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SOME ASYMPTOTIC RESULTS IN A MODEL OF POPULATION
GROWTH
II. POSITIVE RECURRENT CHAINS!

By BURTON SINGER
Columbia University

We treat a model describing the continued formation and growth of
mutant biological populations. At each transition time of a Poisson process
a new mutant population begins its evolution with a fixed number of
elements and evolves according to the laws of a continuous time positive
recurrent Markov Chain Y(¢) with stationary transition probabilities
Pu(t), i,k =0,1,2,---,¢t = 0. Our principal concern is the asymptotic
behavior of moments and of the distribution function of the functional
S(t) = {number of different sizes of mutant populations at time ¢}. When
the recurrence time distribution to any state of the Markov Chain Y(t)
has a finite second moment, the moments of S(¢) and limit behavior of its
distribution function are controlled by the stationary measure associated
with Y(¢z). When the second moment of the recurrence time distribution
is infinite, then a local limit theorem and speed of convergence estimate
for Pu(t) with k = k(t) » o0, t - oo are required to establish asymptotic
formulas for moments of S(¢).

1. Introduction. We continue the study begun in [3], [6] of a model describing
the continued formation and growth of mutant biological populations. Our basic
structure assumes that a new mutant population begins its evolution at each
transition time of a non-decreasing integer valued stochastic process {n(t), t > 0}.
Each new mutant population begins its evolution with a fixed number of elements
and evolves according to the laws of a continuous time Markov chain { Y(¢), t > 0}
with stationary transition probabilities

Py(t) i,k=0,1,2,---;t=0.

We assume that all populations evolve according to the same Markov chain,
independent of each other and of the process {n(¢), t > 0}.
In this paper we again consider limit behavior of the special functional

Sy(ry = number of different sizes of mutant populations at time ¢
of the vector process

N(t) = {No(t), N{(t), -~}

where

N,(t) = number of populations with exactly k elements at time .
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Our treatment of S, ,, is the prototype for functionals of N(¢) having the form

g(N(1) = X0 9(Nu(1)

where g(x) is the indicator function of a Borel set in [0, c0). Adopting the termin-
ology of [6], S, ;) will be referred to as the “‘occupied states” process generated by
the input process {n(t),? > 0} and the growing process {Y(¢), t > 0}. Without
loss of generality we assume that all chains begin their evolution in state 0. In
contrast with [6] we assume that { Y(¢), ¢ > O} is a general continuous time positive
recurrent Markov chain with all stable states and that the input process is Poisson
with parameter 4 = 1. To simplify the notation we write S(¢) for the occupied
states process associated with a Poisson input process.

Our primary purpose is to establish asymptotic formulas for the moments of
S(¢) and to discuss its limit behavior as t — oco. The asymptotic moment formulas
for S(¢) generated by positive recurrent growing processes are qualitatively different
from those associated with null recurrent and transient processes [6]. In particular,
if {Y(¢), t > 0} has a recurrence time distribution to any state, say 0, with a finite
second moment (m7) < o), then asymptotic moment formulas of S(¢) are con-
trolled exclusively by the stationary measure {p,};=, associated with Y(¢). This
dependence is made precise in

THEOREM 4.1. If the growing process associated with {S(t), t > 0} is a positive
recurrent Markov chain with all stable states and m'§) < oo, then

k
B limw@?—_(%ﬁk _1 (1)
(it) If the stationary measure also satisfies the condition
a(x) = max (k: p, = 1/x) = x'L(x)
where L(x) is slowly varying and 0 < y < 1, then
(@) 01— ~ hy(1), (—w ()
where

h(t) = [(1—y)"L(r) if 0<y<l,

- tfowe—;/yL(ty)‘dy if y=1,
(b) E(S(t)—ES(1))*
~ l:jio (e—!’ﬂ—e_zpﬂ):l (_2'k_2);

2k)!
~ (k'z)k (27—1)kllyk(t), t— oo,k = 1,2’ (3)
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(©) E(S(1) = ES(1))* ™

____(2k_1)! (v _1\k—2} k-1 (c1=3¢,+2¢5)
~6-2k"2(k—2)!(2 —1)*h, (t)—W’ 0<y<1
(2k—1)1t
~EE )" hyf = 2(0)(d(1) - 3d (1) +2d(1)), y=1 (4
where
Cm =j30 myY—Ze—lly(l_e—I/y)m—l dy
—1/y
dy(1) = j L(ty) (1—e™ 1)y~ 1qy, m=1,2,3,--

Formulas (1)-(4) have an interesting interpretation in terms of an infinite urn
scheme. In particular, if we assume that at each event time of a Poisson process one
ball is thrown at an infinite array of cells with probability p, of hitting the kth

cell, then
ES(t) = Yo (1—e™)
where
S(f) = number of occupied cells at time ¢
and

VarS(1) =Y %o (e 7" — e 27).

