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0. Summary. Tests of marginal homogeneity in a two-way contingency table
given by [1], [3], and [13] do not seem to lend themselves easily to extension to the
problem of m-way marginal homogeneity in an N-way r X rx --- X r contingency
table, m < N. The principle of minimum discrimination information estimation
and the associated minimum discrimination information statistic applied in [5]
to the problem of marginal homogeneity in an rXxr contingency table can be
easily extended to the case of a multidimensional contingency table. Estimates of
the cell entries under the hypotheses of m-way marginal homogeneity are given.
Relationships among the tests of homogeneity for m-way, m = 1,2, ---, N—1,
marginals are given by an analysis of information. Numerical results are given for
two sample 3 x 3 x 3 tables, and two 5x 5 tables.

1. Introduction. In the study of the association between the characteristics in
an r x r contingency table a particular hypothesis of interest is that of symmetry
of the cell frequencies about the main diagonal. Bowker [2] who gave a large
sample chi-square type test for the null hypothesis of symmetry noted that
“the weaker hypothesis of equality of marginal distributions would also be of
interest, especially in the absence of symmetry; this problem appears to be some-
what more difficult to handle by straightforward methods.”” Stuart [13] considered
the problem of marginal homogeneity. Since the two marginals are not independent
the usual test of homogeneity of independent samples is not applicable. It was noted
by Stuart [13] that the likelihood-ratio principle yields an intractable result in this
case. Stuart defined a test statistic which is a quadratic in the differences of the
corresponding marginal values, with matrix the inverse of a consistent estimate of
the covariance matrix of the differences under the null hypothesis. Stuart’s statistic
is asymptotically distributed as y* with r—1 degrees of freedom under the null
hypothesis of marginal homogeneity.

Bhapkar [1] considered the problem of marginal homogeneity using his result
that Wald’s statistic [14] is algebraically equivalent to the y,? statistic of Neyman
[12] for testing linear hypotheses in categorical data. Bhapkar [1] proposed a test
statistic which is also a quadratic in the differences of the corresponding marginal
entries with matrix the inverse of a consistent estimate of the covariance matrix
of the differences even if the null hypothesis does not hold. Under the null hypo-
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thesis of marginal homogeneity Bhapkar’s statistic is asymptotically distributed as
x? with r —1 degrees of freedom.

Caussinus [3] defined the hypothesis of quasi-symmetry and showed that
quasi-symmetry and marginal homogeneity together imply and are implied by
symmetry. Caussinus gave maximum likelihood estimates for the cell frequencies
of an observed contingency table under the hypothesis of quasi-symmetry, and a
chi-square type statistic for the test of this hypothesis. He proposed the difference
between the chi-square type statistics for symmetry and quasi-symmetry as the
test for marginal homogeneity.

In [5] the principle of minimum discrimination information estimation [6], [7],
was applied to obtain RBAN estimates of the cell frequencies of an rxr con-
tingency table under the hypothesis of marginal homogeneity. The associated
minimum discrimination information statistic which is distributed asymptotically
as y? under the null hypothesis provides a test of significance.

The tests of marginal homogeneity in a two-way table given by [1], [3], and [13]
do not yield estimates of the cell frequencies under the hypothesis and do not
seem to lend themselves easily to extension to the problem of marginal homo-
geneity in an N-way r x r --- x r contingency table as does the method based on the
principle of minimum discrimination information estimation. The m-way,
m=1,2, -+, N—1, marginals are examined for homogeneity, and relationships
among the associated minimum discrimination information statistics given by an
analysis of information.

In [5] the solution to the problem of minimum discrimination information
estimation of the cell frequencies in an r x r contingency table under an hypothesis
of marginal homogeneity was obtained by a direct formulation using Lagrange
undetermined multipliers. Although such a direct approach should also be applic-
able to the case of multidimensional contingency tables, it turns out that a two-step
approach using certain results from [6] is more convenient algebraically.

The results of [6] that we shall need are summarized in the following two theo-
rems. For convenience we give the results in terms of a four-way table, but the
results generally are readily apparent.

