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THE LAW OF THE ITERATED LOGARITHM FOR
EMPIRICAL DISTRIBUTIONS'

By HELEN FINKELSTEIN
University of California, Berkeley

A law of the iterated logarithm is derived for the empirical distribution
functions of a sequence of independent identically distributed random
variables. Convergence is in the uniform topology on the space of functions
on the reals with discontinuities of the first kind only. The proof depends

_on a law of the iterated logarithm for independent identically distributed
vector-valued random variables.

1. Introduction. Let X, X,, --- be independent identically distributed random
variables defined on a probability space (Q, #, P) with distribution function
F(x) defined in an interval [a, b]. Let & = &[a, b] be the space of functions on
[a, b] with the norm sup, ]f(x) for fe & and distance (f, g) = sup, |f(x)—g(x)| for
fe&andgeé.

Suppose X, has finite expectation EX, and finite variance V2 Let S, be the
function in & defined as follows: S,(i/n) = Y i- [(X,—EX;)/V]fori=0,1, -, n,
and S, is linear in the intervals [i—1/n, i/n] for i = 1, 2, ---, n. Then Donsker’s
Theorem states

1 .
(1) =S, — B in distribution
n

where B is standard Brownian motion in &. Strassen proved in [4] that with
probability 1 the sequence [S,/(2n log log n)*],=3, 4, ... is relatively compact in
& and the set of its limit points is the set of functions fin & such that

@) f(0) = 0,

(i) f'is absolutely continuous with respect to Lebesgue measure, and

(iii) fo(f)* = 1
where f” is the derivative of f determined a.e. with respect to Lebesgue measure.

For w e Q and x €[0, 1] let F,(w, x) be the empirical distribution of the X; at
stage n; that is, nF,(w, x) is the number of X;(w), X,(w), ---, X,(w) which are less
than x.

Let £ be the space of functions on [0, 1] which are right continuous and have
left limits everywhere. Give 2 the Skorohod topology: let the distance between
two elements, f and g, of & be

A= 2|+ 12 —ell)
where A is the set of strictly increasing continuous mappings of [0, 1] onto itself
and ¢ € A is the identity map. Then if X;, X,, --- have the uniform distribution

inf,, (
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608 HELEN FINKELSTEIN

on [0, 1] the analog to (1) in the case of empirical distributions is #*(F,(w, x) —nx)—
p(x) in distribution where f(x) is Brownian motion tied to 0 at time 1.

It is reasonable, then, to expect an analog to Strassen’s theorem in the case of
empirical distributions. Theorem 1 provides this result for variables with the
uniform distribution on [0, 1]. Theorem 2 is a generalization of Theorem 1 to
variables with an arbitrary distribution function.

2. The law of the iterated logarithm for empirical distributions. Let X, X,, -
have the uniform distribution on [0, 1]. Let

_ nFy (o, X)—nF(x)

G (o, x) =
@ X) [2n log log n]*

Let K be the set of elements f of &[0, 1] such that
(1) f(0) = /(1) =0,

(ii) fis absolutely continuous with respect to Lebesgue measure, and
(iii) Jo(f)* =1

where f” is the derivative of fdetermined a.e. with respect to Lebesgue measure.

THEOREM 1. There is a set Qo € F such that P(Q,) = 1 and for all v € Q, the
sequence (G (W, ))n=3, 4, --- IS relatively compact in & and the set of its limit points
is K.

The compactness of K is a consequence of the following lemma, due to Riesz
([2] page 75).

LEMMA 1. Let f be a real-valued function on the unit interval. The following two
conditions are equivalent:

1. f is absolutely continuous with respect to Lebesqgue measure and
fo(/)? £ ¢ < oo,

s L) — . 2
2. -(—ﬂ);')—];(x‘—_—l—))— < c¢ for every finite partition {xq, x{, -+, x,} of [0, 1].
=1 i~ X1

Chung ([1]) and Smirnov ([3]) proved independently that if the distribution
function of X; is continuous

) lim sup,, (sup, G,,('~, x) £ tae.

The anomalous factor 4 is explained by the following property of K, which follows
from Lemma 1:

©) (fs+D=f(s)* S tl-1) < 4

for0 < s < s+¢ < 1andforall fe K.
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PrOOF. Rearrange the function f as follows: Let
9(x) = f(x+95)—f(s) for 0= x <y
=f(x—0)+f(s+1)—f(s) for t £ x £ s+1¢,
= f(x) for s+t < x £ 1.

