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CORRECTION NOTE

CORRECTIONS TO
“STRONG CONSISTENCY OF CERTAIN SEQUENTIAL ESTIMATORS”

By ROBERT H. BERK
Rutgers University

In the above paper (Adnn. Math. Statist. 40 1492-1495), the main consistency
result (Theorem 3.4) uses Theorem 2.7 to justify the assertion that #* =
I 1lim; %, = {J,Q}. However, Theorem 2.7 as stated is incorrect: €* =
I lim €y, can properly contain %y _. Proposition 1 below illustrates an instance
of this. To get around this difficulty, Proposition 2 below gives a sufficient condition
that ¢* = {J, Q}. The condition is seen to hold for a large variety of examples,
including those considered in the paper.

PROPOSITION 1. Let N be a random index and let N, = max {N,n},n = 1,2, ---
Then for any decreasing sequence {€;} with €, = | lim; €, {N,:1 £ n < o0}
is C-ordered and €y, L %(% ,, (N < 0)), the o-field generated by % ,, and the set
(N < o0).

Proor. If Ce %y,
(1) C=Y7Cu(N, =k)uC,,N, =)
=C,(N = n)u Y C(N = k)UC (N = 0),

where C,, ¢ €, 1| < k < oo and we write C,, = C, and C_, = C_, (note that the
latter set does not depend on n). Clearly any set in %, is of this form (with
C,=Chpi1 = Cpiy), 50 Gy, =%y, Thus {N,:1 =n £ 0} is C-ordered.
Let C* = | lim,%y. We note that for all n, ¥, = €y and (N < o) =
(N, < w)€ €y, Hence ¢* > %#(%,, (N < )). This already contradicts Theo-
rem 2.7, which asserts in this case that ¥* = €.

To establish the reverse inclusion for €*, choose C € ¥*. Then for all n, C has a
representation as in (1). Fix m. For n > m, it follows from (1) that C(N £ m) =
C.N £m)=C/(N £m). Thus liml, =1 on (N = m). Let C,, = limsup
C,e%,. Then C(N £ m) = C, (N £ m). Letting m — oo then shows that
C=C,,.(N<w)ul, (N =) Thus ¢* < (%, (N < ©0)). ]

We note that if N is a stopping time in Proposition 1, then so are the N,. Thus
Theorem 2.7 is not even true in general for C-ordered stopping times. If one adds
the hypothesis N, < oo with probability one, Theorem 2.7 is true and the proof
given is valid. (Whether the theorem remains true under the weaker hypothesis:
for all i, N; < oo with probability one, is not known. Note that in Proposition 1,
N, < oo with probability one if and only if N < oo with probability one and then
€* = € ,,.) Of course the case of primary interest in the paperis N, = o0, so some
suitable alternative to Theorem 2.7 seems necessary.
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In the sequel we assume the structure of Section 3. Moreover, all random indices
are assumed to be ./, measurable. Let ¥, denote the permutation group on the
first n positive integers and let £ = ( J, ), be all finite permutations of the positive
integers. An element ¢ in T acts on (xy, x,, ---) by sending it into (x,;, X452, =*).
For a random index N, welet gN = N°¢~ 1. Note that o(N = k) = (6N = k) and,
since the {x;} are i.i.d., N and oN are equidistributed.

DEFINITION. A random index N is called tail-symmetric if for every ¢ in X there
is an integer p so that N and oN coincide on (N > p, oN > p). That is, for all
k>p, (N=k)(N>p,oN > p)= (6N = k)(N > p,oN > p), or

2) Vk>p,(N=kaoN >p)=(6N =k,N > p).

Of course such a p, if it exists, is not unique. Then we denote by p(c, N) the least
positive integer p for which (2) holds. A collection {N,;} of random indices is called
homogeneously tail-symmetric if each is tail-symmetric and for every ¢ in Z,
sup; p(a, N;) < .

PROPOSITION 2. Suppose Ny = N, < --- are C-ordered and lim N; = + o0
with probability one. If, in addition, the {N;} are homogeneously tail-symmetric, then
Gy, | €% = (2.0}

Proor. The C-ordering implies that %, decreases, to ¥*, say. Choose C e ¢*.
Since Ce€ 6y, C = ZC(N; = k), where C, € 6,1 = k £ co. Choose an integer
m, an element ¢ of X, and let n = max {m, sup; p(c, N)}. Then C(N; > n) =
%on CN; = k), where C, € 6, for all k > n. Thus ¢{C(N; > n)} = cC(cN; >
n) = Yysn C(oN; = k), since for k > n = m the sets in %, are I, -invariant.
Thus

(3) oC(oN; > n)(N; > n) =Y 45, C(6N; = k)(N; > n)
=Y onCu(N; =k)(@N; > n) = C(N; > n)(oN; > n),

where the second equality in (3) follows from homogeneous tail-symmetry. Since
N; and oN; are equidistributed, it follows that ¢N; T + oo with probability one.
Letting i — oo in (3) then shows that 6C = C with probability one. Since g € X is
arbitrary, that ¥* = {J, Q} follows from the Hewitt-Savage 0-1 law. (]

REMARK. Since the %y, decrease, it is enough for the conclusion of Proposition 2
to hold that some infinite subset of {/V;} be homogeneously tail-symmetric.

Theorem 3.4 is then correct if one adds the requirement that the stopping times
{t;} be homogeneously tail-symmetric. We show next that the structure assumed in
Theorem 3.5 assures this, in addition to the C-ordering. Specifically, we isolate the
following sufficient condition that a random index N be tail-symmetric.

PROPOSITION 3. Suppose there are sets {D,}, D, € B(z,, X,11, ***), S0 that for all
n,(N > n) = (\{ D Then N is tail-symmetric and if o € X,, p(o, N) < n.
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PrOOF. Choose n, 6 € X, and k > n. We note that (N = k) = D, (s~ D; and
that for i = n, D, is T -invariant. It follows directly that

(N =k,oN >n)=(oN =k,N >n) =D,c ("' D, (i~ {D;naD;}. []

REMARK. In Theorem 3.5, the condition of Proposition 3 is satisfied for ¢; with
D, = (v, ¢ V,;). Thus such {¢,} are homogeneously tail-symmetric.

Regarding the examples, it is easily seen that Proposition 3 applies to (i), (iii)
and (iv). In example (ii), it is easily checked that {t;} is homogeneously tail-
symmetric. In fact, if o € £, then for i > n, at; = t,.



