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A GENERALIZED DOEBLIN RATIO LIMIT THEOREM!

By MiICHAEL L. LEVITAN
Villanova University

1. Introduction. Let us consider a discrete time parameter Markov Process
{X,, k = 0} with stationary transition probability functions defined on a general
measurable state space (X, %) where # is a separable (countably generated)
Borel field of subsets of X containing single point sets. Furthermore, assume the
Harris recurrence condition.

ConDITION (C). There exists a sigma-finite measure u defined on X, with
w(X) > 0 such that for every S € # with u(S) > 0, we have that

P[X, € S infinitely often | X, = x] = 1

for all x € X. This then implies the existence of an invariant sigma-finite measure I1
on (X, #), unique up to a constant multiple. (Note that the I1-measure of X may
be infinite.) We denote the m-step transition probability from xe X to Se %
by P")(x, S).

Jain [8] has considered the Doeblin Ratio of these transition probabilities,
namely,

Zk"':op(k)(X, Al)
ercn=0 P(k)(y9 AZ)

where xe X, ye X, A;€ # for i = 1, 2, with the aforementioned conditions on
(X, #). Here Jain proved that this ratio tends to I1(4,)/T1(4,) as m — oo for all
X, y not in a set N(A4,, A,) where II[N(4,, 4,)] = 0. Isaac [7] then proved that
the dependence of N on 4; and A, could be removed if 4; = S for i = 1, 2 with
0 < II(S) < c0.

Krengel [11] considered the special case where the space consists of one discrete
ergodic class which is recurrent, but further generalized the form of the Doeblin
Ratio, i.e.,

ka= 1 er X pxP(k)(x’ Al)
Zl'c"=1 er X IIScP(k)(X, AZ)
where {p,} and {q,} represent initial probability distributions on the space. He

proved that this ratio converges to II(4,)/I1(4,) as m — co when I1(4,) < oo,
I1(A,) < oo and the initial distributions satisfy certain conditions.
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Our main result (Theorem 3.3) is concerned with a generalization of the Doeblin
ratio, studied by Krengel for the general measure space (X, %), namely,

Z;c": 1 J{x PO(x, Ay)¢(dx)
ZIT: 1 jx P®(x, Az (dx)

where ¢ and  are initial probability distributions on (X, #). We prove that this
ratio converges to IT(A4,)/I1(4,) as m — oo for arbitrary probability distributions
¢ and y if the sets A; and A, satisfy certain additional conditions. (We note
that this result is analogous to that of Krengel, although it is not a generalization.)
From this we get a corollary which complements the above-mentioned results of
Isaac[7]. The corollary yields conditions under which N(4,, 4,) = &.

Recently, Metivier [13] has considered problems closely related to the above-
mentioned material, and has proven theorems similar to those presented here.

A proof of a strengthened version of a theorem of Harris [6] is also presented
(Theorem 3.1), the results of which are used by Jain in the proof of his results
([8], Theorem 3.4); however, a proof of the former does not appear in the
literature.

The last theorem presented in this paper (Theorem 3.4) is that of Isaac ([7],
Theorem 1). We give an alternate method of proof following the lines of the
theory just developed as indicated to the author by Professor Steven Orey.

2. Definitions. The existence of the invariant sigma-finite measure IT on (X, %),
mentioned in the introduction, is a result of the following theorem of Harris [5]:

THEOREM. Let Condition (C) hold. Then there exists a sigma-finite measure I1

on (X, #), unique up to a constant factor, such that
(1) u <I1, ie. TI(S) = O implies u(S) = 0,

(i) TI(S) = [x P"(x, S)I(dx) for all S € B, m = O (Invariance),

(i) TI(S) > O implies that P[ X, € S infinitely often ] Xo=x]=1forall xeX.

For m 2 1 P"™(x,S) = P[X, ¢ Tfor 0 <k <m, X,,eS| X, = x].

P O(x, S) = P9x, S) = the indicator function of the set S.

Let p be an arbitrary initial probability distribution defined on (X, %). Then
we define

Pp['] ‘—_jxp[' |X0 = x]p(dx)

on the corresponding infinite cross-product $pace. (See the supplement in Doob [4].)

