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THE EXACT DISTRIBUTION OF WILKS’ CRITERION!

By A. M. MATHAI AND P. N. RATHIE
McGill University and University of Waterloo

1. Summary. In this paper the exact distribution of Wilks’ likelihood ratio
criterion for testing linear hypothesis about regression coefficients is discussed.
The exact distribution, in the most general case, is given in simple algebraic
functions which can be computed without much difficulty. Explicit expressions
for the density function as well as for the cumulative distribution function are
given under the null hypothesis.

2. Introduction. Consider a multivariate linear setup under normality. That is,
let xy, .-+, xy be a set of N observations, x, being drawn from N(BZ,, X). The
vectors Z,, with t components, are known and the p x p matrix ¥ and the pxt
matrix f are unknown. Let N = p+¢ and the rank of Z = (Z, --+,Zy) be ¢.
Let B be partitioned into,

B = (B, B>)

where B, has 7; columns and B, has ¢, columns. Consider the problem of testing
the hypothesis,

H:p, = Bs*
where B,* is a given matrix. Let U = 12/~ where 1 is the likelihood ratio criterion

for testing H. The moments of U, when the hypothesis is true, are evaluated for
several cases ([1] page 192-194). They are,

(D) EU" = [ [T+ 1=0)24 AT+, + 1= )23/ {T[(n+ 1 —)/2]
T[4+t +1-0)/2+h]}],

where n = N—t. If U is denoted as Up 1. then it is pointed out in ([1] page 193)
that the distribution of U, ;, y_,, -, is the same as that of U,  , y—,-.,, When the
hypothesis is true. Hence, when obtaining the distribution of U, , ,, without loss
of generality, we need consider only the cases whereq = p.

The exact distribution of U, , , is obtained by several authors for particular
values of p and g. When p = 1, it is easy to see that n(l — Ul am/qUy 4, has an
F-distribution with g and n degrees of freedom. (n+1-p)(1-U, , ,)/pU, , , has an
F-distribution with p and n+1—p degrees of freedom. Wilks (1932) who intro-
duced the statistic U, , , obtained the exact distributions for the cases p = 1, 2, 3,

q = 3; p = 4, g = 4 by direct methods. Schatzoff (1964), (1966) first considered
the representation of (—log U) as a sum of independently distributed random
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variables and derived the exact expressions for its distribution in all cases for p and
g by taking successive convolutions. He showed how to compute numerical
values of the coefficients in the derived expressions (for both the density and
distribution functions) by recursive computational techniques. Nair (1938) con-
sidered for the first time the application of moment sequence in deriving distribu-
tions. Consul (1966) used the technique of Mellin Transforms to derive exact
expressions for the cases p = 1,2, 3, 4and g = 3, 4, 5, 6, 7, 8. Pillai and Gupta
(1969) used the method of successive convolutions as suggested by Schatzoff, but
on a different representation of U than that considered U, ,, as a product of p
independent beta random variables X, ---, X, with X; distributed as B((n—i+1)/2,
q/2). Pillai and Gupta used the representations:

(a) U,, 4., distributed like Y,?, ---, ¥,? where Y; are independent B(n+1—24, q),
i=1,--,rand

(b) Ujs41,4,n distributed like Z,2, -, Z2% Z_,,, where the Z, are independently
distributed as B(n+1—2i, g)and Z,  isindependently distributed as B((n+1—p)/2,
q/2).

They obtained the exact distribution for p = 3, 4, 5, 6 and also computed the
percentage points which supplemented some tables by Pillai (1960). Approximations
and asymptotic expansions are given by Bartlett (1938), Box (1949) and Rao (1948).
The technique used by Consul (1966) is to invert the Gamma products of (1) with
the help of inverse Mellin Transforms. By this technique the density of U is
uniquely determined because the moment sequence in (1) uniquely determines the
distribution due to the fact that 0 < u < 1. He then used some special properties
of hypergeometric series to arrive at the exact distributions in the above mentioned
cases. In this paper we will use the technique of Mellin Transforms. But before
taking the inverse Mellin Transform of the Gamma products in (1) we will eliminate
the Gammas by cancelling the common factors and then splitting the factors with
the help of partial fraction methods. For convenience we will consider the cases
p-even, g-even; p-odd, g-even; p-even, g-odd; and p-odd, g-odd separately, thereby
exhausting all the cases. Since the distribution of 1 is easily obtained from the
distribution of U we will consider only the density and the cumulative distribution
function of U. From (1) we can obtain the expected value of U™ ! as,