The infinite urn scheme has served as a model problem for Theorem 4.1 and the
limit theorem,

THEOREM 6.1. If the hypotheses of Theorem 4.1 (ii) hold, then

(@) limeP<%§ x> — o(x) 5)

where
.
D(x) = W e iZdy.
S(t
(b) lim,, }% =1 with probability 1. (6)

An extensive discussion of limit theorems for the infinite urn scheme can be
found in [2].

For positive recurrent chains Y(¢) W1th méy) = oo, control of moments and limit
distributions of S(#) by the stationary measure may break down, as indicated in
the examples of Section 5. Asymptotic formulas analogous to Theorem 4.1 require
the use of local limit theorems for the transition probabilities of the growing
process Y(t). We establish such formulas for a special class of birth and death
processes, deferring a complete treatment of the case m{y) = co to a separate
work.
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2. Outline. Section 3 contains the basic facts about positive recurrent Markov
chains which are required to check the moment formulas of Theorem 4.1. In

Section 4 we prepare the asymptotic relations

. E(SYY)

llmH@(E.SW:l k=1,2,---, (7
i k12¢ E(S()-ES(1)**
o R)! CE(S() = ES())T

provided
a(x) =x"L(x), 0<y< 1,
lim (k—2)! 62" 2E(S(t)— ES(1))* ! 1 ©)
7 (2k—1)LE((S(6)— ES(0)*) T E(S(1) - ES(1))
provided

a(x) = x"L(x), 0<y=1 k=2,3, ..
This reduces the computation of explicit formulas for kth moments to evaluation

of at most the third central moment. Relations (7)-(9) are immediate consequences
of the representation

S(1) = Yo Xu(t)
X()=1 if N(1)>0,
—0 if N1)=0.

{N () are independent Poisson random variables with parameters j(')POk(s)ds,
k=0,1,2, - respectively.

For input processes n(f) other than Poisson, S, ,, cannot be represented as a sum
of independent random variables. Formulas analogous to (1), (3), (4), and (7)-(9)
require delicate estimates of the strength of dependence among the binary valued
random variables

where

X (=1 if NJ()>0,
=0 if Nt)=0, {N(1)}i% o dependent

generating /
Suny = 2o Xu(1)-

General input processes, dependence estimates, and associated limit theorems will
be treated in a separate paper. Section 4 concludes with a proof of Theorem 4.1.

Section 5 contains some preliminary facts and a local limit theorem for positive
recurrent birth and death processes and then indicates their role in computing
asymptotic formulas for moments of S(¢) when m$%) = oo. The central limit theorem
and strong law of Theorem 6.1 conclude the paper.
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3. Positive recurrent chains: Inequalities and identities. The inequalities and
identities in Lemmas 3.1-3.3 are essential for the proofs in Sections 4 and 5. Our
terminology is that of Chung [1].

LemMA 3.1. For a positive recurrent continuous time Markov chain with all stable
states

Por(t)= i = oPor(t) + 40§ (roo(t =) = Po)oPoi(s) 45— Podo | o Por(s) ds  (10)
where
pr = lim,,  Py(t), i,k=0,1,2,-,
ra(t—s) = P(X(1) = k| p; =),
pi =inf(1:t >0, X(r) # i, X(0) = i),
= first exit time from the initial state i.
aPult) =0y e™ " + P(pw) < 1, X(s)¢ H, pfw) < s < t; X(1) = k| X(0) = i)
and H is an arbitrary possibly empty set.
1—Py(1)
t

q; =1lim,,

PRrROOF. A standard last entrance decomposition yields the identity
Pol(t) = oPoi(t)+§6 doroo(s)oPoi(t—s) ds. (11)
(See Chung [1] page 239 for a proof.)
Applying the identities (12) and (19) on page 216 in Chung [1] yields the
formulas
Do jgo OPkk(s) ds
— £0J0 0" kil?) 77 12
P~ T P ds (2
_ Pod0 jgo OPOk(S) ds
Foi(0)
where

and

inf(¢: t > piw), X(t) = k)

