(iv) A()—1 = [AM(xY—hD](x'—1) £ A1) for 0= x' < 1.
That is, no chord of 4, when extended, intersects either the line segment joining
(0, 1) and (1, 1) or the line segment joining (0, 0) and (1, 0) except the four end
points. Then we have the following results:

1. If the closure of a set .S in 2-space contains an H € 4, then S is approachable
by player I. An approachable strategy with respect to H is described in the proof
of Theorem 4.

2. If we define a minimal closed approachable set by player I to be a closed set
which is approachable by him and intersects each T(q), g € Q, in at most one point,
then the collection s# and the collection of minimal closed approachable sets for
player I are equivalent.

3. An approachable set S which does not contain any s#-set is shown in Figure 1,
where S = U,§=1 S;, Sy is the line segment joining (0, 1/6) and (1/7, 2/7), S, is
the convex hull of the three points (1/7, 2/7), (1/3, 4/9), and (1/4, 1/2), S5 is the line
segment joining (1/4, 1/2) and (1/2, 2/3), S, is the line segment joining (1/3, 4/9)
and (1/2, 1/3), S is the line segment joining (1/2, 2/3) and (2/3, 5/9), S is the line
segment joining (1/2, 1/3) and (3/4, 1/2), S, is the convex hull of the three points
(2/3, 5/9), (3/4, 1/2), and (6/7, 5/7), and Sy is the line segment joining (6/7, 5/7) and
(1, 5/6). None of the extensions of the line segments forming the upper (lower)
envelope of S intersect the line segment joining M(2, 2) and M(2, 1) [M(1, 2) and
M(1, 1)] except the two end points. Hence:S is approachable by I by Theorem 4.

5.2. Suppose M is given as

P l(1, D (0,0

(1,o) (0,0
then a closed set in 2-space is approachable by player I if and only if it contains
an R(p) for some p e P.

>
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M(,2) M, 1)

(1,5/6)

(1/2,2/3) (6/7,3/7)
,

(174,172,
3/4,1/2)
(1/3,4/9)

(172,173

(1/7,2/7),

(0, 176)

M@22) M(2,0)

Fic.1.S= U ©_1 Sk is a closed approachable set (by player I) but contains no H of .
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