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A NOTE ON THE ARC-SINE LAW AND MARKOV RANDOM SETS

By JosepH HorowiTtz

University of Massachusetts

0. Introduction. The purpose of this note is to point out an extension of a
theorem of Dynkin [2], [3, page 447] concerning renewal processes to the context
of Markov random sets (or, as we shall call them, semilinear Markov processes).
Dynkin’s result states that, if X, X,, --- is a “renewal sequence”, i.e. a sequence
of nonnegative, independent, identically distributed random variables, with partial
sums S, and if x, is defined by

0.1) x, =t—max {S,:S, £ 1}, t=20,

then x,/t has a nondegenerate limiting distribution as t — oo iff  — F(x) = x ?L(x),
where F(x) is the common distribution function of the X;, f8 is some number in
(0, 1), and L(x) is slowly varying as x — co.

Semilinear Markov processes arise when, in (0.1), we allow more general
processes with stationary, independent increments. Specifically, let 7(s), s = 0, be a
subordinator (terminology is explained in Section 1) on a probability space
(Q, #, P) having exponent g(1) = Ax+[§ (1—e”*)u(dy). Denote by Q(w) the
range of 7(s, w), s = 0, and define the random function &,(w) by

(0.2) E(w) =t—sup {u £ t:ue Q(w)}, t = 0.

This is analogous to (0.1). Our extension of Dynkin’s theorem may now be stated
as follows.

0.3. THEOREM. Let h(x) = p(x, o). If h(x) = x PL(x), where 0 < < 1 and
L(x) is of slow variation as x — oo, then £/t has a limiting distribution as t — oo,
given by the measure

sin 7tf

(0.4) v(dx) = xTP(1—x)P 1 dx
on (0, 1).

The converse is a bit more delicate and is treated in Section 3. In particular, the
possible degenerate limit laws are completely delineated, a result which appears
to be new even in the case studied by Dynkin. The measure v is the “generalized
arc-sine” distribution [3, page 446] which arises, among other places, in the
theory of semi-stable Markov processes [8, page 68], [4, Section 4]. There are also
some closely related results in [7], and in [9] see, especially, Theorem 8.1 (it is not
known if our result follows therefrom; in any case the present method of proof
should be of independent interest).
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One more remark is in order. In [4] it is shown that many of the properties of
the renewal process x, in (0.1) persist for the more general process &, of (0.2).
Indeed, if one replaces S, by T(s), and 1 — F(x) by A(x) in many of the “classical”
renewal theorems, one obtains theorems on semi-linear Markov processes—
several examples are given in Section 6.11 of [4]. The present work is offered in the
same spirit.

1. Preliminaries. We collect here some material on subordinators and semilinear
Markov processes which will be needed later. Information on subordinators may
be found in [1, page 219], [3, Chapter X, Section 7], and [4, Section 3]; for semi-
linear Markov processes, see [4] and [6]. Our notation for Markov processes is
adapted from [1].

A subordinator is a random process 7(s), s = 0, on some probability space
(Q, &, P)such that

(i) 7(0) = 0.
(i) the trajectories are a.s. monotone increasing, right continuous.
(iii) the process has stationary, independent increments.

Let « = 0 be constant and let u be a (Borel) measure on (0, o] satisfying
f(0.01(1 =€ *)u(dx) < oo for each A > 0. Each subordinator has corresponding
to it a function g(2) = ad+ [0 o(1—e ™ )u(dx), o, u as described, called its
exponent, having the property E(e *T®) = ¢7%»_ Each such g(1) also gives
rise toa T(s), the correspondence being bi-unique (up to equivalence). If u({c0}) > 0,
the process is killed at a finite time {:7(s, ) = oo for s = {(w). In this case {
has an exponential distribution with parameter u({co}). Otherwise T(s) < co a.s. for
all s. (The details concerning the “lifetime™ { are in [1].)

The most primitive subordinator is constructed as follows (this example has been
discussed by Doob): Let X, be a renewal sequence with partial sums S, and com-
mon df F(x), all as in Section 0. Let N(r), r = 0, be a Poisson process with rate 1,
independent of {X,}. Then T(r) = Sy, is a subordinator having « = 0 and
h(x) = p(x, o] = 1—F(x). Notice that &, in (0.2) coincides with x, given in (0.1)
in this case. We refer to this example as the “(classical) renewal case”. If we allow
F(x) to be defective (F(o0) < 1), T will have a finite lifetime.

