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ON FIXED-WIDTH CONFIDENCE BOUNDS FOR
REGRESSION PARAMETERS!

By M. S. SRIVASTAVA

University of Toronto

0. Summary. In this paper Chow and Robbins’ (1965) sequential theory has been
extended to construct a confidence region with prescribed maximum width and
prescribed coverage probability for the linear regression parameters under weaker
conditions than Srivastava (1967), Albert (1966), and Gleser (1965). An extension
to multivariate case has also been carried out.

1. Introduction. Consider {y,}(n = 1,2, ), a sequence of independent
observations with

(1.1) Ey, = B'X,

and

(1-2) Var'inO-Z, i:1727“.,n9
wherey’ = (yy, -+, y,),and X, = (x", -+ x™). We assume that X, is of full

rank. (This can be achieved by sampling until p linearly independent x? are
obtained; this sample size will be denoted by n,.) The problem is to find a con-
fidence region R in p-dimensional Euclidean space such that P(f € R) = o and such
that the maximum diameter of R < 2d. Since no fixed sample procedure will meet
our requirements, we will consider sequential procedures whose sample size
(random variable) N depends on d; N(d) = o a.s. as d — 0. This problem has been
considered by Gleser (1965) and Srivastava (1967) under the following generalized
Noether’s conditions given by Gleser (1965):

(13) (l) limn—vwn_l(X"X"/) — Z,
(i) lim,., max;c;<,x?xD =0.

Srivastava (1967) obtained two confidence regions; an ellipsoidal confidence region
Ry and a spherical confidence region Ry, Ry’ > Ry, satisfying

1.3)* (i) lim,o P{eRy'} = lim,_ s P{Be Ry} = «;

(i)  the maximum diameter of Ry’ (and hence of Ry) < 2d.
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Albert (1966) reconsidered the problem in more generality. While for spherical
regions he also assumes conditions (i) and (ii) of (1.3), but obtains ellipsoidal regions
under slightly weaker conditions:

i tr(X,X,)) -0 as n— oo,
(i)  max; g, xXPx)tr (X, X)) >0 as n— o,
(1.4) (i) lim-sup,- o [Amax(Xn X)) Amin( X X,)] < o0,
(@) limeosup, [(T1079 (xOXO) /T xO X0} 1] =0,
v) Forsome ¢ 2 1, dcnt2) = Aent 1) 2 Ae(nt 1) = Aen-
(VI) )'n—l é }‘n_’ o and ,1”/),"_'_1 - 1; )'n = )'min(Xan’)’
He showed that, except for (1.4 v) and (1.4 vi), his conditions are weaker than
condition (1.3). Without an example it is not clear that the weaker conditions (1.4)

permit a larger class of problems to be covered than by (1.3). Given below is an
example which shows that an extensive class of problems meet neither the require-

ments in (1.3), nor in (1.4).

ExampLE. Consider the problem of polynomial regression. For convenience of
computation, we will consider the case
Ye=o+pt+e,

t = 1,2, -; where ¢ are independently distributed with mean zero and variance
o2, Identifying it with the specifications in (1.2), we have p = 2, and

11....1
(L),

XX = n n(n+1)/2
mEn T \n(n+1)2 n(n+1)2n+1)/6) °
It is clear that n= (X, X,’) + a positive definite matrix as n — oo. Consequently

the conditions (1.3) are not satisfied. In order to see that the conditions (1.4) are
also not satisfied, let us find the characteristic roots of X, X, . The two character-

istic roots of X, X, are given by
A= {n2n*+3n+7)+n[(2n*+3n+7)*—12(n+1)(n—1)]*}/12.

Hence

Hence
DX X ) i X, X)) > 0.
It is known (see, e.g., Roy (1957)) that X, can be written as
(1.5) X, =T,L,

where T, is a pxp triangular matrix with positive diagonal elements (hence
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unique), and L, is a pxn semiorthogonal matrix; L,L,’ = I, and I, is a pxp
identity matrix. Hence

(L.6) T,7'X, = L, = (,", -, L") =(£;;(n)).
Let
(17) )'n = )'min(Xan’)’

In this paper it is shown that the results hold under the following weaker con-
ditions:

(i) lim,.,max, <;<,,P3D =0,
(c*) (i) limqsup, |30, KUY =
where n* = [n(1+c)], the smallest integer greater
than n(1 +¢), and |B] = [Ana(B)]*.
(i)  (L.4)(v).

First we will show that the condition (C*) is weaker than the condition (1.4).
From (1.6) we get

LOLD =) OO =) T~ 1xOy@' -1
= [Amax Ba ™ T Amax X7 O], (see [7] page 139)
< tr(B,” )(x'x?),
where B, = X, X,/ = T,T,’. Consequently (1.41ii) implies C* (i). Next we show
that (1.4 iii) and (1.4 iv) imply C*(ii).
”ZnHl(nI(z) “ <Y IR = Y x BRx®
< Ao (B ) 2% 1 X% O = [0 X% D] Apyin (Bye)
< K[QA% 1 x%xD)/tr B,u] < k[(On 1 xP'xP)/tr B,].