(2 EWUTY=Cl=1 {T[(n+1-i)24s=1)T[(n+1+q—i)2+5—1]}

where,

€) C =1t {T[(n+14+q—i)2]T[(n+1-10)/2]}.
Now the density of Uis given by the usual Mellin inversion formula,
4) flu) =(1)2ni) fLu™*E(U*"")ds

where L is a suitably selected contour and i = (—1)*.
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3. Case I (g-even, p-even). Let ¢ = 2m = p. Now E(U*™ 1), excluding the con-
stant C'is,

(5) {Tm2+s—DI(n24+s—1—2%) - T[n)2+s—1—(p—1)/2]}
+{T@2+m+s—DIm2+m+s—1-1) - T[n2+m+s—1—(p—1)/2]}.

Here m is a positive integer and therefore, for example, the first two ratios in ®)
above are, [(s+n/2+m—2)(s+n/2+m—3) --- (s+n/2—1)]" ! and

[(s+n24+m—%) - (s+n/2—3)],

respectively. Now cancelling the common factors in (5) and then collecting the
factors obtained from the alternate Gamma ratios in (5), we get the following
structure of factors.

(+n24+m=2)(s+n/24+m—3) --- (s+n/2—1)
(6) (+n24+m=3)(s+n2+m—4) .- (s+n/2—2)

(s+n/24+m—p[2—1) - (s+n/2—p[2)

and

@) (s+n/2+m—5)(s+n/2+m—— e (s+n/2-3

(s+n/2+m—p/2—%)(s+n/2+m—p/2—% e (s+n2—pl2—1
Denoting (6) by X and (7) by Y, we have,
(8) EWU ™Y = C/XY.

Several factors are repeated in the sets (6) and (7). In fact the sets (6) and (7) can be
written as,

O (s+n2+m=2)(s+n/24+m=3)* - (s+n/24+m—1—p/2)?2...
(s+n/2—1)"% - (s+n/2—p/2+ 1)*(s+n/2—p/2) and
(10)  (s+n2+m=3)(s+n24+m—3)* - (s+n/2+m—3—p/2)?/?
(s n2=3)P% (s nf2—p2+ D)2 (s+n/2—p/2—1
respectively. The exponents of the factors in (9) and (10) are in the sequence,
(11) 1,2, -, pf2—1,p[2, -, pj2, pJ2—1, -, 3,2, 1

where the exponent p/2 is repeated m—p/2+1 times. Now we will spllt EWUs™h
into separate terms by using the technique of partial fractions. Let o« = s+n/2
and let («—38)’ denote a factor in the denominator of (8). There will be j terms
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corresponding to (x— &)’ when E(U*™!) is put into a sum by the method of partial
fractions. Let o, be the coefficients of the kth term coming from («—3J)’. Then
from the theory of partial fractions,

ok . _
1) o= 01601 - yEw ) | et =
k=1,2,-,]
In order to evaluate o, explicitly we will use the following technique. Let,
(13) - Z=(a—08yYE(U*"") and Zy,=Z at a=34.
Then,
0z 0
(14) — = AZ where A = —logZ.
as s

Thatis, incase I,
(15) A= (=Dla+m=3""+@+m=3)""+2x+m—5) " +--
+(@=p/2=3)7"]

and the term containing j/(o—9) is absent in (15). There are altogether 2m+p—3
terms which are summed up in 4 in (15). Also,

"7
(16) W‘ — Az(n—1)+(n—11)A(1)Z(n—2)+ e +(::1)A("—1)Z,

where A denotes the rth derivative of 4 with respect to s.
Thus a recurrence relation is obtained as,

(17) 1= AL+ (TYADL o o (2 )IAY

where, I, = 0"Z/0s" and in case I,

(18)  AD = (=1t m—%) T (@t m—3)
#2atm— g 4 G p2 )

omitting the term containing («—38)~"" !, and let 4, denote A™ at « = §. (17)
can be written as a single sum involving only Z and A", for r = 0, but the above
representation seems to be easier to handle. With the help of (12) to (17) we can
evaluate the coefficients explicitly. ‘

It is easily seen that the sequence of exponents in (9) and (10) are symmetric
from both ends. For convenience we will denote the coefficients corresponding
to the factors from either end in (9) by @/, and ¢/, and the coefficients corresponding
tc the factors in (10) by b}, and ). That is, aj, denotes the coefficient of the term
(e« +m—1—i)"* corresponding to the factor (¢ +m—1—i)"7. In aj, ---, dl, j does
not denote a power. cj, denotes the coefficient of the term (x—p/2—1+i)7*
ccrresponding to the factor (x—p/2—14i)7"/; k = 1, -+, . Similarly b}, and dj,
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stand for the coefficients corresponding to the factors in (10). By using this notation,
we can write, E(U*~!) in the following form.

