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PROJECTION WITH THE WRONG INNER PRODUCT
AND ITS APPLICATION TO REGRESSION WITH CORRELATED
ERRORS AND LINEAR FILTERING OF TIME SERIES

By WiLLIAM S. CLEVELAND
University of North Carolina

1. Introduction. In many places in statistics one wants to calculate the orthogonal
projection Px of some vector x on a subspace 2. Oftentimes the inner product
function is specified by the unknown covariances C of a set of random variables.
The usual procedure is to estimate C by C* and approximate Px by P*x, the
orthogonal projection with respect to C*; that is, x is projected on £ using a
wrong inner product. There is, therefore, interest in knowing when P* will be a
good approximation of P.

In Section 2, the question of calculating orthogonal projections with the wrong
inner product in a general Hilbert space is investigated. The results are then
applied to the problem of regression with correlated errors in Section 3 and to
linear filtering operations on multi-channel, wide-sense stationary, stochastic
processes in Section 4.

2. Projection with the wrong inner product in a general Hilbert space. Let # be a
Hilbert space with inner product (-, -) and norm ||-|| = (-, -)%. Let [-, -], which
will be thought of as the wrong inner product, be a bilinear functional with the
following properties:

1 [-, -]is defined on 2 xZ where 2 is a linear subset of #

whose closure is #, [x, y] = [y, x], and for fixed x the linear
functional [x, -] on Z is bounded.

2) If z, is a sequence of vectors in # such that z, - z and z, is
a [-, -] Cauchy sequence, that is [z,—z,, z,—z,] = O as
n, m — oo, then ze 9.

In (1), it has not been assumed that [-, -] is a bounded bilinear functional.
Assumption (2) has been made to ensure that [-, -] is defined everywhere it is
possible to do so and maintain the properties in (1).

From (1), for fixed x € 9, the definition of the linear functional [x, -] may be
extended boundedly to all of s#. From the Riesz Representation Theorem
(Halmos, 1957, page 31) there exists y € 5 such that [x, -] = (y, -). Let B be the
mapping defined by Bx = y. Bis a linear and self-adjoint, and B is bounded if and
onlyif [, -]is a bounded bilinear functional.

Let 2 be a subspace of # and P the orthogonal projection operator onto 2.
Let 2* = N2 and let 2* be the set of all x € 2 such that [x, y] = 0 for all
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PROJECTION WITH WRONG INNER PRODUCT 617

y € P*. Let Z* be the set of all x € Z such that x = p+q with p e #* and g € 2*.
This decomposition of x will be unique if any only if [-, -] is positive definite on
P* x P*. For, suppose [, -] is not positive definite, that is there is a z € 2* with
z # 0 such that [z, z] = 0. Since the Cauchy-Schwartz inequality holds for [-, -]
(Helmberg, 1969, page 10), [z,y] = 0 for all y e #*. Thus ze 2* and x =
(p+2)+(q—2z) so that the decomposition is not unique. Suppose [-, -] is positive
definite and x = p’+¢q’ with p’ € #* and ¢’ € 2*. Then

O0=1[p+q'—p—q,p"+9'—p—q)l = [p'—p, p' =Pl +[9'—9,9" —4q]

which implies p’ = pand ¢’ = q.
The operator P*, orthogonal projection with respect to [-, -], will be defined in
the following manner. Let 4" be the set of vectors y € & such that [y, y] = 0.
Clearly /" is a linear space. Let z, be a Cauchy sequence in .4 and let z be the

limit of z,. From (2), z € 2 and
[z, z] = (Bz,z) = lim

(Bz, z,) = lim,_, (z, Bz,) = 0.

n— oo n— oo

Thus A4 is a subspace. Let N be the orthogonal projection operator onto 4.
Let x € Z* have the decomposition x = p+gq. Then define P*x to be p— Np. We
could have taken P*x to be any vector in p+.4~ or even all of them. However,
in the special cases of Sections 3 and 4, it is seen that p— Np, the vector in p+.4"
with the smallest norm, is a natural assignment.