Notke. For an arbitrary subordinator, the parameters «, u are called, respectively,
the rate of linear drift and Lévy measure.

A semilinear Markov process (or Markov random set) is a Markov process
X = (x,, #,, P*) with state space £ = [0, a) for some a < oo, with the following
property: for each w € Q there is a closed set Z(w) = R such that Z(w)n(— o0, 0]
consists of exactly one point and

(1.1) x(w)=t—sup {—0 < u < t:ueZ(w)}, t = 0.

Notice that (1.1) is the same as (0.2) with Z instead of Q, at least when 0 € Z(w).
The following results are found in [4], [6].
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1.2. THEOREM. (a) Let T be a subordinator. The random function &, defined in (0.2)
is then strongly Markovian. Also, there exists a strongly Markov semilinear process
X = (x,, M,, P*) such that {x,, P°} is equivalent to {¢,, P}.

(b) Given a strongly Markov semilinear process X = (x,, # ,, P*) on a measurable
space (Q, F), there exists a subordinator T on (Q, &, P°) for which Z(w) = O(w)
a.s., hence &, = x, P%a.s.

(c) Let the subordinator T have exponent g(A) = oA+ [ o, (1 —e *)u(dx). The
transition function of the corresponding strongly Markov semilinear process X is
givenby: -

1.2.1) Po(x, T) = 6,(T),
(1.2.2) P(0,T) = I0)(1—fpo,q h(t—y) dm (¥))
+j[0,t] I(t=y)h(t—y) dm (), t >0,

h(x+1)

(123) PxT)=— =

Ir(x+ 1)+ fi0,0 Pe-(0, T)d M(r), x>0,

where M (r) = 1 —h(x+r)/h(x) and the measure m on [0, ) is determined by its
Laplace-Stieltjes transform (1) = 1/g(2), A > 0.

We shall often write m(¢) for m([0, t]) (likewise for other measures on [0, c0)).
In the renewal case, m(t) turns out to be the so-called renewal function, i.e. the
expected number of “renewals” during the time interval [0, ¢] (cf. equation (6.3),
page 182 of [3]). When « = 0 and 4(0+) < oo, we are back in the renewal situation
(see [4, Section 6.11]).

2. Proof of the theorem. We now proceed to prove Theorem 0.3. For the most
part the proof follows Feller’s treatment of Dynkin’s theorem. However, since
there is a bit of obscurity in Feller’s proof, we shall repeat some of the details.
Thus, suppose h(x) = u(x, o] = x PL(x) as described. It is well known (see
[3, page 273]) that, because of slow variation, x "?L(x) » 0 as x — 0, s0 h(c0) =
u({oo}) = 0. Moreover, [§ h(x)dx = oo [3, page 272]. By Theorem 1.2(a) and
(1.2.2) the problem is reduced to showing that P,(0, :I') » w(I') as t — oo, for
each subinterval I of (0, 1), and that P,(0, {0}) — 0, since P(¢, e T') = P%(x,eT) =
PO, T).

Let us prove the latter first. Using the ergodic properties of semilinear processes,
namely [4, Theorem 6.14], we obtain, for every x > 0, lim,,» P,(0, [0, x)) =
([0, x)) where 7 s the measure on [0, co) defined by

o jrh(y) dy
= ————————5 r — .
a+ (& h(y) dy o)+ o+ 3 h(y) dy

In the present case, because the denominators are infinite, m = 0, hence
lim,_,  P,(0, {0}) = 0. (When o > 0, this follows also from a result of Kingman
[5, Theorem 6].)

(D)
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Now let I' = (x, x,) be a subinterval of (0, 1). We have, by (1.2.2)
P JteT) = PO, 1T) = [§ Iy, 0 (t = 2)h(t—y) dm(y),
2.1) = [ Z35h—y) dm(y),
= [123 h(e(1 =) dm(1y)

(the endpoints in the last two integrals are excluded).
We now borrow a lemma from [3, page 446].