(19)  EU) = O v a4 m—1=if + ¥, chlo—(p+2)/2-+ i]"
+ Loor bl (atm—3 =)'+ Yy di/[e—(p+3))2+i14,
where,
Q)  a={Gjk|j=ilSksi<p2-1}=c=b=d,
a = {1, k) |j=p/2,i=p2,p2+]1, - m;1 Sk <p[2} = b,
Now it is seen that o,correspondingtod =i+ 1—m,i+3—m, p/2+1—i, p/2+3—i,

2
gives aj, bi, ck and d, respectively. Once we obtain Zy, and A4,", r 2 0, for
ak, bk, ¢l and dj, all the coefficients, that is, for 1 < k < j, are obtained from
(12) to (18). Hence, in the following table we give only the value of Z,, correspond-
ing to a’s, b’s, ¢’s and the d’s. 4, and 4, are easily obtained from (15) and (18).
These Z,’s are calculated by direct substitution.

TABLE 1

Z, p-even, g-even, (g = 2m = p)

al, {(—1ypm=s22pm=i1131 - - . (p—2j— 1)1}/ {[012! - - -

(), k)ea @=2Cm+p—2j—-D'Cm+p—2j—3)! - - - Cm—2j+1)!]}.
al, {(=1)pm= @I @2+ 202pm=pI2} [ {[(p+ 2r —2)(p+2r—4)!
J=p2,i=p2+r - 2)NCMm—2r—1)2m—2r=3)! -+ - 2m—2r—p+ 1]}
0=r=m—p/2

cl {(=17°2rm=9012! - - (p—2j—=2) 1}/ {1131 - - - 2j~1)!]

G, 7, k)ec [Cm+p—2j-2)'Cm+p—2j—H!--- 2m—2/)!]}

bi, {(=1)pm=dU+D2om=00121 -+ - (p—2j—2) 1}/ {[113! - - -
(,j,k)eb @i=DNICm+p—2j—-2)!Cm+p—2j—4)! - - - Cm—2j)!1}
b, {(= = @D Gr2 4204 0m=012 3 ([(p 4 2r — 1) (p+ 27— 3)!
J=p2,i=p2+r - Qr+DNCm—2r—2)\2m—2r—4)! - Qm—p—2r"}
0=sr=m—p/2

di, {(=1)/Y=Dem=i131. .. (p—2j—1)1}/{[012! - - - (2j—2)!]
G k)ed [@m+p—2j— DICm+p—2j-3)!- -+ Cm—2j+ ']}

In order to bring in symmetry in @}, we can multiply (— 1)U~V by (= 1)% to
obtain (—1)’U* Y. It is noticed from the above table that the coefficients can be
easily written down due to the type of symmetry in the various factorials.

REMARK. In order to maintain symmetry and to facilitate easy computation, the
complete simplification, of the quantities appearing in the various coefficients
and factors, is not done throughout this article.
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Now the density function of U, that is, f(u) is obtained by taking the inverse
Mellin Transform of (19). That is,

Q1) f(u) = C{Lauw ahu™? TR A Y chu TR,

+ Y pop DU TATIB LY dfu 2 TP Y
for 0 < u < 1, where f, stands for (—log u)*~!/T(k). This result follows from
Erdélyi ((1954) page 343 (16)). The authors have verified that for p = 4, ¢ = 4
the above results agree with Consul’s (1966) algebraic representations for p = 4,
g = 4. In order to show the simplicity of our method we will tabulate a case which

is not given by Consul (1966). The following table gives the coefficients for p = 4,
q = 10.