Then g is also an element of K. Applying Lemma 1 to g yields (g(¢))* < t(1—1).
But g(r) = f(x+0)—f(t). ]

PROOF OF THEOREM 1. The proof of Theorem 1 depends on the bound (2) and on a
generalization of the Law of the Iterated Logarithm for sums of independent
real-valued random variables (Lemma 2).

LEMMA 2. Let Z, Z,, --- be independent identically distributed random vectors
with values in m-dimensional Euclidean space R™, with

EZ, =0
@) EZ,\Z," = I" (the m-dimensional identity matrix).

Let
Yi-1Z;

~ (2n log log n)* °

n

Then with probability 1 the sequence (¥,),-3, 4, ... is relatively compact and the set
of its limit points is

B, = {xeR™ Hx|| <1}
where || . H is the Euclidean norm in R™.

PROOF OF LEMMA 2. Lemma 2 is true if m = 1, i.e. if the Z; are real-valued. If T
is a bounded linear functional on R™, then TZ,, TZ,, --- are independent identically
distributed random variables with E(TZ,) = 0 and E(TZ,)* = ||T“ by (4), so

(5) limsup, TE, = ||T|| a.e.

Since the conjugate space R™ = R™ of R™ is separable, lim sup, T £, = ||T|| for
all T e R™ with probability 1. Choose a point w € Q such that lim sup, T E,(w) =
||T|| for all Te R™. Then lim sup, ||£,(w)|| = 1.

Suppose lim sup, ||E,(w)|| = L +#. There is a sequence of functionals {T,},
with ||T,|| = 1 for all n, such that lim sup, T, £, = 1+#. Since {T'e R":||T|| = 1}
is compact the sequence {T,} has a limit point L. ||L|| = 1 and lim sup, L E(w) =
1+#. Then by (5) n = 0, so

(6) limsup, ||E,|| = 1 with probability 1.
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Let S, = {ze R™:||z|]| = 1}. Suppose z, € S,, and let Tox = {x, z,> for x € R™
where <X, y> = Z;"=1 XiV; for x = (xl) R} xm) and y = (yla Tty ym) in R™,

@) lim sup, <Z,, zo> = 1 as.
Let x ¢ R", and for 0 < 6 < 1let ||x|| < 1+d and {x, zo> = 1—0. Then
(8) [[x—zo||* = [[%[]2+ [|z0]|* = 2¢x, zop < 56.

Then (6), (7) and (8) imply that z is a limit point of (£,),—5, 4, ... with probability
1. Therefore with probability 1

C) the set of limit points of (X,),3 4... contains S,,.

Let 7 project R™*! onto R™ as follows: 7t(xy, -, Xpm, Xms1) = (x4, =+, X,,) for
(xla U Xmt 1) eR"ML,
Let Y, Y,, - be independent identically distributed variables with mean 0,
variance 1, and which are independent of the Z, for i = 1, 2, ---.
LetZ, = (Z;, Y;). Then nZ, = Z,. Let

' Z'il=1 Zi/

Yoo izt B
" 2nloglog n]*
X, =nx,.

Now (9) is true for all m; in particular, with probability 1 the set of limit points of
the sequence (X,'),- 3, 4, ... contains S,,, ;. Then with probability 1 the set of limit
points of (X,),-3, 4, ... contains n(S,,,,) = B,,. Since (6) implies that the set of
limit points of (X,),-3, 4,... is contained in B, with probability 1, Lemma 2
follows. []

Choose a large integer m, and divide [0, 1] into m equal subintervals J;, =
[i+1/m, im] fori =1,2,---,m. Foreachn = 1,2, --- and i = 1, 2, ---, m define

Y,

ni

=1 if X,el;
=0 if X,¢1,.

The vectors Y, = (Y,,, Y,,, -, Y,,,) are independent identically distributed
random elements of R™ with

1 1
EY1 — <_’ ...’—>’ E(Yl —EYI)(Yl—EYl)T =TI
m m .

where I is the matrix (y;;)i=1,.. ., m, j=1,.... mand
1 e
yij:;l_;l'i if i =j;

1 .
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LEMMA 3. With probability 1 the sequence

<2?=1(Y.~—EY.~)>
n=3, 4

[2nlog log n]*
is relatively compact and the set of its limit points is
C,={xeR" x = (x;, , Xn):Zx; = 0 and Tx;* < (1/m)}.

PrROOF OF LEMMA 3. The range of Y, —EY, is the hyperplane # defined by
Ymix; =0 for x = (xq, -, X,,) € R". There exist a linear transformation T
from R™ ! to # and independent identically distributed random vectors
Z,,Z,, - in R" ' with EZ, = 0and EZ,Z,” = I ' such that

Y,—EY, = TZ,
fori=1,2, .