THEOREM 1.1. Given a contingency table n(ijkl), i = 1,---,r, j=1,-,5 k =
Loty I=1,,u n(ijkl) >0, Y>> n(ijkl) = 1. Consider all contingency
tables p(ijkl) of the same dimensions. The minimum value of the discrimination
information

(1.1) Kp:m) = Y33y plijkl) In (p(ijkD) [n(ijkl)
(a) when the one-way marginals

(1.2) pl-),  pCj-),  pCke),  p(- 1)

are given is attained for

(1.3) p¥ip *kl) = a()b(j)c(k)d(Dn(ijkl),

222> po*kl) = 1,
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where the parameters a(i), ---, d(l) are determined so that p,* satisfies the marginal
restraints and

(L4) A(p;*:m) = Yp(i ) Ina(i)+3;p(-j- ) In b(G)+ Yup(- -k-) In e(k)
+2p(+ 1) Ind(l);

(b) when the two-way marginals

(1.5) p@j--), pli-k-), -+, p(- k)
are given is attained for
(1.6) ' p2*:po*(ijkl) = a(ij)b(ik) -+ fkDn(ijkl),

2222 p2 kD) =1,

where the parameters a(if), ---, f(kl) are determined so that p,* satisfies the marginal
restraints and

(L) Hpa*m) = TYpGi- ) In alii)+ -+ Y, Y up(- -kl) In fkl);

(c) when the three-way marginals

(1.8) pGjk-), — pG-kD,  p(j-D),  p(-jkl)
are given is attained for
(1.9) p3*:p3*(ijkl) = a(ijk)b(ikl) --- d(jkl)n(ijk),

YY YN pa*(ijkl) = 1,

where the parameters a(ijk), ---, d(jkl) are determined so that py* satisfies the
marginal restraints and

(1.10) I(ps*:m) = 3.3 2 p(ik ) In a(ik) + -+ Y343 up(-jkl) In d(jkl).

THEOREM 1.2. If n(ijkl) in Theorem 1.1 is p(ijkl) = x(ijkl)/n, where x(ijkl) is the
observed number in the ijklth cell of a contingency table with ¥y > x(ijkl) = n,
the minimizing set p*(ijkl) is a RBAN estimator and the minimum discrimination
information statistic

(L11)  2nl(p*:p) = 2ny.y 3" p*(ijkl) In (p*(ijkl)|p(ijkl))
= 2 Y'Y x*(ijkl) In (e*(ijkl) | x(ijkD)) = 20(x*: x)

where x*(ijkl) = np*(ijkl), is asymptotically distributed as ¥* with appropriate
degrees of freedom under the null hypothesis.

2. Marginal homogeneity. (a) One-way marginals. Let us consider the speci-
fications of Theorem 1.1 with r = s = ¢ = u. Suppose there is now imposed the
marginal homogeneity requirement that

2.1) p ) =p(-i--) =p(-i)=p(i),
Yupli-) =1, i=1,2 - r,
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then the minimum value of (1.1) over all p(ijk/) satisfying (2.1) may be obtained by
minimizing (1.4) subject to (2.1), that is,

(2.2) %) = In a(i)b(i)c(i)d(i) —In a(r)b(r)c(r)d(r) = 0, i=1,2, - r—1
or
(2.3) a(ib(i)c(i)d(i) = a(r)b(r)c(r)d(r) = y,, i=1,2,-r—1
Hence (1.3) now becomes
(2.4) pi*(ijkl) = % n(ijkl)yy,

_yyyy d0RG)ek) a(i)b(j)e(k) (k).

a(hb(De(l)

where the parameters a(i), b(j), c(k) must satisfy the marginal homogeneity
restraints

b(jek) als)ek) .
2.5) a(i)Y ;D ud s~ 20b0e) n(ijkl) = b)Y 44— 2060 n(sikl)

_ asp)
= DL Gyt "

a(,)b(,)c(l)z 2 i2xa()b()e(k)n(sjki), i=1, .

and
(2.6) I(p *:7) = In y,.

There is presented in Section 3 a convergent iterative procedure for determining
the values given in (2.4).