TABLE 2

Z,
AoZy p=4,49=10

al,  (—=1)2'°110!11!9!)

bl 21°0!/(1!10!8")

a2, 2'%/(21019171)
@2, (=2)2+1/1-2/1-2/2—2/3—2/4—2/5-2/6—2/T—1/8—1/9Z,

b2,  2'8/(31118!6!)
b2, (=2A/3+1/2+2/1-2/1-2/2—-2/3-2/4—-2/5-2/6—1/T—1/8)Z,

a2,  2'8/(41217151)
a2, (=(1/4+1/3+2/2+2/1—-2/1—2/2—=2/3—2/4—2/5—1/6—1/T)Z,

b,  2'8/(5131614")
b2, (=2/5+1/44+2/3+2/2+2/1-2/1-2/2-2/3-2/4—1/5—1]6)Z,

a2, 2'%/(6'415131)
a2, (=)(1/6+1/5+2/4+2/3+2/2+2/1—-2/1-2/2—2/3—1/4—1/5)Z,

b2 218/(71514121)
b2, (=2)A/T+1/64+2/5+2/4+2/3+2/2+2/1-2/1-2/2—1/3—-1/)Z,

a®, 2'8/(8!6!3!11)
az,  (—2)A/8+1/T+2/6+2/5+2/4+2[3+2/2+2/1-2/1—1/2—1/3)Z,

b2,  21%/(9171210)
b2, (=2)(1/9+1/8+2/T+2/6+2/5+2/4+2/3+2/2+2/1—1/1—1/2)Z,

el (=1)21°01/(1'10!8")

di, 21°11/(0!11!91)

C [C(n/2410/2)T(n/2+9/2)T'(n/2+8/2)T'(n/2+7/2)]/ [T (n/2)T (n/2—1/2)
I'(n/2—-2/2)T'(n/2—3/2)]
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3.1. The cumulative distribution function. The cumulative distribution function
F(x) is obtained by integrating the density in (21) from O to x. That is,

(22) F(x) = [5./(u)du.
In order to evaluate F(x) we will derive the following general result.
Lemma 3.1.
fsu(—logu)~tdu =x**1YF_ k(k—1)(k—2) - (k—r+1)
(23 “(—logx)* "[k(a+ 1)
o > 0, k—a positive integer, 0 < u < 1.

Now F(x) can be written down by using (23). That is,

F(x) = C{}ava [alx" " | (n[2+m — i) ]
+ o [OhX" 22 (2 +m—1]2—i0)"]
(24) + Y Lelex™ 27 P2 iy [(n)2— p[2+1)']
+ Vg [dhx 270225 (nf2 — pl2— 3+ i) ]}
where g, stands for Y %_; k(k—1) - (k—r+1)(—log x)* /T (k+1).
4. Case II (g-even, p-odd, ¢ = 2m = p). Here also, proceeding in a similar way
as in Section 3 we obtain the reciprocal of E(U*™!), excluding the constant C, as,
(s+n2+m=2)(s+n2+m—=3) - (s+n2—1)(s+n2+m—3%) - (s+n/2—3)

X (s+n2+m=3)(s+n2+m—5)--(s+n2=2)(s+n2+m—%)---(s+n/2—3)
(25)

X(s+n2—p2+3+m—2) - (s+n2—p/2+%—1)
X(s+n22—p2+14+m—=2)---(s+n/2—p/2+1-1).
The density is obtained as,
(26)  S() = C{Tavw "> et T chal
+Ypop AU TETIB Y dfa TP TITIRY,
0 < u < 1, where B, is givenin (21) and
a={Gjk)|j=i1sksjsp-D2}=c
a = {0 |j=@+D2,1 £k <ji=@P+D2,(p+3)/2,, -,

27 ‘(m—p/2+%) terms},
b= {(ijk)|j=i,1<k<j<(p-3)2} =d,

B = (k)= (=12 1 Sk SJyi=(p=1/2(p+1)2 ey oy
‘m—(p—1)/2+1 terms}.
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Then when 6 = l+i—m, 3+i—m, p/2+3—i and p/2+1—i, o, of (12) gives
al, b, ¢l and dJ respectively.

The authors have verified the case p = 3, ¢ = 8 and the results agree with the
results obtained by Consul (1966). The cumulative distribution function in this
case as well as in the following cases can be obtained in a similar fashion as in
Sub-section 3.1. Hence the discussion is deleted.