(3) THEOREM. Suppose Z* = 2. Then P = P* on 2 if and only if BP* = P.
PROOEF. Suppose P = P* on Z. For all xe & and y € #*

(x, By) = (Bx, y) = [x,y] = [Px, y] = (BPx,y) = (Px, By).

Since P and (-, By) are continuous and & is dense in J#, (x, By) = (Px, By) for
all x € . In particular it holds for all vectors in the orthogonal complement of 2
in , which implies By € #; hence B#* < 2. To show equality, we first prove
2* = 2 and B is one-to-one on 2*. Let ye . Since Z is dense in A, there is a
sequence y, € Z with y, — y; thus Py, - Py = y. But Py, = P*y, € 2* so that
P* = P Suppose that for some x € 2*, Bx = 0. Then [x, y] = 0 for all y € 2*
which implies P*x = 0. But P*x = Px = x. Thus B is one-to-one on 2*. The
facts that #* = 2 and B is a one-to-one self-adjoint transformation on 2* with
BP* < 2 together with (Helmberg, 1969, Theorem 6, page 121), imply BP* = 2.

Suppose B#* = 2. Let x € Z then for all y € #*, (x, By) = (Bx, y) = [x,y] =
[P*x, y] = (BP*x,y) = (P*x, By). Thus (x, z) = (P*x, z) for all ze B#*. From
the hypothesis, this last equality may be extended to all ze 2, which implies
P*x = Px.

The following inequality is due to Kantorovich (1948, page 142).
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(4) LeMMA. Let 0 <a, L a, - L a, < ooandc; Z0 fori=1,---,n Then

n n
Z ¢a; Z ciai—l =
i=1 i=1

and equality holds for the proper choice of c;.

The inequality of the following theorem is an addition to the class of relatives of
the Kantorovich Inequality in a Hilbert space (cf. (Mond, 1966)).

(5) THEOREM. Let x € D*. Let

o = inf{[z’ 2, ze@} and o, = sup{[—z’—Z]: ze@}.

@2 (2 2)
Then
[lx—P*x|? _ (@1 +a)”
x—Px||* T 4o, :
2 ) b

where the right side of the inequality is assigned the value o if either «; = 0 or
o, = 00; and the left side of the inequality is assigned the value 1 if both numerator
and denominator are 0, and the value oo if the denominator is O and the numerator is
not. The inequality is best in the sense that the left side can be made arbitrarily close
to.the right by the proper choice of 2 and x.

PrOOF. If ; = 0 or a, = oo the inequality is clearly true. Thus assume a; > 0
and a, < co. In this case 2* = Z = H# since [-, -] is defined on all of # x#
in view of (2), and [-, -] together with the elements s is a Hilbert space. If
P*x = Px the inequality is clearly true since the right side is =1. Thus assume
P*x # Px. Let z; = x—Px and z, = P*z,. Note that neither z; nor z, is O since
P*x # Px. Let R be the orthogonal projection operator onto the space spanned
by z,, and R* the orthogonal projection operator with respect to [-, -]. Since
P*z, = z,and P*Px = Pxwehave

6) z;,—R*z, = x—P*x.
Since (z4, z,) = 0, we have Rz; = 0 and thus
@) z,—Rz; = x—Px.