(b) Two-way marginals. Suppose there is now imposed the marginal homogeneity
requirement that

then the minimum value of (1.1) over all p(ijkl) satisfying (2.7) may be obtained
by minimizing (1.7) subject to (2.7), that is

ol(p,*:m)

@8) FGD)

= In a(ij)b(ij) --- f(ij)—1In a(rr)b(rr) --- f(rr)=0,

or

@.9)  alipby) -+ fi) = a(rr)b(rr) - flrr) = y,,  i=1,rj=1,r=1
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Hence (1.6) now becomes

e
Q10 k) = S gy,

a(ij) - e(jl) ..
I/ZZZZM n(ijkl),

where the pararheters a(ij), --+, e(jl) must satisfy the marginal homogeneity
restraints

Y2

b(ik) --- e(jl)
a(kl) - e(kl)

AIlil) - esl) iy =
a(jDb(jl) -+ e(jl)

a(si)b(sk) --- d(ik)
a(kj)b(kj) - e(kj)

a(ij)Y )y n(ijkl)

(2.11) = b(ij)Y o

= e(lj)ZsZk

1 . . U
= mzszta(ﬂ)b(ﬂ) e e()n(sti), i,j=1,--r,

n(sikj)

and
(2.12) I(pZ*ITE) = In V2.

There is presented in Section 3 a convergent iterative procedure for determining
the values given in (2.10).

(c) Three-way marginals. Suppose there is now imposed the marginal homogeneity
requirement that

(2.13)  pljk-) = p(ij-k) = p(i-jk) = p(-ijk), 3.5 Siplik-) = 1,

Lj,k =1,-r

then the minimum value of (1.1) over all p(ijk/) satisfying (2.13) may be obtained
by minimizing (1.10) subject to (2.13), that is,
ol(p;3*:m)

(2.14) ———— = In a(ijk)b(ijk)c(ijk)d(ijk) — In a(rrr)b(rrr)c(rrr)d(rrr) = 0,
op(ijk -)

or

(2.15) a(ijk)b(ijk)c(ijk)d(ijk) = a(rrr)b(rrr)e(rrr)d(rrr) = ys,

Lj=12-rk=12--,r—1
Hence (1.9) now becomes

oo allbiletk])
2.16) Pa*ikl) = o i),
k) - c(ik]
y = UYYYY LI kD ),

a(jkl) - c(jkl)
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where the parameters a(ijk) -, c(ikl) must satisfy the marginal homogeneity
restraints

. b(ijl)c(ikl) ..
W 2 e necery " k)
. a(ijs)c(isk) ..
2.17) - bUK) L oo TBsR k) " SK)
= W) Y a(sij)b(sik)c(sjk)n(sijk), i, j, k, =1, r,
and
(2.18) I(p%:7) = In y;.

There is presented in Section 3 a convergent iterative procedure for determining
the values given in (2.16).

3. Iterative procedure. (a) One-way marginals. The solution of (2.4) and (2.5)
may be obtained by cycling through the iterations

G(... j)pBm 3
1) P )pti ) . "
pCr (k) = (p(3")(i ) PO Gjkl)y, Cm

p(3n+ 1)(_.‘j)p(3n+ l)p(.l_ )
p(3n+1)(.j, .)p(3n+1)(. . .[)

Pk = <P(3"+2)(' - kpCr (- 1)

G PTG = ( ) P (i 7D

p(3n+2)(. -k-)p(3"+2)(- . 1)
where the y’s are normalizing factors so that for example

w p(3")(. . -i)p(3")(l- . ) 1 o
(3.2) 7O = I/ZZZZ (p(sn)(i. SpB(- 1)) POV kD),

and in (3.1) and the similar iterations (3.4), (3.6)
(3.3) pOijkl) = n(ijicl).

(b) Two-way marginals. The solution of (2.10) and (2.11) may be obtained by
cycling through the iterations

(5n) i\ (5n)
b 1)res pm (- i)pM(k- )
P(5 +1)(lel) = ( EOYaT, / (5n)
P )Pt kD)

(Sn+1)( . :pAn(Sn+1) +
w42y b4 (- -ik)p (k-1-) ni 1)y s .\
(34 pC" Akl = <p(5n+1)(i.k')p(5n+l)(. k) POk lyy,

%
) p(3"+2)(ijk/)}'1(3"+2)

+
> PP (ijkl)y, "

(5n+4) i1\, (5n+4) 3
ot S)pss p (--jDp (k-0 Ay .
e (kD) = <p(5"+4)(~j~l)p(5"+4)(- “kT) Pe N (ijklyy, >t
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where the y’s are normalizing factors so that for example

(Sn) AN E1)] kl- )\
3.5) p,5" = 1/2222( (5,,)51.]..’];;5")5”/(1;) PO ijkl).