= first entrance time to state k after an exit from i.

ik

Since we are considering only positive recurrent Markov chains, F,(c0) = 1.
Combining this fact with (11) and (12) yields

Pok(l)_pk = OPOk(t)+q0ﬁ) ("00(1_S)_PO)OPOk(S)dS—POQOthO oPOk(S)dS

and the proof is complete.
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LemMA 3.2. Given a positive recurrent irreducible continuous time Markov chain
with all stable states and ¢ > 0 arbitrary 1T(c) independent of k such that for
t > T(e)

—&ept—DPodo ﬁ) dszf OPOk(s) ds < _ﬂ) (POk(S)_pk) ds (13)
S epd.

Proor. Integrating the identity (10) with respect to ¢, deleting the last term, and
bringing in (12) we obtain the inequality

§6 (Pox(s) = pi) ds
< [ oPoul(s) ds+ 5 ds [§ do|roo(s —w) = po|oPox(w) dw (14)

Pe | DPit
<p020 k [ J roo(s)— p0|ds]

By Theorem 8, page 237 in Chung [1], lim,_, ,,70(t) = po.
Thus
1
lllnt—voo J |V00(s) pol ds p— (15)
and the upper bound
§o (Po(s) = pi) ds < epit

follows for ¢t > some T'(¢).
For the lower bound we again use the identity (10) to obtain

J0(Poi(s)—pi) ds (16)

Pt
= —'_k‘I: f |'oo(5) Po|ds:| Poqu dsj OPOh(W dW

An application of (15) in the first term on the right-hand side of (16) completes
the proof.

LEMMA 3.3. For an irreducible continuous time Markov chain with all stable states

Z;(X;l OPOk(S) = 1—F00(S), VS > 0. (17)
PRrROOF. Let
aoo(w) = inf(t:1 > po(w), X(1,w) =0)
and ‘
Ay =(0:X(0,w) =0).
Then

(w:ogo(w) > 1) N A,
= (w: X(s, w) # 0,min 1, po(w)] < s S t) N A,
=& (0: X(s, ) # 0, min [, po(w)] < s < 1, X(t, 0) = k) N A,.
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Recalling the definition of taboo probabilities 4P, (¢) as given in the statement of
Lemma 3.1, we have

Patoo(w) > 1] A0)P(A0)
= (1=Foo(1))P(A0)
=21 0Poul(t)P(Ao)-

4. Asymptotic moment formulas when m < oo. We prepare the

LeMMA 4.1. If {S(t), t > 0} is an occupied states process generated by an arbitrary
irreducible continuous time Markov chain with all stable states and a Poisson input
process with parameter A = 1, then

(i) E(S'(1)) = (ES()) + O((ES(1))"™"). (18)

() E(S()—ES()y* = ( 5 EYz(t))k( "z)k +o<(j§o EXj(t))k_l) (19)

where
=0 otherwise,
and Y1) = X;(6)—EX ().

(iii) E(S(t)—ES())* ! = (ioEsz(t)>k_2<j§0EYj3(t)> 6—5’%1{2_——213)—'2)1 (20)

+o<i EXj(t)>k_2.
PRrOOF. (i) Expand S"(t) as =
Vi i =1 X0 = Yomm s Vit jntetjmrgre 1=k ] L= 1 X(0). (21)
Since { X;(#)}jZ, are independent random variables for each 7 > 0
ESHt) = Y=t 5y =k Djiro 25 ] 1= 1 EX(1).
Adding and subtracting
D W g b= I (EXG)"

to the above expression yields the representation

ESH(t) = (ES())* + 20 Xjoz oty mr = ([T EQX) =TT 1 (EX)1).