From (6) and (7) there is no loss of generality in assuming £ is one-dimensional,
x is orthogonal to 2, and ||x|| = 1. Let y be a basis for &, where ||y|| = 1. Let &
be the space spanned by x and y. Then Px = 0 and P*x = ([x, y]/[y, y])y and

I e O | S29%
[Jx— Px]|? b,y
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Since the quadratic forms Q(v) = (v, v) and Q,(v) = [v, v] for v € ¥ are non-
singular with respect to each other, we may coordinatize # so that if » corresponds
to the two-tuple v, v, then

0,@) = |v1|2+|02|2 and Q,(v) = ﬁ1|U1|2+ﬂzlvz|2a

where B, = min {Q,(v)/Q,(»): ve S} and B, is defined similarly with min re-
placed by max. Let x correspond to x,, x, and y to y,, y, then

y = 1+[ﬂ1x1)71 +ﬁ2x2)_’2]2.
ﬁ]l)ﬁlz‘*‘ﬁzl)’zlz

Since ||x|| = ||y]| = 1 and (x, y) = 0, we have |x,| = |y,| which implies

o= ﬁ12IY1|2+ﬁZZIY2|2
(ﬂ1|y1|2+ﬂ2|)’2|2)2.

Letting a; = B; and c; = B;|y;|*/(B1|y1]*+ B2|y2|*) we may apply (4) with the

result that
(By+B2)?
®) “=Tu5p,

The inequality of the theorem now follows from this and the fact that f;, = a,
and §, < a,.

It will now be shown that the inequality cannot be improved. (We are still
assuming o; > 0 and a, < 00.) For a; = a, it is obvious. Thus assume o; < a,.

For e > 0, let u, v € 2 be such that

lIA

u,u )
[ ]<a1+e and [—]>a2—e.

(u, u) (v, v)
Clearly u, v are linearly independent for ¢ small enough. Now let .¥ be the space
spanned by v and v. Then 8, < a;+¢and 8, > a,—e¢. But from (4) equality holds
in (8) for the proper choice of y,, y,, which shows the inequality cannot be im-
proved for the case «; > 0 and a, < 0.

If [-, -] is positive definite on £ x £ and either «; = 0 or &, = oo then by a
proof analogous to that in the previous paragraph it may be shown that the
inequality cannot be improved.

Suppose x € Z is such that [x, x] = 0 and x # 0. Let £ be the space spanned by
x then Px = x and P*x = 0. Thus the inequality cannot be improved in this case.

(9) COROLLARY.
(o —aty)?
4o 00,

(ot _0‘2)2

_ p*y||2
Ipx—Pea® o

||x—Px|]* < e P

PRrOOF. The first inequality follows easily from (5) and the equality ||x—P,*x 2
||x—Px]||* +||Px—P*x||*>. The second follows from the fact that ||x—Px
|[x—P*x||2.

2

IA



620 WILLIAM S. CLEVELAND

3. Regression with correlated errors. Suppose x = x,, ---, X, has a multivariate
normal distribution with mean m and nonsingular covariance matrix C. Suppose m
lies in 2, a subspace of Euclidean n-space &. The norm (¥, »)* = ||y|| = (*C~'»)%,
where y € &, is oftentimes referred to as the Mahalanobis distance. It provides a
measure of the distance of two normal populations with the same covariance
matrix C, in the sense that the closer the means of the two populations under
this norm, the more difficult it is to discriminate them (Rao, 1965, Section 8e).

Thus if 72 and m* are estimates of m, a measure of their proximity is || —m*||.
In fact, if 72 denotes the posterior mean of m under the assumption that the prior
on m is uniform, then # is the vector in 2 which minimizes ||x—p|| as p ranges
over 2. (mm is also the Gauss—-Markov estimate even if normality is not assumed.)
That is, 2 = Px where P is the orthogonal projection operator onto #.

Suppose, however, that C is not known but C* is available where C* is a non-
singular approximation or estimate of C or perhaps just a convenient choice, as in
least squares estimation. Now suppose m is estimated as above with C replaced by
C*. That is, [y, y] = »(C*)~ 'y’ and m is estimated by m* = P*x, where P* is the
orthogonal projection operator on & with respect to [, -].

In the notation of Section 2, let ## be the subspace of & spanned by x and £.
Let o, and a, be defined as in (5). Then (5) provides a bound for ||x—m*||/||x—n'1”
and (9) gives a bound for ||n‘1—m*||, the Mahalanobis distance between 7 and m*.
(Compare this with (Watson, 1967, page 1685).)