(c) Three-way marginals. The solution of (2.16) and (2.17) may be obtained by
cycling through the iterations

Q3n) o 3n)¢ 5 +
. PP k) (GKI-) ) "
p(3 +1)(Ukl) = ( (3")(ijk')[7(3")('jkl) p(3 )(Ukl)))3(3 )

PO DR UG DN iy e
(3"+1)(U'1)p(3"+1)('ﬂ€1) Y V3

P A ikDpCrr (kD) %p“"”)(ijkl))’ (3n+2)
p(3n+2)(i_k1)p(3n+2)( -jkl) ’

where the y’s are normalizing factors so that for example

3ny _ PO iikypCr (kN By as
G.7) 7" = 13D <p(3")(ijk')p(3")(~jkl) PO (ijkl).

The fact that the iterations converge to the corresponding p*-distribution may be
shown by the same procedure as the proof of the convergence for the two-way
table given in [5] and consequently details are omitted here.

(36 pIkD) =(

POkl = (

4. Analysis of information. Certain interrelationships among the various
information values will now be derived.

THEOREM 4.1.
I(p3*:m) =2 I(py*:m) 2 I(p,*:m)
PrOOF. Theorem 4.1 is an immediate consequence of the fact that
4.1 2.13) = (2.7) = (2.1).
THEOREM 4.2.
I(pp:m) = H(pp:pn*) +1(pp*:7)
where p,,, m = 1,2,3 is any contingency table p(ijkl) with homogeneous m-way

marginals and p,* is the minimizing distribution as described in Section 2.

Proor. For notational convenience the proof of Theorem 4.2 is given for
m = 2, the proof for the other cases being similar. Since

DI - el il
I(po*:m) = 3.3 3 pa*(ijk]) In Zgllil))b((lkz) mei{k)l))’z =Iny,

B . a(ij)b(ik) - e(jl)
4.2) = Y>>y p,(ijkl) In DD D

p2*(kl)

- ST stk n 220D
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it follows that

Pz (Ukl)
ijkl)

(4.3) I(p,*:m)+1(py:py*) = Y.3.9.9 p,(ijkl) In

+ETEYpait) I 52— 1(p3:m,

THEOREM 4.3.
((pr*:ﬂ) = ](pr*:pm*)—i_l(pm*:n)’ m = 1’ 2, Y r_lo

Proof. THEOREM 4.3 is an immediate consequence of Theorem 4.2 since the
p,*-distribution has homogeneous m-way marginals for m = 1,2, ---, r— 1. In fact,
in view of (2.4) and (2.6), (2.10) and (2.12), (2.16) and (2.18), it is seen that Theorem
4.3 may also be written as

(4.4) Iny, =Iny,+In y_,’ m=1,2.,r-1

Vm

THEOREM 4.4.
I(ps*:p*) = Lp3*:p2*)+1(p2*:py ™).

ProoF. Theorem 4.4 readily follows from THEOREM 4.3 by using different values
for m, and indeed Theorem 4.4 may also be written as

4.5) mZ =mBimlz,
Y1 Y2 71

It should be noted that (3.4) will yield the same values for p,*(ijk/) if the iteration
starts with p©@(ijkl) = p,*(ijkl); the differences will appear in the associated
parameters, that is

sy - QNbGk) - e(jl) .
P2 D = bty ety VD2

_ AG))B(k) - EGD .
(4.6) = AKDBK]) ~~E(kl)p1 (k1) y21

_ AGHB)) -+ EGD  a(i)b(j)e(k) (kD)
— A(kDB(kD) -+ E(kl) a(D)b(l)c(]) KE)Y17V215

A(i)B(ik) --- E(jI
@7 1 = VEYEY oo p kD,

4.8) Y2 = V1721
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Similarly (3.6) will yield the same value for p;*(ijk/) if the iteration starts with
pOGjkly = p,*(ijkl) or p©(ijkl) = p,*(ijkl); the differences will appear in the
associated parameters, that is,

Rk
Ps ™ UKD) = D BGRTeGT)
AT BGiC(kD)

