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0. Summary. One of the strongest features of conventional sample survey theory
is that very little needs to be assumed about the form of the population distribution.
Hartley and Rao (1968) and Ericson (1969) have recently developed a Bayesian
approach to sampling from finite populations that shares this feature. In this note,
the resulting posterior distribution of the population elements is shown to approach
normality for a broad class of prior distributions when the population size N
and sample size n increase so that n — o0 and N—n — 0. In most cases this leads
to the same large-sample interval estimates for population moments as the usual
approach invoking the Central Limit Theorem for random sampling from a finite
population (Madow (1948), Erdés and Rényi (1958), Hajek (1960)).

1. Introduction. Following Godambe (1955), Hajek (1959), and others let U
denote the finite population of N identifiable individuals, U = {1, 2, ---, N} say,
and let S be the set of all subsets s = U. There is an unknown value Y, associated
with each individual i € U. A subset s is selected from S with probability prescribed
by a given sample design (i.e. a given probability measure on S) and the value of ¥
is observed for each i€ s. We want to say something about the vector of popu-
lation values Y = (Y, Y, ---, Yy) given the outcome (s, Y;; i €s).

The basic assumption made by Hartley and Rao (1968) and Ericson (1969)
is that Y; takes values only in a finite set {y,, y,, ---, »,}. Since k can be made
arbitrarily large this simply corresponds to the realities of practice. Any symmetric
function of (Y,, Y,,---, Yy) such as a population moment is a function of
N = (N, - Nk)(zk = N) where N; is the number of individuals i e U with
Y; = y;. Let n; be the number of sampled individuals ies with Y; = y,. If
Y., Y, -, YN are exchangeable random variables, so that every permutation
of Yy, Y5, -+, Yy has the same prior distribution, it can be shown that the posterior
distribution of N depends on the outcome {s, ¥;;ie€s} only through n =
(ny,ny, - nk)(Z" n; = n) and that the conditional density of n given N is

(1) p(n|N) =TT GG

for any sample design p(s). If the prior distribution is not exchangeable n is not
sufficient for N and there is additional information in knowing which individuals
were sampled and the particular value associated with each. Moreover the con-

ditional distribution of n given N, and hence any posterior inference based only on
n, depends on the sample design p(s). It is common survey practice to deal with
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major departures from exchangeability by stratification and, within each stratum,
to record only n or some function of n such as the sample mean and variance,
regarding the loss of information as negligible. The conditional density (1) and the
resulting inferences remain valid provided the sample design assigns equal prob-
ability to each subset of n individuals (i.e. simple random sampling).

The remaining element is the specification of a prior distribution for N. Ericson
(1969) has considered the broad class of exchangeable distributions generated by
supposing that Y, ---, Yy are independent and identically distributed conditional
on some parameter 6 and averaging over the marginal distribution of 0. This leads
to a compound multinomial distribution for N here. In particular, Ericson takes
the mixing distribution to be Dirichlet, which is mathematically convenient since the
posterior distribution of N—n given n is also of the Dirichlet-multinomial form.
Hartley and Rao arrive at the same posterior distribution in a slightly different way.
In general, a mixed multinomial distribution with arbitrary weight function, W(p)
say, has density

Ni k
e) 109 =7 [ o

where the integral is over the simplex R = {p: p; = 0, Yh p; = 1}. When this
prior density is combined with the conditional density (1), it follows that the
posterior distribution of N—n is also of mixed multinomial type with weight
function given by

(3) de(P) = H{( Pj"J dW(p)/jR prjnde(P)-

In the next section we examine the limiting form of the posterior distribution of
N as n and N—n become large with n;/n approximately constant.

2. Limiting form of the posterior distribution. Following the usual formulation
of the central limit theorem for finite populations (Hajek (1960)), we consider a
sequence of finite populations indexed by v in which the number of sampled
elements, n,, and the number of unsampled elements, N,—n,, both increase without
bound as v — co. If the prior distribution of N, has a density of the form (2) the
posterior distribution of N,—n, given n, has characteristic function

4 E(exp (i) (Nyj—n)t) = [ [pe+ 2521 pj eIV "™ dW,(p)

where dW ,(p) has the form given in (3). Suppose that n,; = n,n;+O(1) as v > oo
(so that r; is the limiting sample proportion of y;) and that W(p) is absolutely
continuous with density w(p) continuous in a neighbourhood of p = n. Let

nv%(ij - anvj/nv) k .
NN, —n)E Zluvj:(), i=1-k

u



LARGE-SAMPLE POSTERIOR DISTRIBUTIONS FOR FINITE POPULATIONS 1115

THEOREM. Asv — 00, u, = (1, Uy, ", U,_) converges in distribution to a
(k —1)-variate normal distribution with mean zero and covariance matrix ¥, = (0:))
where