This completes the proof that (1.4) implies C*.
We will now verify that the condition C* is satisfied for the polynomial re-
gression problem. With X, X," = T,T,’ as given above, we have

-4 -4
—1 _ n y e n
Lo X = (O(n**),~-0(n-*>) ’

and C* (i) is satisfied. Also
”2111 LR ”2 = Z Zne1 £V 4 < [nc] max, sisne (8 £33
=[nc]o(n*')-0 asc—0

uniformly in n. To verify the convexity condition C* (iii) we proceed as follows.
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Let 4,* = 124,,b =(2n* +3n+7),¢ = 12(n+1)(n—1)/b*.
Then
A* =nb[1—(1—¢)*] = nb[de+4e® — &> + -],
6n(n*—1) +3 n(n*-1)* 3n(n*-1)°

5 353 i S tup—us e (say).
We get
, 6(84x> +113x* +322x —21)
ul (x = b3 > 0
and
., 38x7 —48x% —442x° +210x* + 1000x> —252x* + 760x +42
uy (x) =5 5
2 b
>0 for all x > 15.
Hence

oo _ 64N +11302+32n—21) 3(8n”—d8n°+ )

An b3 2 b5 —O(n_5)+0(n'7)—~~

Consequently there exists an nq, such that for n = ny, 4,*” = 0 which proves the
convexity of 4,.

It may be pointed out that several examples could be constructed satisfying the

conditions (C*) and not satisfying (1.3) and (1.4). Another example is with the
design matrix

X = (O, 1, 0, 2, 0, 3, 0, 4, )
" 1, 0, 2% 0, 3% 0, 4% 0,
2. Solution. The least squares (1.s.) estimator of § and o are respectively given by
(21 B(n) = T,7 'Ly, = (X,X,)) ' X,y,
and
(22)  &*(m)=n""y/[L,—L/LIy, = n" 'y, L~ X,/ (X, X,) " X, 1Y

Proceeding as in Srivastava (1967), we obtain regions R, and R,’ satisfying (i)
and (ii) of (1.3)*, as follows: ‘
(I) We start by taking no= p observations y;, -, y, . We then sample one

extra observation at a time, stopping according to the stopping variable N defined
by

(2.3) N =smallest k=n, suchthat (6*(k)+k™ ') < d?A/a;’

where A, is the smallest characteristic root of (X,X,"), P{x,*> < a’} = «, and
2 2
a,> - a’.
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(I) When sampling is stopped at N = n, construct the region R, defined by
(2.4) R, = {z:(2— ()Y (X, X, a—B(n)) < d*4,}.

It follows from Srivastava (1967) that the maximum diameter of the region
R, is = 2d. The spheroid region R, can similarly be obtained as in Srivastava
(1967).

3. Asymptotic properties of class %. In this section, we study the properties of
procedures in Class € as d — 0.

THEOREM 1. If condition (C¥*) is satisfied, then
(a) N(d)< was.;
(b) limy,oN(d) =0 a.s.;
(¢) limy,od*Ayg/o’anay = las.;
(d) lim,,oN(d)/q(a*c?/d*) =1a.s.;
where q(t) = max {n: 4, < t}.
For proof, refer to Albert (1966) along with the following
LEMMA 1. Under condition C*(i)
@) A= Anin(X,X,) > o0,
(6) AwfApsy > 1,
asn — oo.
The proof of this lemma will be given at the end of this section.
THEOREM 2. Under condition (C*) lim,_,, P{f€R,} = .
ProOF. We have
P{BeRy} = P{(y,'— B'X,) L, L(y,— X,'B) < d*4,}
= P{u,L,/L,u,Jo* < d*A,/0%}

where u,’ = (uy,- -+, u,), and wu,, u,, -+, u, are independent and identically
distributed with mean zero and variance o2. Let

(3.1) w,=Lu,,  z,=0"%w, w,

From Srivastava (1967) or Gleser (1965), z, has an asymptotic chi-square (sz)
distribution with p degrees of freedom. Thus, either by verifying Anscombe’s
condition C2 (uniform continuity in probability), as was done in the earlier version
of this paper, or from Theorem 4.2 of Gleser (1969), (this theorem applies because
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C* (ii)) —» (4.3, Gleser (1969)) as is seen from the proof of Lemma (b)), zyw
converges in law to a x,% rv as d — 0. Hence, from Theorem 1c

P{ﬁERN} = P{ZN(d) = dz/lN(d)/Uz}
->P{y,’<a*} =« asd— 0.

This completes the proof of our Theorem 2. We now turn to the proof of Lemma
L.

PrROOF OF LEMMA 1(a). Let
(32) B, = Xan/’ /1" = lmin(Xan/)'

Under the condition that X, = (x"), - - -, x) is of full rank (cf. Section 1),
x®) -+ x™ are linearly independent nonnull vectors of known constants and
are independent of n. Hence

tr lez L ln(i)ln(i)' = Zfz L In(i)'ln(i) =tr [(Zfz ! x(i)x(i)')(Tn— 1 ’Tn— 1)]
= tr(Ban_ 1) g Amin(Bp) tr Bn_ 1'

Since Y 7-; 1,17 - 0 as n — oo, and since Ay;a(B,) is independent of n, we get
tr B,”' — 0. Hence 4, - .