2.2. LeMMA. If h(x) = x~PL(x) as above, then

(o) 1 i_sinnﬂi o
C-HTA+B) L) =f L(t) ’
and
h(t)m(t) — Sizl’;ﬁ

Assuming the lemma for the moment, let us finish the proof of the theorem.
By (2.1)and 2.2,

LT R(t(1 - ) dm(ty)

-x,  h)m(1)

From 2.2 it follows that dm(ty)/m(t) converges to the measure with density fy* !
on (0,1); and h(t(1—y))/h(t) - (1—y)7%. Since 0 < x; < x, <1 the limit
function (1 —»)~# is bounded for the relevant values of y. Likewise the functions
h(t(1=y))/h(t) < h(tx)/h(1) £ x;7?+1 for all sufficiently large ¢. Hence the
convergence of A(1(1—y))/h(t) to (1 —»)~# is uniform and we may conclude

.3) P(EJteT) ~ S";/’;ﬁ f
1

PEJIeT) - sin f3

1—x,
f W=y~ dy.
n 1-x,

Thus, except for 2.2, Theorem 0.3 is proven.

NoTE. The deduction of the above uniform convergence is based on the following
simple result: let u,(x) be a uniformly bounded sequence of monotone functions
(all of the same sense), let u(x) be continuous, and suppose u,(x) — u(x) for each x.
The convergence is then uniform on compact sets. An incorrect statement of this
appears as problem 5, page 276 in [3], both the uniform boundedness and the
condition of compactness being there omitted. The result fails under either of
these omissions.

We note also that care must be exercised in the above argument to keep 1—y
bounded away from zero, as it is possible to have #/(0+) = oo, a situation which
does not arise in the classical renewal case.
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ProOF oF LEMMA 2.2. Recall that m(t) is the (distribution function of the)
measure determined by the Laplace-Stieltjes transform #i(1) = 1/g(4). This may
be written in terms of 4 as follows:

1
) = ————
A = 270
where H is the measure given by H(x) = 3 h(y) dy (or equivalently by HQ) =
[& e~ *h(y) dy). By [3, page 423, Theorem 4] we have

_ora-
AQ) ~ ;—_lf)L(l/A) as 1 -0,
thus
i

T T —BPL/%)’ -0

(%)

Now A 7#/L(1/2) — 0 as A — O since L is slowly varying, hence

1

" =P

The lemma now follows from Theorem 2 of [3, page 421], since 1/L is also slowly
varying.

3. The converse result.

3.1. THEOREM. Let T be a subordinator with o, p, h, and &, all as described in
Section 0. Suppose that &,/t has a limiting distribution G. Then G must be the arc-sine
law v given in (0.4) for a suitable § and h(x) must satisfy the condition in 0.3, or
G = 6, or d, (0, = unit mass at x).

Before proving this theorem let us remark that Feller [3, page 447] states that ‘it is
easy to amend” the above arguments to get the converse of the theorem. Un-
fortunately, the present author has been unable to find such amendment, and has
therefore adapted Dynkin’s original method.

Let v,(s) = E(e”*%). Using (1.2.2) this may be expressed as

(3.2) v(s) = 1=[6 h(t—y) dm(y)+[o e 7> h(t—y) dm(y).
If we take Laplace transform in ¢ we obtain
(& e v s)dt = 1/A—h(A)m(A)+h(+s)m(2)
= arit(A)+h(A+s)m(1).

where /(1) denotes the (ordinary) Laplace transform of 4. (Recall, as in Section 2,
that m(1) = (Ja+Ah(2)™'.)
Thus

R )
(3.3) L e Mos)dt = Gr s
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We shall use (3.3) momentarily. Suppose now that a limiting distribution G exists.
For each continuity point u of G we have lim,_, « P(¢,/t £ u) = G(u). Then

1imyﬁoop<€—’y < u> = limy_,ooP<éz < 5’) = G(uft)
y ty =t

for each pair of numbers u, ¢ such that /t is a continuity point of G. In terms of
Laplace transforms the last relation reads

G4 lim, -0 0,(s/) = [ e d,Gu]1).