5. Case III (p-even, g-odd, ¢ > p). In this case we will combine the numerator
Gammas and the denominator Gammas separately by using the duplication
formula for the Gamma functions, namely,

(28) I'QRz) = o~ 227 ') (z+2).
Now we get E(U™!) as,
(29) EU*™Y) = C27M2{T(2s—2+n—1)I(2s—24+n—-3) --- T2s—2+n—p+1)}
+{I2s—24+n—1xq)T2s—2+n—3+q) --- [2s—24+n—p+1+9)}.
The reciprocal of E(U*™ ), excluding C, is,
(s+n2=2/24+q2—1)(s+n/2=2/2+q[2—3) -+ (s+n/2—=2[24+q/2—q/2—})
(30) (s4+n2=2/24q/2=2)(s+n/2—=2/2+q[2—3) -+ (s+n[2—%—3)
(s+n/2—3+q2=3)(s+n2=3+q2—=3) - (s+n2=F=3) =+ -
(s+n2—3+q2—p/2)(s+n2=3+q/2—p[2—%) - (s+n/2=F—p[2+3).
The density is obtained as,
(1) SW) = C{Yauw afu™ > 21T Y chu 2 TR,
+Zbub' bju? a2 =i, 4 Zd dju™?~P2TITIg A,
0 < u < 1, where,
a={Gjk|j=i,1Sk<j<pl2}=b=c=d,
(32) da = {(G,j,k) |j =p2,1 £k <j,i=p/2,pl2+1,---(q—p+3) terms},
b = {(i,}, k) |j =p2, 12k <j,i=p/2,p2+1,---(q—p+1)/2 terms}.

Now corresponding to & = i, i+%, (p+q—3)/2—i, (p+q—3)/2+%—i, ak, bl, ck,
and &), are available from ¢, where « in this case is s+(n—2+¢)/2. The authors
have verified the result for p = 4, ¢ = 5 and this agrees with Consul’s (1966)
result.

6. Case IV (p-odd, g-0dd, ¢ = p). In this case since p is odd, p—1 is even, so we
will separate the last Gamma ratio in E(U°~'), namely, I'[s—1+n/2—(p—1)/2]+
I'[ls—14n/2—(p—1)/2+q/2] and expand it in a series. That is,

[[s—1+n/2—(p—D/2)/Tls—1+n2—(p—1)/2+¢/2]
(33) = [1/T(g/)IT[s—1+n/2—(p—1)/2]T(q/2)/{T[s— 1 +n/2—(p—1)/2+4/2]}
= [1/T(@/D] Y=o (= D" % D/[s=1+n/2—=(p—1)/2+m],



1018 A. M. MATHAI AND P. N. RATHIE

by using the result (2) of page 8 in Erdélyi (1953). The conditions for the expansions
are evidently satisfied by (33). Now,

E(U*™Y) = [CIT(g/2)] Y=o (= D" HIT(s—1+n/2)
(34) ‘Ts—1+n/2—3) - T(s—14+n/2—p/2+ 1))/[T(s—1+n/2+g/2)
“T(s—14+n/2=3+¢/2) - T(s—1+n2—p2+1+4/2)
“(s—=14n2—p2+%+m)].

By comparing the result in the case p-even, g-odd, we can write down the density
without much difficulty. By using the same notations as in the previous sections,
the density is given as,

f(u) = C{Zaua, a{ku"/z +aq/2- l_iﬁk+zbub' b{}‘u"/z +q/2_%—iﬁk
(35) +Y. c{kun/z—p/2—%+iﬁk+zd djum2-el2=1+ig

+fun/2—p/2—-21+m+f0un/2—p/2——§}’ O<u< 1,
where,

a={(j0]j=i12k<j<(p-D2}=c=d=b,

(B6) @ ={(.ik)|j=@=-D2,1 2k <ji=(p-1)/2,(p-12+1,--
‘(g—p+4)/2 terms},

b ={G1k)|j=p=-D2,1 2k <ji=(-1)2(p-1)2+1
© e (g—p+2)/2 terms}.

Corresponding to 6 = i; 1+i; P+q+1)/2—i; @+q—D2+%-i; (p+q—1)/2;
(p+q=D[2—m; we get, o, = al; bl, m # (p+q—2)[2—i; cl; dly, m # i; f,
and f, m = (p+4q)/2—1, respectively, where in this case o = s+(n—2+q)/2.

REMARK. The results given in this article also cover the exact distribution of the
likelihood ratio criterion for testing independence in the multivariate normal case
when a p-component vector is partitioned into ¢ = 2 subvectors. The authors
would like to thank the referee for some valuable comments which enabled them
to modify the introduction and to shorten the article.
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