4.9) = AGKDBORDCGRT, p2*(ik)y3,

n(ijkl)ys

_ AUjk) - C(ikl) AG) - E(jl)

= Gk - CUKD) 4G — By Pt KD 121732

_ A@jk) - C(ikl) AG) --- EGD) a(@) -~ c(k)

= AGKI) - C(kl) Akl - EkT) a(l) - e(l) n(ikl)y1721732>

A(ijk) -~ C(ikl
(4.10) 152 = VXS 0o o3° kD,

(4.11) Y3 = Y1Y21V32 = Y2V32-

Thus (4.5) may also be written as

4.12) In y,173, = Iny3, +1nyy,
and (4.4) as
(4.13) Iny1921732 * Vee-1) = 1N P1Y21732 *** Vim(m—-1) T 10 Ve

m=12,.,r-1

A property of the iterative procedure similar to that just mentioned is also described
in ([8] page 174).

Let us now take n(ijk!) = p(ijkl) = x(ijk/)/n and use the notation in Theorem
1.2, also using $,, and %, in this case for y,, and y,,.. Corresponding to Theorem
4.3 and Theorem 4.4 the following relations exist among the minimum discrimi-
nation information statistics,

4.14) 20(x,*:x) = 2I(x,*: x,,*) +2I(x,,* : %), m=1,2 - r—1,
(4.15) 2U(x3*:x,*) = 2(x3*:x,%)+ 2l(x,* 1 x %).

In (4.14) and (4.15) the terms of the form 2I(x,*: x) are interaction-type measures
of the marginal homogeneity hypotheses and the terms of the form 2/(x,*: x,*) are
effect-type measures. The interaction-type measure is a comparison of an estimated
table with the original table and the effect-type measure is a comparison of estimated
tables under different constraints, and is a measure of the effect of the differences
in the constraints. For a discussion of interactions and effects as above see [8].
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Note that an interaction-type measure may be analyzed into the sum of an inter-
action-type measure and an effect-type measure, while an effect-type measure may
be analyzed into the sum of effect-type measures.

In accordance with Theorem 1.2 the minimum discrimination information
statistics are asymptotically distributed as x> under the null hypothesis and the
relations may be summarized in the analysis of information Table 4.1. The degrees

TABLE 4.1

Information d.f.

2I(x3*:x) =2nlny;+2nln 3y, +2nln s, 3r—1D)+5(r—1)2+3(r—1)3

2U(x3*:x,* = 2nln s, 3(r—1)3
2I(x,*:x) = 2nlny;+2nln sy 3r—1)+5(r—1)2
2I(x,*:x,*) = 2nln 9, 5(r—1)%
2I(x,*:x) = 2nlnj, 3(r—1)

of freedom in Table 4.1 follow from the argument in ([4] page 928) (see also
[6] page 187 or [8] Table 3.1]) setting #» = s = ¢t = w and noting that in the four-way
table, in the case of homogeneity, %, depends on three parameters a(i), b(j), c(k),
9,1 depends on five parameters A(ij), B(ik), ---, E(jl), and %3, depends on three
parameters A(ijk), B(ijl), C(ikl).

5. Examples. For the first example two observed 3 x 3 x 3 contingency tables
x(ijk) and the corresponding x, *(ijk) tables are given to illustrate the procedures
and results. The observed tables were obtained by sampling from a table with
nonhomogeneous marginals to get Table 5.1a and from a table with homogeneous
one-way marginals to get Table 5.2a.

TABLE 5.1a
x(ijk)

k 1 2 3 1 2 3 1 2 3 x@..)

223 24 6 40 42 2 19 4 12 372

26 3 18 18 30 24 12 16 164 311

277 33 33 83 290 32 34 33 185 1000

x(.j.) 343 405 252
x(.. k) 394 356 250
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TABLE 5.1b
x1*(ijk)
j 1 2 3
k 1 2 3 1 2 3 1 2 3 %G .)
1 228.8  30.1 89 265 339 1.9 19.0 49 174 371.4
i 2 36.5 96 170 21.0 223.7 7.3 3.8 202 166 355.7
3 18.9 2.7 18.9 8.4 17.1 16.3 8.5 13.8 168.3 272.9
2842 424 448 559 2747 255 313 389 2023  1000.0
x*(.j.) 371.4 356.1 272.5
x*(. . k) 3714 3560 272.6

