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THE DISTRIBUTIONS OF SOME TEST CRITERIA
IN MULTIVARIATE ANALYSIS'

C. G. TROSKIE
University of Cape Town

1. Introduction. Let the random vector X: p x 1 be distributed according to a
multivariate normal distribution N(g, X) with mean p and covariance matrix X.
Let X4y, **+, X(n)(V > p) be a random sample of N observations on X and let

A=Y (X~ X)X —X)

be the Wishart matrix. X = N"!Y¥_, X, and A/N are the maximum likelihood
estimates of u and X, respectively. )
Let X be partitioned into two sets of components

(1.1) X = [X‘”]

X2

where X isgx 1 and X® is rx 1 with g < r, g+r = p. Partition £ and A accord-
ingly, that is

(1.2) 2 = I:EII 212], A = [All Alz]
221 222 A21 A22

where X;, and A, are gxgq, X,, and A,, are gxr and X,, and A,, are rxr
matrices.

Several criteria have already been proposed in the literature to test the independ-
ence of the sets X! and X‘?, that is to test the hypothesis H, : £,, = 0. Nearly all
these criteria are based on the generalised multiple correlation matrix

(1‘3) R =AI1%A12A2_21A21A1_1*

which was defined by Khatri (1964) as a measure of the correlation between the
sets X and X(®. A%, is the positive definite square root of A,, (positive definite)
and can either be the symmetric or lower-triangular square root. We also adopt the
convention that in an expression like A¥BA* the post-multiplier is (A%)". Thus R
defined by (1.2) is always a symmetric matrix.

Some of the criteria proposed are

(i) The likelihood ratio criterion (Wilks (1932)), Anderson (1958))
(1.4) PN =W = |I—R|.

(ii) Roy’s largest root criterion based on the largest canonical correlation
coefficient, that is the largest characteristic root of R.
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(iii) Hotelling’s generalised T,,* (or Pillai’s U®) defined by (see Pillai (1955))
(1.5) U@ = Ty*/c =trR(I-R) ™!
=)0 riz/(l - "iz)
where ¢ is a constant and r, > < r,* < -+ < r,? are the characteristic roots of R.
(iv) The criteria proposed by Pillai (1955)

(1.6) V@ = trR = Y9, 12,
(1.7) H® = g(tr(1-R)™ )1 = g(Y(1—-r2)" 1)1,
(1.8) R@ = q(trR—l)—l — q(zl/riz)—1’

(1.9) T@ =q(tr I-R)R™ ) =g (1-rH)r?} 1.

Wilks criterion is the gth power of a geometric mean, while U® and V? are ¢
times the arithmetic means. H?, R and T are based on the harmonic mean.
For simplification let

(1.10) U=UY=trR(I-R)™ !,
(1.11) V=V®=trR

and

(1.12) Q=tr(I-R)R™".

Then H = (1+U/g)™!, R? = (1+Q/q)"* and T = ¢/Q; and thus we need
only derive the distributions of U, ¥V and Q which is the main purpose of this

paper.

2. The central and noncentral distributions of U, V and Q. The statistics U, V" and
Q are functions of the generalised multiple correlation matrix R or of its character-
istic roots. For the central case, that is when the two sets X*> and X‘?’ are independ-
ent, R has a multivariate Beta Type 1 distribution but for the noncentral case the
distribution of R becomes untraceable (Troskie). However the joint distribution
of the characteristic roots, r,2, ---, rq2 of R, that is the squares of the canonical
correlation coefficients, is known and is given by (Constantine (1963));

(2.1) (T]*/T(39))B:(R, 4, 3n —4r)|I—P|¥"0(R),F (30, 4n; 3r; P, R);

0<r?*s--=sr’<l1

where
(22) AR, dr,dn—1r) = (T (4n)/C,(40)T (3n — 1))