ProOF OF LEMMA 1(b). Since

(3.3) Koo 1Xne1 = X, X,/ +x0F DD
we get
(3.4) M1 Z A and A, fh = 1.

Taking the inverse of both sides of (3.3) and recalling that B, = (X, X,"), A,...(B) =
[|B||2, we get

B!\ = B, {[I—B, ix("* Ux"+'p ~4]p, 4,
Hence
L A
=i ! [1 _l("+ 1)’T,+ 1B~ 1Tn+ 11r(-"++11)]
=1 —1[1 l(n+1)(I T (n+l)x(n+l)’Tn—+ll’)—ll’fr_:-i-ll)]
— )."_ 1[1 _I'('r!:ll) (I—I,(,"++1l)l("+ 1)’)— 1I(n+ l)]
A R R (Al SR C B KRl )]
Hence, from C* (i), it follows that
(3.5) lim,, o 4,4 /4, £ 1.
Combining (3.4) and (3.5) we get 4,4 /4, = 1 as n — oo.
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4. Multivariate case. The set up for multivariate linear regression model is an
easy and direct extension of univariate case. In place of the specification (1.1)—
(1.2), we consider the more general set up as follows:

Let ¥, = (y",---,y™ be a k xn matrix of observations with independently
distributed column vectors and

4.1) EY, = pX,
Cov-y? =3, i=1,2,--.n
where f8 is a k x p matrix of unknown parameters and X, = (x*, -+, x™), a
pxn,p < n—k matrix of known constants. We assume that X’ » is of full rank (see
Section 1). It is easy to see the correspondence between the univariate and multi-
variate. The specification (4.1) can easily be changed fo the univariate case. Let a
be any nonnull k-vector. Then (4.1) can be changed to the univariate case as fol-
lows:
(4.2) Ea’Y, =a’'fX,
Vara'y?) = a'Za.

Thus if we have a confidence region for 8, we can then obtain one for a’f also.

We require

(i) that the confidence region Ry for B be such that the maximum diameter of the
region for a'ff = 2d for every nonnull k-vector a, and

(i) limy.oP(BeRy) = a.

Under condition C*, this can be achieved sequentially.

5. Solution. As in the univariate case, we find that the Ls. estimates for § and
X are respectively,

(5.1) B(n) =T, VLY, =(T,T,))"'X,Y, =(X,X,) 'X,Y,,
and
(5.2) (n) =n"'Y,[I,—L,/L,]Y, .

Let C, be a random variable distributed according to the maximum character-
istic root of a ¢xt Wishart matrix with mean /I,, where ¢ = min (k, p) and
[ = max (k, p). Let {a,*} be any sequence of positive numbers converging to a*
satisfying

(5.3) P{c, < al*z} =q.

Let
(5.4) y = Ana3((n)) and p = Amax(Z)-

Then p, — p a.s. under C* (i) (cf. Gleser’s correction note). The steps (I) and
(IT) for this procedure are the same as in Section 2 with 6(n) and a,? replaced by
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u, and a,*? respectively. The confidence regions R, and R,, R, = R,/, are
respectively given by

R, = {Z lmax[(z - B(n))/(Xan/)(Z - B(n))] = dz’ln}
and
R, ={Z: 2l (Z—B(n)) (2 —P(n))] < d?}.

It is simple to show that properties of Theorem 1 hold here also with 62 and a?
replaced by p and a*? respectively. The results similar to Theorem 2 are contained
in the following

THEOREM 3.
limy,o P{feR,’} = lim,o P{fER, = a.
Proor. Following Section 3, we have
P{BeR,} = P{max,.,- [a'(B(n)— )X, X, )(B(n)—B)a] < d*4,}
= P{max,,,,,-a’U,L,'L,U a < d*],},

where U, = (u''), - - -+, u™) isa k x n matrix with independent column vectors with
E@®W) =0 and Cov-u® =%, i=1,2,---,n Using the result (see [7] page
142) that sup,.,.-; [a'4a/a’Ba] = 1_,, AB™!, B pd, and following as in [8], we
get

max

P{BER,} = Pl 21U, L/L,U, < d*u} = P{z, < d*/u}
where
Zp = lmax (Z_IUnLnanUn,) = ;Lmax(VVnVVn,); W,= Z_%U"L".

Without any loss of generality, we assume that k < p, i.e., t = min (k, p) = k
and / = max (k, p) = p. Hence it follows as in Section 3 that W,W,” has asymp-
totically Wishart distribution with mean pl,. Thus, either by verifying Anscombe’s
condition C2, as was done in the earlier version of this paper, or from Theorem 4.4
of Gleser (1969), it follows that Wy, Wy, has asymptotically Wishart distribution
with mean pl,.
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