0, =n(l—m), i=j

= —77.’,~7tj, i # j.
PRrOOF. From (4), the characteristic function of u, is
(5) Qv(t) = .[Sv Av(Y)Bv(y) dY/j'Sv AV(Y) dy
with

yi=nipi=m), S, ={y: Xy Sntn,y 2 —ntng =10 k1),
Ay) =[]t + n, Tyl iw(n+ n, " ty)
and
B,(y) =exp[—in, ¥(1 =/ ) YA ' n;t Y5 (n;4+n, 7 Ey))

exp(in,*N, "} (N, —n,)"*t)) + me4+n, "ty ¥
where f, = n,/N,.
It follows that

A\y) = [Hf(l+”v_%J’j/7Tj)n"+O("vnI)J"VW(”'*'”V_%Y),
= {1+ A= DR8N = (8 ) (Y]
+2n,4+0(n,” %)} w(n+n,” ty),
= w(m)exp[—y'Z™"y/2]+5,(y).

and
! =AY ity A gt 2=k mty)?2)]
BV(y): + N,—n B N,—n
0 -3 O(N. — —3)Nv—n,
I P
N,—n, N,—n,

=exp [ —/t'Zt/2+i(1 _fv)%Z{‘_ Lyt 1+ v(y)

where both 6,(y) and y,(y) converge to zero uniformly in any hypercube H =
{y: |yj =L j=1,-,k—1}asv— oo.In addition, the contribution to the two
integrals in (5) from values of y in H’, the complement of H, can be made arbi-
trarily small simultaneously for all v by choosing L large enough. For, letting

H,' ={p:|p;=mn,;| > Ln,"%,p; 20,34 p, =1},
|f A¥)B(Y) dy| < [u A(y) dy
=n,k7 D2 jHV’ Hlf(Pj/”j)MW(P) dp
S KSR my=m T 16 p,™ L dp
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for some constant K, since w(p) is integrable. Using Tchebychev’s inequality for a
Beta random variable and Stirling’s approximation, it follows that this last term
is less than or equal to K,L~* for some constant K.

Therefore

1
2

lim,_,, fs, A,(y)dy = (2n)*~V"?|Z

and
lim, ., [s,4,(y)B,(y)dy = lim,_,, exp (—/,t'Zt/2)
' Jexp(i(1—=f)F Y5 yit;—y' 27 'y/2)dy
=(2n)* " D2|Z|fexp (—t'Et/2)

and this completes the proof.

If k = 2 and w(p) is a Beta density the posterior distribution of N,—n, belongs
to Polya’s class of contagious distributions. If we add the condition f, — f(0 <
f < 1) the theorem follows from the limiting form of this class given by Polya
(1931). An analogous result in the classical frequency sense has been given by
Hartley and Rao (1968) for the sample values n,; with simple random sampling.

CoROLLARY. If ¥, =Y ¥ N,;y;/N, is the population mean and §, =Y tn,;y;/n, and
S =0 n,y?—n3H/(n,—1) are the sample mean and variance, then
n,3(Y,—3,)/(1—1£,)%S, converges in distribution to a standard normal random
variable.

This gives a direct analogue of the central limit theorem for random sampling
from finite populations, though the restriction that Y, ; takes values only in a
finite set means that Y,; is bounded, which is much stronger than the Lindberg-
type condition imposed by Hajek (1960).

Norte. If w(p) is discrete with dW(p;) = wi(i = 1, ---, m) let p, be the value
of p(;, that minimizes

D =(pyy—m) X" (i)~ ™ (i=1,m),
and let

y‘n: =pr1tjyj and S‘n:z =Z{‘pnjyj2—y‘n:2'

Then it follows that

Nv%(}?v—fvyv_(l _f;'))_;n)

(1 _f;!)%sn

converges in distribution to a standard normal random variable. If f, — f as
v — oo the posterior variance of Y, is of order N, * rather than n,~*.

3. Concluding note. Not all exchangeable distributions for N, belong to the
class of mixed multinomial distributions. However it is meaningless to consider
the limiting form of the posterior distribution if the members of the associated
sequence of prior distributions are quite unrelated to each other. It is natural to
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require at least that the sequence be consistent in the sense that the marginal
distribution of a subpopulation formed by choosing N,; of the N, elements in the
v,th population at random should be identical to distribution for the v,th popu-
lation. Hald (1960) has called a sequence of distributions with this property
reproducible, and shows that for & = 2 the condition implies that the sequence is
equivalent to a sequence of mixed binomial distributions with constant weight
function. The argument extends immediately to k& > 2, as a consequence of
de Finetti’s Theorem.
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