For any vector a € 2, al' = (m™Y)a, so the transformation T can be chosen to
be the composition of an isometry with multiplication by the scalar m~!. Then
T(B,,_;) = C,,. Lemma 2 can be applied to the Z;, and the application of T to the
result yields Lemma 3. []

Let H, (-, x) be the linear interpolation of G,(-, x) between the points x = i/m
fori = 0,1, -, m. Thatis H, ,(w, x) = G,(w, x) when x = i/mfori =0, 1, ---,m.
H, (o, x)is linearin I; = [((—1)/m, i/m] fori =1, ---, m.

LEMMA 4. There is a set Q, in F such that P(Q,) = 1 and for all w € Q, for all
fixed m as n — oo the sequence (H, ,(®,-)),=3, 4, ... is relatively compact in & and
the set of its limit points is

Jw = {feK:fis linear in I; fori = 1,2, ---, m}.

Proor oF LEMMA 4. First, observe that

i i—1 ZZ=1(Yki—EYki) .
o AT PN IUS Ttk N S P N
(10) "’"'(m) "’m< m ) [2n log log n]? o "

Let .#,, be the space of continuous functions on [0, 1] which are 0 at 0 and linear in
the intervals /; for i = 1, 2, ---, m. Give &, the uniform topology. So H, ,(w,-)
is an element of .&,,.

Let ¥ be the mapping from %, to R™ which maps fe .#,, into the vector
(f(lm)=f(i—=1)/m));=1, 2, .. m- Then (10) and Lemma 3 imply that there is a set
Q,,. in & such that P(Q,,,) = 1 and for all w € Q,,, the sequence

(VHn,m(w"))n=3, 4, ...

is relatively compact in R™ and the set of its limit points is C,,. Since V'is 1 —1 and
bicontinuous, for all weQ,, the sequence (H, ,(®,")),=3 4, ... is relatively
compact in & and the set of its limit points is V" *(C,) = J,. Then Q, =

ﬂror?=1 le' D
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Let fe K and let geJ, be its linear approximation: g(x;) = f(x;) for
i=0,1, -, m It follows from (3) that for x e [;

g(x)=f(x) = |f(xi)_'f(xi—- 1)| + If(x) —f(x;- 1)|
< 2/m?.
Then J,, is a good approximation to K in the sense that for all f€ K there exists a
g €J, such that || f—g|| £ 2/m*. So Lemma 4 implies
COROLLARY 1. For all w € Q,

(i) the sequence (H, (@, ))n=3, 4,-.. is relatively compact,
(i) the set of its limit points is contained in K, and

(ili) for allfe Kand all ¢ > 0, if m > %e* then sup,,. 1]|H,,,,,,(co, x)—f(x)| <e
infinitely often as n —» .

LEMMA 5. For each integer m and eachi = 1,2, ---, m there is a set Q,,; in & with
P(Q,,) =1 and for each w€Q,,; there is a positive integer N(w) such that if
n > N(w)

Supxeh |Hn, m(w’ X)—' Gn(w9 X)l < l/m%
PROOF OF LEMMA 5. Fix m and i. Let

d(n, ) = [2n log log n]* sup,;, |H,, n(®, x)—G,(, X)|.
Let %(0) = 0

. i1
v(n) = l’lF,,(‘, —l>—nF,,<‘, l—-> forn=1,2,
m m

v(n) is the number of X, ---, X, which fallin /;. Foralln = 1,2, .-
(11) v(n) = vin—1)+1 if X,el;;

= v(h—1) if X,¢1;.
By algebra

(12) d(n,) = sup,ep,|nF,(-, x)—nF,,<-, :)- v(n)m(x—l——1->[.

m m
It can be seen from (12) that d, depends only on those X; out of X}, ---, X, which
fall in I;.

Let k £ j, <j, < - <j, £ K be positive integers. Let 4 be the set in & on
which out of Xj, Xy .y, -+, Xgall of X;, X, -, X;,» but no others, take values
in I;. The joint conditional distribution of X;, X;,, -, X; given 4 is just the
distribution of p independent random variables with the uniform distribution
on I;.
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So in order to examine the distribution of d, define X,*, X,*, --- independent
random variables with the uniform distribution on I;. Let F,*(w, x) be the
empirical distribution of the X;* at stage n. Set

—1
40, ) = S ) - 2= )

Let A(z) = [2z log log z]*.
If (S5 Se11, o5 Sk) 1S @ sequence of possible values of (v(k), v(k+1), ---, v(K))
according to (11), the set

B = {v(k) = s, vik+1) = 5,1, -+, V(K) = s¢}
is of the form of the set A4 above with p = s —s,. Then the conditional probability
(13) P{d(n,-) > A(v(n)) forsomen:k <n < K| B}
= P{d*(s,-) > A(s) forsomes, < s = s¢}.