For the values in Tables 5.1a and 5.1b it was found that 2/(x,*:x) = 52.55,
which as a x? with 2(3—1) = 4 degrees of freedom leads us to reject the null
hypothesis of one-way marginal homogeneity, as we should for these tables. For
the values in Tables 5.2a and 5.2b it was found that 2/(x,*:x) = 6.23, which as a

TABLE 5.2a
x(ijk)
J 1 2 3
k 1 2 3 1 2 3 1 2 3 x(i..)
1 229 27 15 22 39 2 18 5 16 373
i 2 34 15 17 18 212 13 6 26 16 357
3 1 1 28 7 14 20 8 13 168 270
274 43 60 47 265 35 32 44 200 1000
x(.j.) 377 347 276
x(.. k) 353 352 295
TABLE 5.2b
X1 *(ijk)
j 1 2 3
k 1 2 3 1 2 3 1 2 300 x %))
1 229.7 24.4 11.6 23.9 38.2 1.7 19.8 49 13.6 367.8
i 2 349 13.9 13.5 20.1 2127 11.1 6.8 26.4 13.9 353.3
3 13.1 1.1 256 9.0 162 199 104 152 168.5 279.0
2777 394 507 53.0 267.1 327 37.0 465 196.0 1000.1
x1*C.j.) 367.8 352.8 279.5
xi1*(.. k) 367.7 353.0 279.4
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x* with 4 degrees of freedom leads us to accept the null hypothesis of one-way
marginal homogeneity, as we should for these tables.

It is of interest to remark that the population table from which Table 5.2a was
obtained by sampling was formed by starting with a table with nonhomogeneous
marginals and using the iterative procedure to generate a population table with
homogeneous marginals.

For the second example we use the data in Table 5.3a given by Mosteller [11]

TABLE 5.3a
Data from [11] [9] [10]

Status category of son’s occupation
1 2 3 4 5

1 50 45 8 18 8 129

Status category 18 17 16 4 2 57
of father’s 2 28 174 84 154 55 495
occupation 24 105 109 59 21 318

3 11 78 110 223 96 518
23 84 289 217 95 708

4 14 150 185 714 447 | 1510
8 49 175 348 198 778

6 8 69 201 246 530

106 489 459 1429 1017 | 3500
79 263 658 829 562 | 2391

Upper numbers are British counts
Lower numbers are Danish counts

TABLE 5.3b
Estimate under marginal homogeneity

Status category of son’s occupation

1 2 3 4 5
1 50.236  38.569 7.088 15.113 5.775 116.781
Status category 18.069  22.947 19.780 4.471 2.194 67.461
of father’s 2 32978 174.821 87.242  151.572 46.542 493.156
occupation 17.917 105.404  100.216 49.041 17.132 289.711

3 12,533 75812 110:519 212.324 78.587 489.775
18.748  92.068  290.113 196.937 84.622 682.489
4 16.832 153.844 196.140 717.370 386.133 1470.319
7.213  59.406 194316  349.340  195.087 805.362
5 4195  50.102 88.785  373.947  412.940 929.969
5.512 9.882 78.060  205.576  246.948 545.977

116.774 493.148  489.775 1470.326  929.977 3500.000
67.459 289.707  682.485  805.366  545.983 2391.000
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with reference to Levine [9] [10] who studied Glass’s British and Svalastoga’s
Danish occupational mobility data. The upper numbers in the cells are the British
counts showing the joint distribution of father’s and son’s occupation distributed
into five categories, the lower numbers are the Danish counts in the corresponding
categories. In Table 5.3b are given the estimates under the hypothesis of marginal
homogeneity. For both the British and Danish counts twelve iterations were

needed to reach the criterion that the difference between corresponding marginals
be less than 0.01.

For the British counts it was found that 2/(x, *:x) = 32.95 and for the Danish
counts 2/(x;*:x) = 18.38, which as chi-squares with 4 degrees of freedom lead
us to reject the null hypothesis of marginal homogeneity. This inference would be
consistent with the existence of occupational mobility in both countries.

Acknowledgments. I am indebted to Mr. Yehuda Molk, Mr. E. W. Zedlewski,
and Mrs. Marian Romer Fisher for programming and computation.
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