Instead of choosing # as above we can take # = &. This, in general, results in
less sharp bounds for a particular x and £, but bounds which now hold whatever
the choice of x and 2. From (5), these bounds are in fact best among all bounds
which do not depend on x and £. The operator B of Section 2 is C(C*)~! and
o, and a, are the minimum and maximum eigenvalues of this operator. Clearly
in this example 2* = 2 and C(C*)™'® = C(C*)™'2 so that from (3), m* = m
if and only if C(C*)™!2 = 2, a result first proved by Kruskal (1968).

4. Linear filtering operations. The calculation of projections, in particular linear
predictions, interpolations, and signal extractions, in the space spanned by a
multi-channel, wide-sense stationary time series X, has received great attention
since the initial works of Wiener (1949) and Kolmogorov (1941). The theory
is based on the assumption that the spectral distribution matrix of X, is known.
But it is not really known in practice, and the traditional remedy is to estimate the
matrix and then calculate the projections as though the estimate were the true
matrix. ‘

Suppose X, is an r-channel process. Let F(4) = [F;(4)] be the rxr spectral
distribution matrix of X,, where — o0 < 4 < oo if X, is a continuous parameter
process and 0 < A < 1 if it is discrete parameter. Let F*(1) = [F*;(4)] be an
estimate of F(J). Assume »;_, F*;; is absolutely continuous with respect to
Yi=1 Fjj.

Any projection in the Hilbert space spanned by the process can be described as a
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projection in #,(F), the Hilbert space of vector functions v(1) = v,(4), ---, v,(4)
such that

o> = S5k=1 § 0,0nd) dF (D) < <o,

where the range of integration is — oo to oo if X, is continuous parameter and 0 to 1
if it is discrete (Rosanov, 1967, page 28). Let m be any measure such that Zj-:l Fj;
is absolutely continuous with respect to m. Let f(1) = (dF/dm)(A) and f*(1) =
(dF*|dm)(4). Then

o] = [ o) £ (Dv'(2) dm(2),

where v'(4) denotes the transpose of v(4).
To apply the results of Section 2, we let # = #,(F) and define [-, -] by

[w, 0] = [ u() f*(D)'(2) dm(2),

so that @ is the set of v € &, (F) with [v, v] < o0. Using F* in place of Fto calculate
a projection is equivalent to using [-, -] in place of (-, -). It is easily seen that
assumptions (1) and (2) hold, and the operator B maps v to u, where u at the point
Als

) = [M] o).
oD f B )

With these definitions, the results of Section 2 may now be applied.
The values «,; and «, in (5) can be written in terms of fand ' * as shown by the
following theorem.

(10) THEOREM. Let

RN
A,(A) = min {ng—(%)%? 1 c=c¢y, 0, 0, acomplex r-tuple}

for all A. Define A,(2) similarly with min replaced by max. Then A, and A, are m-

measurable. Let {{ = ess, inf A;(1) and {, = ess, sup A,(A), where ess inf and sup

are with respect tom. Then oy = {, and oy, = {,. If f(A) is nonsingular, A(A) is the

minimum eigenvalue of f *(A)f ~1(A) and A,(A) the maximum.

ProoF. Since the complex r-tuples with rational real and imaginary parts are
dense in the space of r-tuples with norm (&f (A)c’)?#, the minimum in the definition
of A;(A) may be taken over such rational ¢. Thus A, is m-measurable since it is the
minimum of a countable number of m-measurable functions. Similarly, A, is
m-measurable.

Since for each A, A,(4) is the maximum eigenvalue of f*(4) with respect to
f(2), there exists an eigenvector e(4) = e,(4), --+, e,(4) such that

e(D) f*(2) = Ay(Ae(d) f (A).
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It is easy to specify a routine for choosing e(1) to ensure that e is m-measurable.
Also e(1) may be chosen so that |e j(l)| < 1, since a constant times an eigenvector
is also an eigenvector.