(22)
Using X'(1) = X,(t). I = 1,2, --- and
(EX (1)) < EX(t) = 1—exp(—[§ Po(s)ds), 1=1,2,-
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in (22), it suffices to check by induction on m that

. _, Livt il 121 EX; (1) = O(ES(2))"). (23)
211¢jzl—[ IEX]l(t) ZM J2 EXJ.(t) ZJ O(EXJ(t))2
= (ES(t))2+O(ES(t)), (24)
g} = O((ES(1))*),
Yo (EX (1)) = ES(1)), I=1,2, (24a)
and forj < k
(ES(1))’

W—? s 1— 00. (24b)

The limit (24b) is immediate from ES(#) 1 oo, as t — oo.
Now assume that (23) holds for m = 3,4, ---, r

Then
211¢ ¢Jr+1HrHEX (t)
= (ES@)) ™ = Xh=1 Xgire gz 1=re 1 (EXG ()"
= (ES(1))* "+ O((ES(1)))
= O((ES()y™")
by (24a), (24b), and the induction hypothesis.
(i) Because {Y;(t)}7~, are independent for each ¢t > 0 and EY(t) = 0,

E( 20 Y1) = Y=t it g g =2l 1= 1 (EY )

R N (G O (249

(1,1,-- 1) 1S ji<e<ji i=1

E : 2)[<Z B ) X 2z H(byz)l]-i'O((ES(t))" 1

1) m=1j# - %#jm, DI li=k i=

=B 50— B ()7 1+ 0((ES()
where
(J m J,) mp i=21 i =

The last three equalities in (24c) require an application of the properties
(@) EY/ (1) = OEX(1)).
(b) 0 S (EX,(1))" < EX0) £ 1.
(c) Binomial expansion:

E(Y/(1)) = (= EX,(0)) + o= QEX; T ((- 1)
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A similar verification yields (iii) of Lemma 4.1.

PROOF OF THEOREM 4.1 (i). Because of ES(¢) T oo, t —» oo and part (i) of Lemma
4.1, it suffices to check
s
lm’*""-E_.S‘”_(?) =1.
Step 1. An upper bound. Using the upper bound in Lemma 3.2 we have
ES(t)— ES(t) = X.5= o exp (—p;)(1 —exp (=[5 (Po,(s) — p;) ds))
< Yitoexp (—p;t)(1—exp(—ep;t))
e} foptexp(—pit)
< ¢ES(1)

(25)

for ¢ > 0 arbitrary and ¢ > some T(g).

REMARK. Notice that the condition m'f) < oo is not required for (25). Hence

ES(f) can never be an order of magnitude larger than ES(z),
SO
i.e., lim SuP‘*“"ES(t) <1)

Furthermore, lim,, (ES(t))/t =0, (see e.g. [2]) which means that
lim,, ,(ES(¢))/t = 0. This is in sharp contrast to {S(¢), ¢ > 0} generated by null
recurrent and transient Markov chains where it is possible to have
lim,, ,(ES(?))/t = 1. See [6] for examples of this behavior.

Step 2. A lower bound. Use the lower bound in Lemma 3.2 together with addition
and subtraction of exp (— (1 —¢&)p,t) to the kth term in the series for ES(1)—ES(?)
to obtain the inequality

ES(t)—ES(t) = Y% oexp(—(1—¢)p;t)[exp(—ep;t)—1]
— Y i=oexp(—(L—e)p;t)[exp (podo fo dw [ oPo,(s)ds)—1]  (26)
=1,(1)—IL,(2).
A trivial estimate gives

1(0) 2 —e Yo pytexp(—(1-o)py) = —— ES(1) (27)

for ¢ > 0 arbitrary and ¢ > some T(e).'

Since m'§y < oo, an application of the mean value theorem, Tonelli’s Theorem,

and Lemma 3.3 in I,(?) yield

I(t) £ 3.7 0(Podo Jo dw [ oPo(5) ds) - e
< Podom'ss exp(Podom'sy) (28)
=C*< w0
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where
m3 )
0<cj<7p0q0a J=1s2,""
and

mGe =23 s(1—Fools))ds.
Combining (26)-(28) we obtain

ES(t) € Cc*

ES() ' =TT ESG) )
Letting t - oo and recalling that ES(f) 1 o0, t — oo, we have

ES()

—_— >
- E3(1) = !

lim inf,

and the proof is complete.

Before proving parts (ii) and (iii) of the theorem, we remark that the assumption
a(x) = x’L(x), 0 < y £ 1 is introduced to ensure lim,_ ,E(S(t)—ES(1))* = .
This also implies that growth behavior of Var S(¢) is determined by that of ES(z).
Asymptotic formulas for bounded variances require more delicate calculations as
indicated by the examples in the infinite urn case [2]. A sufficient condition for

lim sup,_,., Var S(t) < co with m{§}) < oo is given by

. Dk +1
limsup,_. ,— < 1.
Dk

This follows from a verbatim imitation of the proof of Remark 3 in [2] using the
estimates of our Lemma 3.2. Of greater significance is the fact that the Central
Limit Theorem 6.1 does not hold for bounded variances. A more extensive dis-
cussion of this case is presently in preparation.