For Se# with TI(S) > 0, we define the “S-process’ or “Process on S as
follows: Let {Xs,} be the consecutive members of {X,} which fall in S. Then,
{Xs,} is the Process on S. We denote the corresponding transition probability
function for this process by Pg(x, T), defined for all x € X and for all 7€ 4(S),
where #(S) = {T':T' = SnB for some Be %}. We then have that

PS(X’ T) = Z$=1 SP(m)(x, T)-
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If the original Markov Process is a Harris Process, i.e., satisfies Condition (C),
then so is the Process on S. We also denote the invariant probability measure for
this process

Os(T) = TI(T)/TI(S)
forall T € 4(S).
Lastly, we introduce that which in the literature is known as

HypotHEsis (D). (Doob [4]) There exists a measure 6 on B such that 0 < 0(X) < oo
and for some integer v = 1 and some ¢ > 0

PO(x,S)<1—¢ if O0(S)<c¢
forallxe X. :
(For a discussion of sets satisfying Hypothesis (D), see Orey [14].)

3. Results.
THEOREM 3.1. Let A € B and let the Process on A satisfy Hypothesis (D). Then
lim Y=o jx P®(x, A)p(dx) _
"N =0 jx P®(x, A)p(dx)

where ¢ and \y are arbitrary initial probability distributions on (X, %).
We need the following lemma.

LeMMA 3.1. Under the hypothesis of Theorem 3.1, if B € B(A) with I1,(B) > ¢
for some 6 > 0, then for some constant K

Zf:o BPA(k)(X» A) = K;

forallxe X.

Proor. Hypothesis (D) implies that lim,,_,« P, (x, A—B) = I1,(4— B) uni-
formly in x, x € A. Thus for some fixed » and for all x € 4

P,"(x, A—B) < 1,(4—B)+4/2 < 1-4/2.
Form=1,2,-,n k=0,1,2,---and any xe X

BPA(kn+m+ 1)(X, A) —

(k+1)
J' Tt JA BPA(l)(xa d,V1)BPA(")()’1, d)’2) Tt BPA(")' (Yk, dyis 1)BPA(m)()’k+ 15 A),
-B

A-B
(k) ‘
= ,L 'B‘ : jA BBPA(I)(X’ dh)BPA(")(Yp dy,)-- BPA(")‘ (Vk-1 dyk)BPA(n)(yk’ A-B),
< (1-9/2)"
Z BPA(")(x, A) = BPA(O)(x, A)+BPA(1)(x, A)+ Z Z gP ot 1)(x, A)
k=0 K=om=1

<2+n Y (1-6/2) =2+2n.
k=0
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Proor oF THEOREM 3.1. Let us define
Hy(x) = Y274 PO(x, 4) and  Hy(p) = [y Hy(x)p(dx)
for an arbitrary initial probability distribution p on (X, %).

Yi=oJx POx, Ag(dx) Hy($) HN(d))/HN(HA).

: =limy o ) HN(IT)

Mo S T PO, AW(dx) ~ V= Hy(W)

Hence it is sufficient to show that

Hy(p) _
Hy(T) —

limy_, ., 1.

