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ON MEMORY SAVED BY RANDOMIZATION

BY MARTIN E. HELLMAN! AND THOMAS M. COVER?

Massachusetts Institute of Technology
and Stanford University

0. Summary. It is known that deterministic automata are generally not optimal
in the problem of learning with finite memory. It is natural to ask how much
memory is saved by randomization. In this note it is shown that the memory saving
is arbitrarily large in the sense that for any memory size m < oo, and é > 0, there
exist problems such that all m-state deterministic algorithms have probability
of error P(e) = +—06, while the optimal two-state randomized algorithm has
P(e) £ 6.

1. Statement of problem and results. This note is concerned with finite memory
learning algorithms for the two-hypothesis testing problems of the type discussed
in Hellman and Cover [4]. The question of how much memory is saved by using
randomized instead of deterministic algorithms has been raised by Chandrasekaran
[1], [2] and Cover and Hellman [3] and is treated in this note.

We will find problems for which the probability of error for all m-state deter-
ministic automata is arbitrarily close to %, while the optimal two-state randomized
automaton has a probability of error arbitrarily close to 0.

For each m< oo a problem will be found for which the stationary distribution
for any m-state deterministic machine is approximately the same under either
hypothesis. Such an example would be a ten-state hypothesis test of a Bernoulli
sequence with parameter po=1—10"3% vs. a Bernoulli sequence with parameter
p1=1-—1072° Intuitively speaking, the drift of the process into memory states
entered by the observation X=1 is overwhelming under either hypothesis, thus
creating nearly identical stationary distributions. However, by introducing
randomization a large difference in the stationary distributions can be achieved.
For example, on all transitions with X'=1, stay in the original state with proba-
bility 1 —10™2% and make the indicated transition with probability 10725,

From the foregoing discussion it would seem sufficient to consider Bernoulli
distributions, and indeed this is so. Let Xy, X, --- be independent identically
distributed random variables drawn according to the distribution

M Heads, with probability p
" Tails, with probability 1—p = q.

Received August 31, 1970

! Department of Electrical Engineering, Massachusetts Institute of Technology, Cambrldge,
Massachusetts. This work was supported by NSF Grant GK5800 at M.I.T.

2 Departments of Statistics and Electrical Engineering, Stanford University, Stanford, Cali-
fornia, and Bell Telephone Laboratories, Murray Hill, New Jersey. Preliminary support was
provided under contract AF 49(638)1517. This work was performed at Bell Laboratories.

1075

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é

3

]

The Annals of Mathematical Statistics. RINOIRY

www.jstor.org



1076 MARTIN E. HELLMAN AND THOMAS M. COVER

Consider the hypothesis testing problem
2 Ho:p =po; vs. Hyip=py,

with 1 < p; < p, < 1, and equal prior probabilities P{H,} = P{H,} = L. It is
assumed that p, and p, are known.
Now let us consider learning algorithms for the Bernoulli problem above. An

algorithm of memory size m consists of a state space S = {l, 2, ---, m}, an initial
state j ¢ S, two m x m stochastic matrices P, and P which are the state transition
matrices under Heads (H) and Tails (T) respectively, and a partition {S,, S, } of S.
The interpretation is that if, at time n— 1, the automaton is in state i and X, =
Heads (resp. Tails), then a transition to state k will be made with probability
(P u(resp. (Pr)y); decision H, is made if the current state is contained in S,,
t = 0, 1. An algorithm is deterministic if P, and P contain only zeros and ones.
Now suppose that the automation is started in state j. Define

(3) P(p) = pPy+4qPr.

Thus, if the probability of heads is p, the expected asymptotic proportion of visits
to state i is given by

. [
4) #i(Js p, Py, Pr) = llmNawN Z,l (P"(p));i-

Since P(p,) and P(p,) are the state transition matrices under H, and H, respectively,
the asymptotic probability of error, given initial state j, and decision scheme
{So, S}, is given by
(5) Pe(j’ Py, P1,So, Sl) = %Z, €S, #i(j, Pos Py, PT)"‘%Zie so#i(j, P1> Py, PT)'
Define P*(m) to be the greatest lower bound on the probability of error over all
randomized m-state learning algorithms, and P,*(m) to be the greatest lower bound
over all m-state deterministic algorithms. (A deterministic algorithm is one for
which the matrices Py and Pr each have one and only one 1 in every row, the other
elements all being zero. Note that there are thus m*™ deterministic (P, Py) pairs.)
In the context of this coin tossing problem, P*(m) and P, *(m) are explicitly given by