PROOF OF THEOREM 4.1 (ii). Rewrite Var S(¢) as
Var S(t) =Y 7o (1—exp (=2 [ Po,(s)ds))
=250 (L—exp(— [ Po,(s) ds))
= I3(1)—14(1).
By part (i), '

I4(t)

- ES(21)

lim =1

and

14(2)

lim,, o, ﬁ({) =1.
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Now we invoke Theorem 1 in [2] to assert that ES(t) ~ h(t), t = .
Since y > 0, we may subtract asymptotic formulas to obtain
Var () ~ (2" = 1)h,(1), t— 0.
Finally an application of Lemma 4.1, (ii) completes the proof.

PROOF OF THEOREM 4.1 (iii). The proof of Var S(f) ~ (2" — Dh,(¢) in [2] is readily
adapted to check that

(Cl e 302 +2C3)
I(t=y)
~ (dy(1)=3d,(r)+2d5())1, y=1
Cn =[5 my’ " 2e P(1—e” Y"1 dy,
d,(1) = & L(ty)ym (e 'P[y)1—e~ Y"1 dy m=1,2,3.
Thus it remains for us to verify that
L ESO-ES@)Y
MBS0 —ES()? ~
E(¥i=0 Yi(1)* = X2 E(Y;(1)),
since { Y;(#)}jL, are independent and EY (1) = 0.
But
S0 E(F(8) = X0 LEX (1) 3(EX (1) + 2(EX ()],
Hence, our problem reduces to checking
Y7o (EX ()"
lim,, S0 = 1, m=1,2,--- (31
o S ER (D) &1

and observing that for y > 0 we may add and subtract asymptotic formulas based
on

E(S(t)—ES(1))* ~ h(1), 0<y<l1l (30)

where

Notice that

Y 2 o (EX, (1) ~ c,t’L(2), 0<y<1l (32)
~ d,(1)t, y=1.

Given ¢, ¢, > 0 arbitrary and independent of each other, the upper bound of
Lemma 3.2 and formula (32) imply the existence of T’ (e, &,) such that for ¢t > T

Yo (E)fj(t))"‘< Yo (EYj((Al +21)1))"
YZo(EX ()= LZEX(H)"
For a lower bound, we again use Lemma 3.2 and the mean value theorem to write
(1—exp(—[5 Po,(s)ds)) = L —exp(—p;t(1—¢)+c(t)) (34)
= 1—exp(—p;t(1—e))—Koci(t),

< (1+e)(1+e,). (33)
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where
¢i(t) = Podo [bdw [ oPoj(s)ds

2
Ko =exp (Po% ’2;‘)*8)
Then make the identification
a; =1—exp(—p;t(l—¢)), b, =Koct),
and use the binomial expansion to write
(a¢;=b))" z a;" =0 (K)b;" 7" (35)
When ¢ = T,(¢4, ¢,), (34) yields

270 (EX (1) iso 2% o ()Ko(e(o0))" ' (36)

So oy = (L—e)(1—e)— A
SRy = (e =) TR )
Because
; )
ZCJ(OO)=P0%2—<OO and ¢j(o0) 20,
i=0

the numerator of the second term is bounded. Thus letting ¢ — co in (36) and
combining this lower bound with (33) completes the proof.

5. Examples m{%) = oo. The question of control of moments of S(f) by the
stationary measure of the growing process { Y(¢), ¢ > 0} when m{§} = oo is very
delicate. Asymptotic formulas require an estimate of the speed of convergence of
the transition probabilities P, ,(¢) to the stationary measure p, when k = k(t) T oo
as t — co. If the stationary measure has a monotone decreasing density we may
view p, as the restriction to nonnegative integers of a monotone decreasing
continuous function p(x), x € [0, o). If, in addition, p(x) has an inverse function
p~* such that p~1(1/t) = t°L(1), 0 £ a < 1, L(¢) slowly varying, then a sufficient
condition for

- ES(Q)
hm"’w—E—ﬁ(T) =1 (37)
is that
limy— o [ Po,yp- 11 n(te) = p(Lyp ™ (L)) =0 (38)

where y, u > 0 are independent of ¢, and [x] denotes the integer part of x.