For N = 1 and arbitrary 6 > 0, let
By, ={x:x€4, Hy(x) < (1+0)H\(I1,)}.
Hy(TLy) = [ Hy(x)T14(dx) Z [ 4-py,, Hu(x)1T4(dx)
> (14 06)Hy(TL)IT (A — By 5)-
For all N sufficiently large so that Hy(IT,) > 0
1> (1+8)[1-T4(Bys)] =1+6—(14)I4(By,s)
Therefore IT(By 5) > 6/(1+0).
Hy(p) < fx 2ii=0 PA(x, A)p(dx)
S x 2R o L1 [Byns B P (%5 dy)P ™y, A)+ 5, PO(x, 4)]p(dx)
S [x D051 Fanos s PO, dy) X557 PO, A)+ 2 0 5y, PO, A)]p(dx)
Hy(p) = [x[Y%0 BN,dP(U)(x’ A)]p(dx)
+5UDy ¢ gy, (V) x (0% 1 5y, P (%, By,s)]p(dx)
Hy(p) < [x %o BN,dPA(k)(x’ A)Jp(dx)+(1+6)Hy(IL,).
By Lemma 3.1
Yo n P AP (%, 4) = K.
Choose N; so large that for all N = N,
K, < 0H(IL,).
Therefore for all N = N;
Hy(p) = (1+26)Hy(I1y)
implying that
lim supy.., Hy(p)/Hy(I14) < 1.
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For N = 1 and arbitrary § > 0, let Cy 5 = {x:x€ A, Hy(x) = (1-0)Hy(I1,)}.
Hy(TLy) = [y, Hi()TL(dX) + [ 4 - ¢y, Hy(x)TL4(d).
Forall N =z N;, with p chosen so that x has initial probability measure one,
Hy(TLy) < (1+20)H (IO w,5)+ (1 —=0)Hy(TT)IL(A—Chy ),
1 < (1 +25)HA(CN,5)+(1 “'5)[1 —HA(CN,é)] = ]. - 5 + 35HA(CN,6)’
Therefore
IM,(Cy;) > %
foralN =z Ns. For Nz 1,m = 1
HN+m(p) j.X [Zﬁh" ! k =1 ch 5Crrs (v)(x dy)P(k » ()’a A)]P(dx)
Hy.n(p) 2 j.X [Zu= 1 ch 6Crs (u)(x dy) Z?I:om vt P(S)(J", A)]p(dx)
> 1nfy e CNsyo HN(y) jX [Zv 1 CN,&P(U)(x’ CN,&)]p(dx)
Hy.n(p) = (1 —&)Hy(I1 ) Zv= 1 fx cN,ép(v)(x, CN,é)p(dx)‘

Since the A-process satisfies Hypothesis (D) and II(Cy ;) > % for all N = N;,
for arbitrary & > 0 there exists M, = My(d,¢) > 0 such that P,[E] > 1—¢
where £ = {Event of visiting Cy ;s during the first M visits to A}. As this is a
Harris Process, we can find mo = mo(M,, ¢, p) such that P,[F] > 1—¢ where
F = {Event of visiting A at least M, times in the first m, steps}. Thus m, is a
function of J, ¢, p and is independent of N if N = Nj.

For N = N;

P,[Event of visiting Cy , in the first m, steps] = Y o2, [y .. .P(x, Cy,5)p(dx)
> P [EAF] 2 1-2s.

Therefore
IN+mo(p)
?(—I:I_). 2(1-6)(1- 28)
Since limy_, , Hy(IT,) = coand 0 £ Hy,,.(p)—Hy(p) £ m
N(p) N+mo(p)

lim inf”"“’H () =liminfy_ ,———— Hy(L,)

Due to the fact that § and ¢ are arbitrary, .
liminfy_, , Hy(p)/Hy(I1,) = 1.
Therefore, for any initial probability measure p on (X, &)
limy, , Hy(p)/Hy(IL,) = 1.
THEOREM 3.2. (Jain) If A; € & for i = 1,2 with 0 < TI(A4,) < oo then
Y= PO(x, 4y) H(Al)
M= Zm P(k)(% 2) H(Az)

lim



A GENERALIZED DOEBLIN RATIO LIMIT THEOREM 909

Sfor all x and for all y not in a T1-null set N(A,, A,).
(Here I1(A4,)/I1(A4,) = o0 if TI(4,) = 0.)

ProOF. This is Theorem 3.4 of Jain [8], the proof of which utilizes Theorem 3.1.
(An alternate proof using Theorem 3.1 may be obtained via theorems of Chacon [1]
and Chacon and Ornstein [2].)

THEOREM 3.3. Let A;€ # and let the Process on A; satisfy Hypothesis (D) for
i=1,2. Then

lim v=1 [x P(x, Ay)$(dx) _ I(4,)
" Y fx PO, App(dx) T TI(4,)

v=1

where ¢ and\y are arbitrary probability measures on X.
PRrOOF. Let

. o=1 Ix P®)(x, A,)¢(dx)
R (), Ay, A,) = S T PO(x, Ay)(dx)’

By Theorem 3.2, we may choose z € X— N(4,, 4,), thus
lirnm—voo Rm(za Al 5 Z, AZ) = H(Al)/H(AZ)

(In our notation, when a point is used in place of a measure, we mean a measure
the mass of which is all concentrated at that point.)

lim,,,, R.(), A1; 2z, A)) = 1 and lim,,_, , R,(z, A,; ¥, A,) = 1 by Theorem 3.1.
Since '
liInm—n:o Rm(¢9 Al’ lpa AZ) = liInm—»co Rm(¢9 Ax 5 Z, Al)Rm(Zo Al 5 Z,y AZ)

.Rm(z’ AZ 5 ‘//' AZ)
we have the desired result.

