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STRONG LAWS FOR RULED SUMS

By LeoNARD E. BauM, M. KaTz,! AND H. H. STRATTON?
Institute for Defense Analyses and State University of New York at Albany

0. Introduction. Let {X,:k = 1} be a sequence of independent, identically
distributed random variables where E(X,) = 0 and E(X,2) = 1 when these
quantities exist. By a rule (), we mean a function: I* — set of all subsets of I+
where (n) is some collection of # distinct positive integers for each n, and its ruled
sum is defined as S, = st(,,) X,. We let R denote the set of all rules. If

(n) = {1, 2, ---, n} then we denote S, by S,, and if
(n) n (m) = F for n # m, then we denote () by { ).

Clearly the weak laws for all ruled sums are the same as those for S,; however
the strong laws can be quite different. This note will attempt to study how some of
the strong properties for S compare to those for S,. For instance, we will show
that for symmetric X, and most well-behaved sequences {a,}

(0.1) lim sup (S,/a,) < limsup (S,y/a,) < limsup(S,,y/a,)

for all () e R. Laws of the iterated logarithm type, strong convergence laws and
convergence rates will also be compared.

1. In all that follows we assume that liminfa, = +oco. It then follows by
standard arguments that lim sup Swmla, is a.e. a constant. The right-hand in-
equality of (0.1) follows immediately from the Borel-Cantelli Lemma and so
henceforth (0.1) will refer to the left-hand inequality.

The bulk of this section is devoted to showing that (0.1) is true for symmetric
random variables. At present it is not clear to us how to drop the assumption of
symmetry and prove (0.1) in general. However, in case EX;% < oo, we can drop
the symmetry assumption and prove (0.1) for the interesting sequence a, =
(2n1g1g n)* corresponding to the law of the iterated logarithm. The method of
proof in this first result will serve as a model for the method to be used in proving
(0.1) for symmetric random variables.

THEOREM 1. Let E(X,*) < o0 and let ¢ > 0, then for all ()e R, P[S(, >
(1—e)2nlglgn)*io] = 1.

PRrOOF. Choose N so large that (1 —¢/3)/(1—a)* < 1 and ¢/(3(«)*) > 1+¢ where
lim, (Y-, NIIN**1) .

Received March 30, 1970; revised October 5, 1970.

! Research carried out with partial support of N.S.F. Grant GP-8194.
2 Research carried out with partial support of N.S.F. Grant GP-8502.

625

29 [

Ky

. ) . — Yo B
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [Pz

The Annals of Mathematical Statistics. MIKORY
WWw.jstor.org




626 LEONARD E. BAUM, M. KATZ AND H. H. STRATTON

Let () eR. By the definition of « we see that Sk is the sum of N* random
variables, where at least [(1—a)N*]([ ] = largest integer function) of these variables
did not appear in Sy, Sy, =+, Sive—1y. Denote the sum of [(1—a)N*] of the
variable that did not previously appear by S, and the sum of the rest of the
variables §,®. Thus Syiy = S,V + 5, where {S,} is a sequence of independent
random variables.

Now, letting o, denote the variance of X, truncated at N¥2, Theorem 4 of [3]
implies that

Y1 PLSY > ay(1—¢/3)(2N*1glg N¥?*] = 0
and
Y1 P[S? < —¢/30,(2N*1glg N*)*] < 0.
Thus by the Borel-Cantelli lemma
P[S,V > (1 —¢/3)(2N*1glg N¥)ti.0] = 1
and
P[S® < —¢/30,(2N*1glg N*)¥i.0.] = 0.

Thus P[Siyky = SV + 8, > (1—-2¢/3)0,(2N* 1glg N9 i.0.] = 1.
But o, _~ 1, and the theorem follows.

For the rest of this section the X,’s are assumed symmetric, and (0.1) is proved
under this assumption and the assumption that the a, are non-decreasing.

LEmMA 1. Let {A4,} and {B,} be two sequences of events, where Y P[4,] =
and P[B,] = o for all k. Further assume A, is independent of {4;}721 and {B;}i=1.
Then P[A;B,i.0.] = a.