(6) P*(m) = inijPHyPT§SOySl Pe(j’ PH’ PT’ SO’ Sl)

where the infimum over Py and Py is taken over all stochastic m x m matrices
P, and Prj;and
(7) ‘Pd *(rn) = infj,PH,PT;So,51 Pe(j’ PH’ PT’ SO’ Sl)

where the infimum over Py and Py is taken over all m x m matrices corresponding
to deterministic transition rules. Clearly,

®) P,*(m) 2 P*(m)

for any problem and memory size m. We shall prove the following:
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THEOREM. For any m = 2,3, 4, -, and for any 5 > 0, there exist probabilities
Po»> D1, Such that

) P*(2) <6, P,Xm)=}—s.

PrOOF. From [4] we know that there exists a randomized two-state algorithm
which achieves

(10) P*(2) = 1/(1+v%),
where
(11) Y = Poq1/P1q0 > 1.

The algorithm which achieves this bound is given by

(2 R P S

where (see [4], (56), (57), on page 776)

(13) A =(qo41/pop1)*

and the decision regions are S, = {2}, S, = {1}.
We wish to find po, p; such that y = (poq,/p1go) > 1, and thus P*(?2) < 1;
while at the same time

(14) |.ui(j’p0aPH’PT)—:ui(japl’PH’PT)I é&

for all i,j e S and for all deterministic Py, Pr. As we shall see (14) implies that
P.(j, Py, Pr, So, Sy) Z $—me for any partition (So, S;). Thus the two hypotheses
cannot b effectively discriminated by a deterministic algorithm.

It would not be difficult to find p,, p, yielding (14) under the constraint y > 1
ift 4,(j, p, Py, Pr) were uniformly continuous in p, for 0 < p < 1. However, this
is not the case, and y; can be discontinuous at p = 0 or 1.

We resort to the following simple approach. Let u(p)s[0, 17" "* be an ordered
m?™* 2 tuple corresponding to the values that wi(j, p, Py, Py) takes on for fixed p
as (i, j) ranges over {1, 2, ---,m}x{l,2,---, m} and (Py, P;) ranges over the set
of m*™ possible deterministic transition matrix pairs. Let us put a sup norm on
[0,1]™""* Thus, in particular,

(15) ||”(P)—I‘(P’)H =max; j py,.pr |.Ui(j’ P, PH’PT)—Mi(j’ r, PH’PT)i~

Consider the sequence p(1—a*), k = 1,2, ---, for some fixed 0 < o < 1. Since
[0,1]™""* is compact under the sup norm, then, by the Bolzano-Weierstrass
Theorem this sequence must have a cluster point, u*, say. Hence, for any ¢ > 0,

(16) ||t — o) — p¥|| <,
infinitely often. In particular, (16) implies

17) |.Ui(j’ 1—of, Py, Pr)—1,*(J, Pys PT)' <g, Vijpupr



1078 MARTIN E. HELLMAN AND THOMAS M. COVER

for infinitely many values of k, where p,*(j, Py, Pr) may depend on the chosen
value of a. For future reference note that if p* is a cluster point then it necessarily
follows that

(18) Z?:lﬂi*(j, PH, PT) = 15

for all j, Py, Pr. This completes the preliminaries.
Let k,, k,, k; > k, be positive integers and set

(19) Po = 1—a*t
py=1-a",

where as before 0 < a < 1. Then, py > p;, and

po(1—py) 1—p; _ock’ 1 1

! pi(1—po) ~ 1—po o o787 qg
Now set a = 6%/(1—6)?, thus achieving
(21) P*2) =1/(1+y*) < 6.

Finally choose k,, k, such that k; > k, and (16) holds with ¢ = 26/m. Then by
definition of P,*(m) and (16) and (18), we find

Pd*(’n) = minj,PH,PT;SO,S1 [%Ziesl lui(j’ Pos PH’ PT)+%ZieSg ui(j: P15 PH, PT)]
(22) Z Min; p,, prsso.s; [ 2ies (¥ Pus Pr)—(26/m))]

=1-5.

(20)

Thus for any m there exist coin flipping probabilities p, and p,(p, = 1, p; = 1,
in our example) such that any m-state deterministic automaton is arbitrarily bad
(see (22)), while there exists a randomized 2-state automaton that is arbitrarily

good (see (21)).
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