We will exhibit two positive recurrent birth and death processes having the same
stationary measure {p,}i%o, M7} = co and only one of which satisfies (37). The
process whose limit behavior is not controlled exclusively by { p,}i= has an absorb-
ing barrier component which converges to a Bessel diffusion. The transition density
of the diffusion appears explicitly in the asymptotic formulas for ES(z) and
Var S(2).



1308 BURTON SINGER
We will require the following facts about birth and death processes on the
nonnegative integers.
5.1. The transition probability matrix satisfies the conditions as ¢ — 0.
Pi(t) = At +o() if k=i+1,
= it +o(r) if k=i-1,
=1—(4+w)t+o(t) if k=i,

where 4; > Ofori = 0, u; > Ofori = 1 and py = 0. If uy > O then —1 is appen-
ded to the nonnegative integers as a permanent absorbing state.

5.2. The transition probabilities have an integral representation [4]
Py(t) = m & e Qi(x)Qu(x) di(x) (39)

in terms of a system of polynomials {Q,(x)}>, orthogonal on [0, c0) with respect
to the positive regular measure y, and

/10/11"'}%—1

Tfk = .
IV R
5.3. When p, = 0, the representation (39) yields the finer decomposition [5]
Poj(t) = my+m; 5 e dr*(x)—m; Y=o Pi(1) (40)

where Pg(¢) is the transition probability of an absorbing barrier birth and death
process having infinitesimal parameters.

Ao 1 T,
G e A G

and
a, = P (eventual absorption at — 1 for the *-process starting from state 0)
_ HO*Z::LOI/'{n*TEn*
B 1 +l"0* rc:o=0 1//111*71'1* '

5.4. The orthogonal polynomials {H,(x)} -, and spectral measure 0(x) which
yield an integral representation like (39) for the (*)-process are related to the
corresponding quantities in the original process with y, = 0 by

lnnn(Qn + 1(x) - Qn(’“)) ’

H,(x) = — n=0,1,2,,
x dir *(x)
do(x) = V) [see [5]).
Ao
5.5.[7] For an absorbing barrier birth and death process with
% ~Dn' ", 12, *n,* ~ Dnf~1, n—o (41)

Dl,Dz,)},ﬁ+'))>0, ﬁéo
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and #/P,,(t) monotone for ¢ sufficiently large, —j < B/(B+y) < —(j—1), we have

lim,_, tPO,[,w](t” + yu) = (1 - ao)p(O, w; u) (42)
where

w?1 whty
p(O,W;u)=D3LmeXp(—D4 )

u
3 250 B,y,

DD,
(T

© ) _ dj ~
.fo yJ"'(ﬁ/ﬂ*')‘) IJ);(I Z(y))dy,

D

16) = (25 ) DD +3) 1 D uD5) ().
I_,(x) is the usual modified Bessel function of order —a and « = B/(8 + y).

5.6.[7] For an absorbing barrier process satisfying (41), the spectral measure 6(x)
satisfies

O(x) ~ Hx(v/(ﬂ+v)), x—0

H=(1 —ao)zKo[F <[%>r(2—£7)}_1.

ExAMPLE 1. Suppose

where

Pu=m, =c/(n+1)% a>1 (43)
_ 1
¢ =S T (n+ 1)
and
1 —_
i, = Dln+ 177, D>0. (44)

A short calculation using

=g S m(E ) | ®

verifies m%) = oo for this process.
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For an infinite urn scheme with probabilities of hitting the kth cell given by (43)

. -1
ES(f)~T ("‘T) ctagtle (46)
1/a

562t 5 t— 0.

Nevertheless, we have

THEOREM 5.1. If {S(2), t > 0} is generated by a birth and death process with
infinitesimal parameters satisfying (43) and (44),

ES(f) ~ c,t'® (47)
where

¢y = [&[1—exp(—(c/w) (1 =[5 ds[6(1—ao)p(0,s;u)du))]dw
p(0, s; u) is the transition density of Proposition 5.5 with
y =20—1, f=1—qa,

D, = 4,D, D, =c[ho
and ay = 1.

ReMaARK. To see that ¢; < c,, notice that

a—1 1/a @ c
¢, =T — )= . 1—exp —T dw.