. |R|‘}(r—q— 1 II_RP(n—r—q— 1)
(23) Olq(R) = Hi>j(ri2_rj2)’ P= diag(pf, _”’pqz)’

the Gamma coefficient I'j(a) and the hypergeometric function are defined by
James (1964).
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Lemma 2.1. (Khatri and Pillai (1968)). If A, denotes the integral

(2.4) §p|Z[}V 71" Ve (Z)C(Z) dzy, -+, dz, 4

where Z = diag (zy, -+, 2,), z, = 1=z~ -+ —z,_, and D is given by
(25) D:(0<zy<zy< - <zg <z <z,=1l-z;—z,——2,4),
then

(2.6) Ac = ((NLLNTE)CA) T (3 /)T (3 f2))-

LEMMA 2.2. For symmetric matrix S
(27) [1+8]7(a)C(I+8)™") = L= 0 Xy Lo ((—1)"(a)s9x.n Co(S)Co()/ C,(T)m 1)
where 6 = (8y, +,8,), 0, 2 0, = -+ 2 9, 20,

Soi=mtk=d; k= (ky, k), ky 2k, =22k, 20, Yk;=k, is a
partition of the integer k into not more than q parts; § = (my, ---,my), my 2

m, 2 -+ 2 my, Y m; = m, is a partition of the integer m into not more than q parts.
The coefficient g;’c,,, has been tabulated by Khatri and Pillai (1968) for various values
of the arguments.

ProOOF. The lemma follows immediately from the following relationship which
is valid for symmetric 0,

(28) Ty(@)I+S[7* 3% o X (= ) (@) Cl(T+8) ") C(6)/k!C(D))
= [350 Jow Jowetr (—(1+H,SH,’ + H,6H, )B)|B|*~ ¥4+ 1 4B dH, dH,
=Ty(@) Lio Xu 2m=0 Ly 2 (= 1) C(S)C(O)Co(1) ()9
+C,(DC(Dm!k!).
We will now derive the densities of U, Vand Q.
THEOREM 2.1. The density function of U = tr ROI—R) ™! = Y r.2/(1—r;?) is given

by
(C,(3n)/T (3n —4r)L(37q)) [I-P[*"

(2.9) UFITE YR 0 Yk Ym0 2o (= 1)U (An),
“(3n)s(37)eac,s (DCs(P)/k!(3rq)i(3)sCo(L))
for |U| < 1 and where a, , has been defined by Constantine (1966) as
C(I+A)/C(T) = k-0 5a,,:C5(A)/Cy(T).

PROOF. The proof of (2.9) is straightforward. It is easy to show that U = tr E™'B
where E = A;; —A;,A7;'A,; and B = A;,A,'A,,. Now the conditional distri-
bution of U for given A, , has already been derived by Constantine (1966). Multi-
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plying Constantine’s result with the marginal density of A,, (whichis W(X,,, n))
and integrating over A ,, yields the result.

COROLLARY 2.1. If the sets X" and X‘?) are independent, that is £,, = 0 and
P = 0, then from (2.9) follows the central density of U as

(2.10) (C(3n)/Ty(3n—3r)T(3rg)) U ™" 300 3y ((3n),(3r),(— 1)"U™
’ C,,(I)/(%rq)mm!) for |U| <1.

The density (2.10) was first derived by Constantine (1966). The density of U, for
given A,,, given by Constantine (1966) is the density of U for the multiple
regression problem, that is when the set of variables X!’ depends on the fixed set
of variables x‘?). When there is “no regression,” that is all the regression coefficients
of X on x® are zero, then the density of Constantine of course also reduces to
(2.10). It is well known that the central densities of the test criteria for the
“regression” problem and the “correlation” problem are identical, but that the
noncentral densities are different.

THEOREM 2.2. The density function of the test criterion V =trR =Y 9_r? is
given by

in

(T,(3n)/T(3n—4r)C(3rq)) 1-P
(2.11) VAT 0 Ym0 e 2 o (31)e(31).
‘(Hg+1+r—n)),g2 ,V(Er)sCdP)
- Cs(1)/(37)(3rq)gm !k !C(T)) foro<V<1.