COROLLARY 3.1. Let A; € % and let the Process on A; satisfy Hypothesis (D)
fori=1,2. Then for all x € X, for all y € X,

vm=1P(v)(x, Al) _ H(A1)
) Y P(u)(ya Az) h H(Az)'

lim

PrOOF. Choose ¢ and ¥ in Theorem 3.3 so that x € 4; and y € 4, have initial
probability measures one, respectively.

REMARK. The null set of Theorem 3.2 apparently depends upon the sets 4, and
A, involved in the limit. Isaac [7] has shown that this dependence is justified
in general and, furthermore, has proven a theorem ([7], Theorem 1) showing
when the null set is actually independent of these sets. We give here an alternative
proof of that theorem. Note also that under the hypothesis of Theorem 3.3 (as
demonstrated in Corollary 3.1) we find that this null set is empty.
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THEOREM 3.4. (Isaac) For any fixed set S € B with 0 < TI(S) < o0, if A; € B(S),
i=1,2withTI(A,) > 0 then

D P(k)(x’ 4,) TI(4,)
D Y P(k)(J’» Az) B H(Az)

for all x and for all y outside of a fixed M-null set N(S) which is independent of
Ay and A,.

PROOF. Let R, (x, A;;y, Ay) = Y r_y P¥(x, A1)/ 7=, P¥(p, A,). From Theorem
1 of [13], there exists S;€ %, i = 1,2, --- such that TI(S;) > 0, the Process on S;
satisfies Hypothesis (D) and S; T S. Then for any fixed ¢ € S;, Theorem 3.2 and

Corollary 3.1 imply that
1imm—>oo Rm(x’ S’ q, Sl) = H(S)/H(Sl)

for all x € S—N(S) where IT(N(S)) = 0. (Note that the null set N(S) is indeed
a function of S alone. If not, there exists y € S; such that lim,,_, , R, (x, S;», S;) #
I1(S)/TI(S;) for some xe S—N(S). However, there is a contradiction since
lim,,,, R,(x,S;y,S,) = lim,_, R,(x,S;q, S)R,(q,S;;y,S;) and

lirnm—foc: Rm(q’ Sl;y’ Sl) = 1

lim

by Corollary 3.1.)
By Corollary 3.1, foreachi = 1

lim,, . o, Ru(x, Si3 ¢, S1) = TI(SH/TI(Sy)
for all x € X. Therefore, for all x € S— N(S),
liIni—'oo liInm—'oo Rm(x9 S_Su q, Sl)
= limi—)oo liInm—boo [Rm(x9 A q, Sl)'—Rm(x’ Sw q, Sl)]
. I(S) TI(S)
= lim;, - =0
(S  II(Sy)
Thus for all x € S—N(S)

1imi—>oo limm—»oo Rm(x’ AlmSzc’ q, Sl)
é lirni-—mo 1in’lm—»oo Rm(x’ S~S” q, Sl) = 0

By Corollary 3.1 lim,, o R,(x, 4,0S;; 9, §y) = II(4;nS)/TI(S,) for all xe X
and for all i = 1.
Therefore, forall xe S—N..S)

lim,, o, Ru(x, Ay; 4, Sy)
= limi—mo limm—»oo [Rm(x’ AlmSi; q, S1)+Rm(x’ AlmSic; q, Sl)]

I(4,nS;) I1(4,)

= lim;, o = .
TI(Sy) TI(S,)
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Since
ll.rnmﬂoo Rm(x’ Al , y’ AZ) = liInm—'oo Rm(x7 Al 9 q’ Sl)Rm(q’ Sl ’ y7 AZ)
we have the desired result.
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