ExampLE 2. Consider a birth and death process with

¢
p"En"=(n+l)“’ l<ag?2 (48)
1
Ty 1ty
1
= Dln+ 1. (49)
Using formula (45) we may check m§3 = co. However,
ES(1) ~ ES(t)
-1
~ r(“——)cl/«zl/a, t>w. (50)
o

We prepare three technical lemmas which are required in the verification of
formulas (47) and (50).

Given ¢, > 0 arbitrary, choose M, sufficiently large and ¢, sufficiently small
that

f6r e+ [, h(w)dw < &g
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hw) = 1_exp<_M%<1_Lw ax Ll(l—ao)p(O,x;u)du>>.

1/(a—1
P <MO’[C(1/po+ l/poqo)] ¢ ’)’ (51)

ci(a—1)eg

LEMMA 5.1. For the birth and death processes of Examples 1 and 2, we have
vt >0

1 t
(i) 1/a z 1— expl| — Po (S) ds < €1, (52)
Cit™' j<[cimit/a] o
1 t
(ii) 7= 2, (1—exp| —| Poys)ds )) < &. (53)
Cit j>[Mtt/=] 0

¢; is used for example i, i = 1, 2.

where

Then let

ProoF. (i) follows immediately from the crude bound 1—e™* < 1 for x = 0.
Now bring in the identities (11) and (12) to obtain the bound

0

p
POk(t) § OPOk(t)'{‘QOJO OPOk(s) dS = OPOk(t)+l-7—0k . (54)

Then
Y5 e (L—exp (=6 Poj(s) ds))

t .
y j (opoj(s)+ﬂ)ds
j>[Mti/=1 )0 Po

R
j>[Mt/=3\Podo Po

lIA

IIA

& <1+ 1>r d ing (43) or (48)
~ Do do/ ) mrire X Hsing o
c 1 1
= 14+— | =g t'/*
(0‘—1)170( ‘10> M
< gyt'®

and the proof of (ii) is complete.

LEmMMA 5.2. For the birth and death process satisfying (41),

i ["1—e
lim,, n dy*(x) =0.

0 X
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NoTE. In example 1,y = 2a—1,f = 1—a, &« > 1.
Inexample 2,y = o, f=1—0a, 1 <a = 2.

ProoF. Define the spectral measure for the related absorbing barrier process by

do(x) = = x dyr¥(x)

and introduce the decomposmon

fl_ () = 4 r+ Lojl_xi-xtw(x). (55)

Given ¢, > 0 arbitrary, choose J, such that
4K1051(7/(ﬂ+v)-1) &,
. <=
min(1,y/(B+y)—1) ~ 2
where K is a constant independent of x satisfying, by Proposition 5.6,

0(x) < Kx"®*) for 0<x<1. (56)

Integration by parts and an application of (56) in the first term of (55) yields the
estimate

< Ao[tﬂ(x)

X

§‘+Ll—’ 0(x) dx] (57)

0

&2
<=1
2

Now choose 1 > 2M1,/(5,%¢,) where M, = [§ dO(x).
The trivial estimate

Ao —e” &,
i L, H(x) 5 <7
completes the proof.

Now recall the condition (38) and notice that for Examples 1 and 2
1 1 c
()= ol () -
(7)== Al ()])- 5

LemMMA 5.3. (i) For the process of Example 1
lim,, . t| Po,gyp- 101 en(tr) = p(Lyp ™ (1) ])(1 =6 (1= a0)p(0, x; u) dx)| =

Then we have

(58)
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for y, u > 0 where p(0, x; u) is the transition of density of Proposition 5.5.
(ii) For the process of Example 2
lim, g, £|Po, 1y~ 1c1m(t) = P([yp ™ *(1/)])] = 0. (59)
ProoF. We begin with the decomposition (40) and rewrite it as
Po,j(t1) - py(1—Pr (X *(ta) £ j=1] X*(0) = 0)) = p, [ e dy*(x)
with j = [yp~'(1/1)], y > 0 independent of .

But
L

and by the integral form of Proposition 5.5
lim,., ,, Pr(X *(tu) < [y(ct)"*]| X *(0) = 0)
=(1—ao) ¥ p(0,x;u)dx  for Example 1,
=0 for Example 2.

Poo(t); 7:01//(0)>

Since

limt_,oo f e_’" dlp *(x) = lim,_,w ( =0
0

for all birth and death processes, the proof is complete.
We restate part (i) of Lemma 5.3 in a form which is adapted to our proof of

Theorem 5.1.