Proor. Now tr R = tr (E4+B) *B(E+B)~* and since the conditional density
of tr R for A, , fixed was derived by Khatri and Pillai (1968) the result follows again
by integrating over A, ,.

COROLLARY 2.2. If P = 0, X gnd X® are independent and the density of V
is then

(0.12) (LA — 3TV T X, (e +r-+1-m) (),
- C,(D/(3rq)m") for0< V<I1.
The density (2.12) was first derived by Khatri and Pillai (1968).
THEOREM 2.3. The density function of Q = tr I—R)R™ = Y (1—r)/r;* is given
by
()T, TPl T T
C13) BT E((— )Pnm— ) CPICDI(— o)
(31 Cu(D)m K1) for |0|< 1.
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ProoF. Let 5;> = (1—-r2)/r,%, -, 5, = (1—r?)/r;? then the joint density of
Sq, 5 8, 0 <5y < - <5, < 00 is given by (S = diag (s, -+, 5,)).
(:14) (TTT,(3n)/T AT =3, ) IS 0~ V)L 5|
2Fi(3n, 3n4rs P, (I+S) 7).
Using Lemma 2.2 one can write (2.14) as
(2.15) (TTHTGEn)IT (30T, (3n = 3r)Ty(39))|S[F 71" Doy(S) Y 0 Yoo o Loy Lo
(3n)(3n)x(—1)"g.2,, CP)C,(S)CD)/(37) CD)C,(Dk m ).

Integrating (2.15) over the surface )'s; = Q and using Lemma 2.1 yields the
density of Q which is convergent for |Q| < 1.

COROLLARY 2.3. If P = 0, X and X® are independently distributed then the
density of Q is given by

(216) (L), (=) T2 ¥, ((— 1)), (4n—$1),0"
C/(3(n—r)a),m?) ol <1.

From the densities of U and Q the dénsities of H'?, R and T'? given by
(1.7), (1.8) and (1.9) respectively can be derived.

Preliminary investigations have shown that, because of slow convergence
of the series in the densities of U, V and @, the above results appear not to be very
useful. One should reject the null hypothesis of independence when the character-
istic roots in some sense are large. Thus in each of the cases U and ¥V one would
reject the null hypothesis if the criterion exceeds some specified number and one is
interested in the upper tails of these distributions. On the other hand in the case of
Q one would reject the null hypothesis if this criterion is below some specified
number (since R? = (1+ Q/q) ! and T® = ¢/Q one can just as well use Q as the
test criterion). Thus one would be interested in the lower tails of the distribution.
Since the density of Q = Y (1—r;%)/r;? is convergent for |Q| < 1 one is immediately
inclined to think that some headway might well be made with this statistic.
However, this statistic is so sensitive with respect to small values of some (or all)
of the characteristic roots that it can only be used for certain restrictive alternatives
of the null hypothesis. For example one would only be able to use the »s(tatlstlc 0
for large deviations of the null hypothesis when the population characteristic roots
(i.e. population canonical correlations) are all different from zero.

Comparisons of the power functions of the criteria W (Wilks), rq2 (Roy’s
largest root), U and V for testing the independence hypothesis have been made by
Pillai & Jayachandran (1967), (1968) for the case where ¢ = 2. They conclude that
the three criteria U, V and W are all good tests of the independence hypothesis.
For small deviations from the hypothesis the differences in power between the tests
are slight. However, considering larger deviations also they conclude that V" has
greater power than the rest when the values of the population canonical correlations
are close. But when these parameters are far apart and for larger values of N the
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power of U is greater than that of ¥ and W. The power of the largest root test
stays below those of the other tests except in the case of large deviations when there
is only one nonzero population canonical correlation coefficient; the power then
exceeds those of the other three tests.

It would be interesting to compare the power of Q with those of U, V and W
and such investigations are presently being attempted by the author.

Acknowledgment. Thanks are due to the referee for his useful comments on the paper.
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