Now if ve 2,

[v, 0] = § (&) £ *(A)'(A) dm(2)

o) S KA () =

= 2 f (W' (A) dm(4

f BT (O P dm
= Gl

That {, = a, will be proved by exhibiting a sequence v, e .%,(F) such that
l|o]] = 1 and [v,, v,] - {,. Define the set S, as follows: if {, = o then

S, = {A: Ay(A) > n};
if {, < oo then

S, = {,1: AR > cz—}z}.

There exists an m-measurable subset 7, of S, with positive m measure such that
T, is contained in a bounded interval. Let T, also denote the indicator function
of the set 7, and define v,(1) = ||T,e|| ' T,(De(4). v, € Z,(F) since e and T, are
m-measurable, ej(,l)| < 1, and T, lies in a bounded interval. Now

[0, 2] = [ A (R)0,R) £ (D), (2) dm(2)

so that
ess infl,r, T,(DAL(A) = [0, 0,] < ess sup; T,(DA,(D) < 0.
Since the left side tends to {,, so does [v,, v,].
A similar proof shows o, = ;. The final statement of the theorem is a well-
known fact (Rao, 1965, page 15).
A special case of F and F* deserves comment because of its frequent occurrence

in practice. Suppose that X, is a discrete parameter process, m is Lebesgue measure,
and

pd = f(4) < pal

for all A where [ is the rx r identity matrix and p,, p, are positive constants. A
common way of obtaining f * is to assume X, is a kth order autoregression

A X+ A X+ + A X = W,
where the £ x k& matrices A; are such that the roots of the polynomial in z

det [Ao+ A z4 -+ A,z"]
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lie outside the unit circle, and W, is r-channel white noise; that is, EW, W, = I
for t;, = t, and O for #; # ¢,. For such a model

f(l) — (A0+A1€2ni)'+"'+Ak€2ni“)_1(A0/+A1l€_2ni}”+~"+Akl€—2"i“')—1

(cf. Whittle, 1953, page 125). The parameters A, ---, A, are estimated by
Ao*, -+, A* and f*(2) is formed by replacing 4; by 4;* in the above expression
for f(4).

The adequacy of the autoregressive model is then checked by calculating the
fitted residuals

W*=A* X +A* X+ +A4*X,

and checking them for the white noise assumption. If / * is to be used for calculating
projections then from (5) and (10) the model is adequate if

Lt (D)

4oy, 40,8,

is nearly 1. Let A(1) be the derivative of the spectral distribution matrix of W *
with respect to Lebesgue measure. It will be shown below that if ®,(1) is the
minimum eigenvalue of A(4) and ®,(A) the maximum, then ®,(1) = A, (1) and
®,(A) = A, (A). Thus letting ¢, = ess, inf®,(1) and ¢, = ess, sup ©,(1) we
have ¢, = {, 'and ¢, = ¢, ' sothat

_ @it a)
4616,

Thus o can be estimated by calculating the fitted residuals and estimating succes-
sively h(2), ®,(4) and ®,(4), ¢, and ¢, and finally «.
To see @ (1) = A, 1(A), let

A*(Q) = Ag*+ A * ¥ oo A, F 2R

Itis easily seen that
h(2) = A*(A) f (1) A*' (= ).

Now ®, ~!(4) is the maximum eigenvalue of
N2 = (¥ (=) AN,
which has the same maximum eigenvalue as
(A*@) A (=) TR =S,

which from (10) is A,(4). A similar argument shows ®,(1) = A, ~!(1).

As in Section 3, we can define # to be the space spanned by x and £ rather
than all of Z,(F). The new o, and «, will give better bounds, but bounds which
now depend on x and £ and which might not be easily expressed in terms of fand f*.
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