Proor. If the conclusion is false, then 3 ¢ > 0, and m so that k = m+1 implies
P[U;—IAJ'BJ’] < a_é.
But
P[Ux ABi] 2 Y3 m PLAJ(2—P[Ben(Un " 4;B))])
by our assumption of independence and thus a contradiction results from the fact
ZP[A"] = 0.
LeMMaA 2. If for some ¢ > 1, 72| P[Scn > agusi] = 00, then
P[limsup (S¢my/an) 2 1] =1 forall ( )eR
(c" as a subscript means [¢"].)

PROOF. Since ¢ > 1, there exists m so that c—1 > ¢/(c™—1). By hypothesis,
there is a je {0, 1, 2, ---, m—1} so that Y™ | P[Scum+; > Goum+;+1] = 00, and
for convenience we assume this j = 1.

By the definition of m, Y iZ] ¢™*' < (c—1)c™, 30 we see Sium+1, contains at
least [¢*™] random variables that are not in Seeim+1y, I = 1,2, -+, k—1. Let the
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sum of exactly [¢*™] of these random variables be denoted by S¢.m,. Let 4, =
[S¢crmy > Qoem+1] and By, = [S(ck,,.+1)—S<ck,,.> = 0]. Then since the X,’s are sym-
metric, Lemma 1 shows P[lim sup (S cn)/@.» = 1] Z 4. Butlim sup S,/a, is an a.e.
constant and so the lemma follows.

LeMMA 3. Let P[S, = a,i.0.] = 1, let 2* > ¢ > 1 and let lim inf a,,+./a.. = L,
and 1im sup @,.+1/a., = M. Then lim sup (S . /a..) = max (L2, 1/M?) 2 % for
all ()eR.

PROOF.
Claim (i) Y52 P[Sen > $am+2] = 0 and
Claim (i) Yy P[Sin> Gen-1] = c0.
If (i) were false, then the Lévy inequalities would imply
Y %1 P[maxy <o (Sensi— Sen) > $aens2] < 00 and
Y1 P[max, < Sy > 4a.n+2] < 0,
which combined with 2¥ > ¢ implies
P[MaxX n+2<jcen+3S; > Genr2i0.] =0.

But the g, are non-decreasing and a contradiction results. (ii) is just a similar
application of the Lévy inequalities. But (i), (ii) and Lemma 2 verify this lemma.
So from Lemma 3, we see that lim sup (S, /a,) = % lim sup (S,/a,) and thus

COROLLARY 1. Iflim sup (S,/a,) = {5 © a.e., thenlim sup S, /a, = lim sup S,/a,
a.e. for all () eR.

(We note that the condition that lim sup (S,/a,) is + oo, or 0 a.e. can hold for
all @, — oo, for instance, if X; does not belong to the domain of partial attraction
of the normal distribution (see Heyde [4]).)

Let A = [{a,}:a, is non-decreasing and a(c) = lim (a..+,/a.) exists, finite or
infinite; for all ¢ > 1].

Standard arguments show that a(c) _» and either for all ¢ > 1, a(c) = oo, or for
all ¢ > 1, a(c) < oo. The latter happens if and only if lim,, a(c'/™) = 1. Note that
most of the interesting sequences are in A—e.g., a, = n, g n, n*, 1g 1g n, etc.

COROLLARY 2. Let {a,} € A with a(c) < 0. Y oy P[Sen > (1—€)a] = oo for
2% > ¢ > lande > 0if and only if lim sup S,/a, = 1 a.e.

Proor. First note that the above series being infinite implies

,.2 [Sc..>(l(_;) C..n] 0

1/m

and so Lemma 2 and lim, a(c'/™) = 1 give the desired conclusion. Conversely,
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Lemma 3 implies lim sup S_./a.» = (1—¢)/a®(c) for all ¢ >0 and 2* > ¢ > 1.
Thus

& (1-¢) ]
P|S,nz2——=a.|=0o
nzl [ aZ(c)
by the Borel-Cantelli Lemma and since lim,, a(c'/™) = 1 the proof'is complete.
THEOREM 2. Let {a,} € A. Then lim sup S,,/a, = lim sup S,/a,.