LEMMA 5.3'. For ¢y > 0 arbitrary and 0,,05 > 0 sufficiently small 3T,(¢,,
0 <i=3,0,,0;3) such that

t> Ty = || Poj(s)ds—pt(1— {5 dx |3, (1 —ao)p(0, x;u) du)| < esp;t (60)

Sor j € [cieot'!®, Mt'%), ¢, is the arbitrary positive number in the proof of Lemma 5.2.
In addition to Proposition 5.5, Lemma 5.2 and a standard Riemann sum
approximation are used in the verification of (60).

ProOOF OF THEOREM 5.1.

Step 1. Selection of &’s and 0’s. First choose &, ¢; and M as in Lemma 5.1. Then
choose ¢, > 0 arbitrary and notice that for 1 > some T'(e,)

1[(®1—e™™
0= -4[ dy¥(x) < &,.
tle x
This choice of ¢, only affects the size of T; in Lemma 5.3’. Now select ¢; > 0
arbitrary and independent of ¢, &;, and ¢,. Then choose d,, 65 such that

83(0181)(1

0,03 < oM
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With this choice of 3, and &, we have |[¥, h(w)dw—¢&,| < &5 where

¢ = Ji‘{l—exp<——£;<l— szdx Lta—ao)p(o,x;u)du))} dw

and A(w) is the integrand in the definition of ¢, (see also (47) and (51)).
Step 2. Final estimates. Introduce the decomposition
ES(1) = Yj<tereirmt 2 imter i+ Lo parersg (L—exp (= [ Poy(5) ds))
7 =1 +1,+1;.
By Lemma 5.1:
—1

+&g+&;. (61)

|ES(t) 1' | I,(t)

Icltl/“— = Ic le™

Now let
Ry(1) = XL By {1 —exp (= p;t(1= [35/c0s= dx 5, (1= ao)p(0, x; u) du))}.
Lemma 5.3" immediately yields
|I,(1)—R,(t)| < ES(est) for > T,
~ ¢,(est)"/" (62)
and a standard Riemann sum approximation verifies

1(t) N

limy o <175 =81 (63)
Combining (62) and (63) in the right-hand side of (61) we obtain the inequality

Iy(1) 1‘
t‘g)(c ‘@‘11>+

lim sup,_, c?m_

()~ Ry(1)

cltl/a

) e

< limsup,., » <

Cy 831/0: +(80 +é3)
c, ¢y

and the proof is complete.
To verify formula (50), use step 2 of the proof of Theorem 5.1, replacing R,(¢) by

Ry(t) = Y45 2iim (1—exp (= pjt)),
and observe, by (59) in Lemma 5.3, that
|L,(1) — Ry(1)| < ES(esr) for ¢t > some Ty ~ cy(e30)'/*

t M c
lim,_, tff"‘) ézzf <l—exp(—m>>dw.

and
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6. Limit theorems. The Central Limit Theorem (part (a) of Theorem 6.1) follows
from an imitation of the proof of the Central Limit Theorem for finite arrays of
independent random variables using the Lindeberg conditions. For the occupied
states processes of this paper we have infinite arrays of uniformly bounded
independent random variables X,(¢),k = 0, 1, ---, ¢ > 0. We also require that

S(t) = Y2 0 Xu(t) < 0 with probability 1 (65)
for all finite 7. Condition (65) is satisfied for all occupied states processes of this
paper since

S(¢) £ n(t) = number of jumps in a Poisson process up to time ¢.
The hypothesis a(x) = max (k: p, = 1/x) = x’L(x), 0 < y £ 1, L(x) slowly varying
ensures Var S(f) » oo as ¢t - oo. Notice that the Central Limit Theorem also

holds for the birth and death processes of Section 5.
To verify the strong law (6), choose k sufficiently large that ky > 1 and apply

the Markov inequality and Theorem 4.1 to obtain

S(1) E(S(1)— ES(t)**
lsy|- )=~ e ()

where ¢, is a constant independent of ¢, and ¢ > 0 is arbitrary. An application of
the Borel-Cantelli Lemma, the asymptotic relation

o ES()
my., o, h_y(—t) =

and a standard separability argument complete the proof.

Acknowledgment. I am indebted to Professor Samuel Karlin for many helpful
discussions on the contents of this paper.
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