Since v,,(s/y) < 1 we may take (ordinary) transforms in (3.4), exchange integration
with passage to the limit, and obtain thereby

(3.5) limy_ o [§ e v, (s/y) dt = [§ e [§ e d,G(uft) dt.
Comparison of (3.5) with (3.3) shows

1 A
(3.6) lim, - o i4)y) j J = =su g Guft) dt:

</1+s> " </1+s>
y
in particular lim,_, « m((A+s5)/y)/m(A[y) exists for each A, s. Taking s = (k—1)4
and z = y~! we see lim,_,, m(kAz)/m(1z) exists for each k, A, and finally that
m(k2)/m(1) approaches a limit as 4 — 0, for each k; in other words # is a function
of regular variation [3] at zero. We may therefore write (1) = 1 #K(1/1) where
0 £ f < oo and K(x) is of slow variation as x — oco. In fact, since
(4, 1 ! A—=0
m()_cx+ﬁ(i)_’a+n<oo (40,
where 1 = [§ h(y) dy, we must have 0 < B < 1. It now follows easily that the left
member of (3.6) is equal to ((A+s5)/4)*(A+s)~'. On the other hand, if 0 < f < 1,
it follows from standard formulas involving the beta and gamma functions that
[ e ™ [& e dv(x/t)dt = (A+5)]A)*(A+s)""; specifically see page 239 (Section
12.14) and page 261, no. 28 of [10]. By uniqueness of Laplace transforms we
conclude G = vif0 < f < 1.

It is easily verified that, if § = 0, then G = ¢, and, iIf f = 1, G = J,,.

Finally, suppose 0 < B < 1, so m(A) = A"PK(1/%). Recalling the relation
m(2) = (ad+Ah(2)) ™" we have, after some easy maneuvers, 1(1) — oo as A — 0 and
h(2) ~ 2*7'L(1/2) where L = 1/K. It now follows from [3, page 422] that A(x)
satisfies the condition stated in 0.3. The proof is complete.

Each of the three types of limit law is possible, as the examples below demon-
strate. The first example is admittedly pathological, and the second less so. Neither
situation arises in the classical renewal case.

ExampLE 1. Consider the process “uniform motion to the right with velbcity 17,
discussed in [1, page 23]. The trajectories starting from x € R, = [0, o) take the
form x, = x+¢. Hence we have a semilinear Markov process with A(x) =
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o =0 (see [4]). Clearly Z(w) = {—x}P*a.s. for x 20, and P°(x,/t = 1) =1
forall z. Hence G = §,.

ExampLE 2. Let X = (x,,.#,, P*) be a semilinear strongly Markov process
corresponding via 1.2 to a subordinator 7 having drift « and Lévy measure p
such that, as x - o, h(x) = u(x, o] = h(co) > 0. In this case it is known that
the set Z(w) (cf. Section 1) is a.s. bounded [4, Theorem 6.10], and thus ¢(w) =
sup Z(w) is a well-defined finite valued random variable. Then, forany ¢, 0 < e < 1,

t_
P0<x7' > 1—£> = P°<t < a,? > 1—a>+P°<t 2 o, —t—a > 1—8>;

the first term on the right is dominated by P°(t < ¢) — 0 and the second clearly
tends to 1 as t — co. Hence we again have G = J,.

%

ExaMPLE 3. Suppose we have the same set-up as in Example 2, except that now
assume there exists a number a > 0 such that A(x) = 0 for all x = a. Using the
results of [4] or [6] it is not difficult to see that x, < a for all ¢, so that G = §,,.

It is natural to ask whether the converses of the results in Examples 2 and 3 are
true. As for Example 3, consider:

ExaMPLE 4. Let h(x) > 0 for all x > 0, and suppose n = [ h(y) dy < oo.
(h(x) = e™* is a typical case.) Then m(d) = (Aa+Ah(A)~ ! ~ A~ Y(a+n)~ L.
Hence 8 = 1 in the proof of 3.1, and G = J,,.

Finally, the converse of Example 2 is false, as is seen in

ExaMPLE 5. Let L(x) be a function of slow variation at infinity and such that
L(x) —» 0 as x — oo (for instance L(x) = 1/log x will do the job). Let A(x) be any
decreasing function on (0, co) which behaves like L(x) as x — co. By the lemma
on page 422 of [3] we have (1) ~ A7'L(1/4) as A — 0. Let « = 0. Then m(l) =
1/Ah(X) ~ 1/L(1/2) so that B = 0 in the proof of 3.1. Therefore G = §,.
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