PRrooF. Straightforward application of Lemma 3.

2. Stronglaws. In this section strong laws for S () €IR, are considered.

ProPOSITION 1.

(@) Sy/n - Oae. forall ()eRiff EX;2 < .
(b) Let 1 < r = 2. There exists () €R so that Si,/n — 0 a.e.iff E|X,|" < .
() Let 1 <r <2 and Y, besuch thatElYll’ = o0, E Yll" < o0, g <r. Then

there exists () €R so that lim S,)/n — 0 a.e. implies E|X1 1 < oo forallqg < rand
Yieem Yi/n > 0 ace.

PROOF. (a) S(uy/n — Oae. iff Y2, P[|S,| > ne] < oo all ¢ > 0, but this is
equivalent to EX,*> < oo. Clearly, Sny/n — 0 ae. implies S, /n — 0 ae. all
()eR. (b) and (c) involve constructions. That the constructions work is an
immediate consequence of S, /[k*] — 0 a.e. iff E|X,|** /% This last equivalence
follows by the methods of [1].

To see (b) let « = 1/(r—1) and define () eR as follows:

(n) = {1st n even integers} n# [k*] some k.

= {1stﬂﬂ(—[§aModd integers} —

{lstﬂgka—:':i) odd integers} n = [k*].

Clearly S(,/n — 0 a.e. iff E|X,|" < co.
The following exhibits a rule for (c). Let r; _»r, k(j) = [k""V] and define
n(j) so that . . .
Ykzacy PUYEY) Yil > k(j)377] > 277,
Let
k()k()+1 k(j)(k(j)—1
) = {lst (j)(k(j)+1) ()( gj) )

> odd integers} — {lst

odd integers}

if n = k(j) and n = n(j) where if there is more than one choice for
k and j choose the representation with the smallest k.
= {Ist nevenintegers} otherwise.
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Analogs of the convergence rate theorems of [1] for S, are easily exhibited for
S¢ny - This follows since

S © S
P{sup,@,,l—;c—b—l > s} <y P[‘—-kil > 8}

If EX,;* < oo then lim sup S,/(2nlglgn)} = 1 and if EX,* < oo then lim sup
Seny/2nlg n)* =1 (see [2]).
Let 2 < ¢ < 4 and define
A, = {{a,}:a,—(q—2)1gn - — oo and for each n 3 N, so
that 21gn < ay, < 21g(n+1). N, is smallest such
integer}.

PROPOSITION 2. If E| X |* < o0, 21glgn < a, £ 2lgn and {a,} € A, there exists
a rule inR so that lim sup S,/(na,)* = 1.
The rules are obtained by a construction that depends on a result of Pinsky [5],
which is slightly in error as stated. In [5] it is actually shown that if E|X|* < oo
for2 < g < 4, then for ¢ > 0 and a sequence {a,} such thata,—(g—2)lgn - — oo

exp {—(1+¢)a,?/2} < P[S,/n* = a,] < exp{—(1—¢)a,?*/2}, n=n.

PROOF OF PROPOSITION 2. Define () as follows:
1 -1
{lst _nLn;j—_) odd integers}—{lst m(m2 ) odd integers} me {N,}

= {Ist m even integers} if m¢ {N,}.

(n)

Note lim,, &y, ; sup Si,,/(ma,)* < 1 by law of iterated logarithm for S,.
By the above result of Pinsky, for sufficiently small ¢ > 0

> P[SNH/Nﬁ_z (%ﬂg S exp{~(1+e)ay, 2}

n=ng n=no

and

5 el sumz (52an) [z 5 e -0-ga2)

n=no n=no

However, note that by the definition of (), {Sy,,} is a collection of independent
random variables and the result follows by the Borel-Cantelli Lemma.
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