Let S be the set of all possible sequences of values of v(n). For se S let
$ = (5);=1,2,.... Then (13) implies

(14) P{d(n,) > A(v(n)) for some n:k < n < K}
= [sP{d*(s,-) > A(s) forsome s:s, £ s < s¢}P(ds)

where P, is the distribution of (v(#)),=1,2,.. ..

Let C = {sesS: lim,s, = co}. By the Strong Law of Large Numbers,
P,(C) = 1. Then application of the Monotone Convergence theorem to (14) letting
K 1 oo then k T oo yields

P(lim sup, {d, > A(v(n))})
=JcP(lim sup,, {d*(s,, -) > A(s,) )P,(ds)
= [cP(lim sup{d*(s,-) > A(s)})P,(ds).
But (2) implies that P(lim sup,{d*(s, -) > A(s)}) = O; therefore
(15) P(lim sup,{d(n, -) > A(v(n))}) = 0.

The Strong Law of Large Numbers implies that

Av(n) 1
16 o N — as. asn — .
Then since
d(n, -
SUP yer, [ Hy w2 X) =G, X)| = ,{(n)) ’

(15) and (16) imply Lemma 5. ]
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To prove Theorem 1, consider the set

Q, = Q, ﬂ(ﬁ :Qi,,,).

m=1i
PQ,) = 1.

It follows from Lemma 5 and the corollary to Lemma 4 that for all w € Q,

(i) the sequence (G,(w, -)),=1,,, ... is relatively compact,
(ii) the set of its limit points is contained in K, and

(iii) for all fe K and all € > 0, sup,o,1; | Gu(@, X)—f(x)| < ¢ infinitely often as
n— . ]

3. An application of Theorem 1. Let K be the set of functions f € 2 such that
@ f(0) = /1) =0,

(ii) fis absolutely continuous with respect to Lebesgue measure, and
(iii) fo(/)?* = L
Then
1

(17) supsex(fo /%) = — -

The extreme value is attained by f(x) = (2}/rn) sin (nx).

ProoF. Since K is uniformly compact there is a function, say A, for which the
sup is attained.
By Calculus of variations there is a constant A (a Lagrange multiplier) such that

(18) Jah(G0) f(x) dx+ 2 () £(x) = O

for all functions f € & satisfying (i) and (ii).
Let f(x) = sin (nx) in (18). Integrating by parts

(19) 8/ (x) cos (nx) dx = mfoh(x) sin (nx) dx.

The function /# can be chosen so that the right-hand integral is not zero. Then
(18) and (19) yield
_ —Joh(x)sin (nx)dx  —1

(20) A= 2 [Sh(x) sin (nx) dx 2

If & maximizes [3f? in K, then [o(h')* = 1. Setting f(x) = h(x) in (18) and
using (20) we get .

1
Jolh(x)P = =2 =—=. 0

T
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The bound (17) implies the following corollary to Theorem 1:
COROLLARY. With probability 1
JolFu(, x)—nx]? dx

lim su :
P log log n ot

4. A generalization of Theorem 1. Let X,, X,, --- have a continuous distribution
function F(x) defined on an interval [a, b]. Let K, be the set of functions
f€ &la, b] such that

(i) f(a) = f(b) = 0,

(i) f'is absolutely continuous with respect to F, and

(iii) {5 (df[dF)* dF < 1 where (df/DF) is the derivative of / with respect to F
defined a.e. with respect to F.

THEOREM 2. There is a set Qp € F such that P(Qp) = 1 and for all w € Qy the
sequence (G (w, -)),=3 4, .. is relatively compact in &[a, b] and the set of its limit
points is Kg.

ProOF oF THEOREM 2. Theorem 2 can be proved using the arguments used in the
proof of Theorem 1 with a few changes. For example the intervals ; should be
redefined as follows: let x,, x4, ---, x,, be points in [a, b] such that F([x,_,, x;]) =
I/m for i=1,2,---,m. Let I, = [x;_, x;] for i = 1,2, -, m. The functions
H, , must also be redefined as the interpolation of G, between the points x;
according to F’; that is,

H, (-, x) =G, x) fori=0,1, -, m
Forxel,, i=1,2, -, n,
Hy (5 %) = Go(5 Xio ) +m(F(x) = Fx;- ONGo(x1) = Go(x;- 1))
The remaining changes should be obvious.
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