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CONVERGENCE CRITERIA FOR MULTIPARAMETER STOCHASTIC
PROCESSES AND SOME APPLICATIONS!

By P. J. BICKEL AND M. J. WICHURA
University of California, Berkeley and University of Chicago

Chentsov-Billingsley type fluctuation inequalities for stochastic
processes whose time parameter ranges over the g-dimensional unit cube
are derived and used to establish weak convergence results for such
processes.

1. Introduction. In his excellent recent book (1968), Billingsley has given several
fluctuation inequalities for sums of random variables .(Theorems 12.1, 12.2, 12.5,
12.6) leading to convergence criteria for sequences of stochastic processes
(X,,(t)),e[o’l] whose sample paths are right-continuous and have left-limits every-
where. These criteria, which may be viewed as generalizations of results of Kol-
mogorov and Chentsov (1956), have been applied by Billingsley to provide simple
proofs of various classical results in the theory of weak convergence of one-
parameter stochastic processes. ,

There has recently been considerable interest in questions of weak convergence
of similar stochastic processes (X,(¢)), where ¢ ranges over the unit cube in g-
dimensional space. Situations in which such convergence arises include:

(i) Convergence of the normalized empirical cumulative distribution function
for samples from a continuous distribution concentrating on the unit cube in R?
(Dudley (1966), Le Cam (1957)).

(ii) Convergence of the analogue of the partial sum process for two and higher
dimensional “time™ (Kuelbs (1968), Wichura (1969)).

(iii) Convergence of the normalized, randomly-stopped empirical cumulative
for samples from a g-dimensional continuous distribution on the unit g-cube
(Pyke (1968), Wichura (1968)).

(iv) Convergence of the normalized empirical cumulative for samples (drawn
without replacement) from a finite population (Bickel (1969), Rosén (1967)).

In this paper we prove multidimensional analogues of Theorems 12.5 and 15.6
of Billingsley (1968) and apply them in the situations cited above. The fluctuation
inequalities may be found in Section 2 in a format similar to that given in
Billingsley (1968) pages 87-102, the convergence criteria in Section 3, and the
applications in Section 4.

Other methods work, frequently more elegantly, in all of the above examples.
However, as in the one-dimensional case, in situations where moments are “‘cheap”
and the dependence structure formidable we feel that this approach will prove
important. In particular we hope to show in a subsequent paper how these criteria
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may be successfully applied to the problem of convergence of the normalized,
randomly-stopped, empirical cumulative distribution of the normalized sample
spacings from a uniform distribution on [0, 1]. The question of whether this
sequence of processes converges weakly was posed by Pyke (1965).

2. Fluctuation inequalities. Let ¢ be a positive integer, and let T}, ---, T, be
subsets of [0, 1], each of which contains 0 and 1, and is either a finite set or [0, 1]
itself. Put 7= T; x .-+ xT,. Let X = (X(¢)),.r be a stochastic process whose state
space is some linear space E (typically R') endowed with a norm, say | . | ; We assume
that the sample paths of X are smooth enough to permit each of the supremal quan-
tities defined below to be computed by running the time indices involved through
countable dense subsets. For simplicity, we assume that X vanishes along the lower
boundary, ()i <p<, Ty X -+ X Ty y X {0} X T,y X --- X T, of T. For each p and each
teT, define X,V :T,x -+ xXT,_;XT,y X -+ xT, > E by

Xr(p)(tl, RTINS ST SPRIIR tq) = X(tl, ottt by, “',tq),
and for each s< ¢t < uin T, set
my(s,t,u) = my(s, t,u)(X) = min (| X, P - X, P, | X, — X, ),
where ||- || is the usual supremum norm. The quantities of primary concern to us
here are the random variables
M, =M, (X)=sup{my,(s,t,u):s St <ueT,}

(I=p=gq)and
M" = M"(X) = max, M,".

For p = 1 and T finite, the modulus M” is that of Billingsley (1968) (cf. (12.62)),
which is very useful in studying the weak convergence of D([0, 1])-valued processes.
Our goal in this section is to establish bounds on the tail probabilities of the
M,"’s, and thus also on those of M".

In passing, we note that bounds on M” give rise to bounds on the random

variable
M = sup {|X(t)|: te T}

via the inequality (compare Billingsley (12.4))
(1) M= Zlépéqu”"_ |X(u)| = qM”+ lX(u)l,

where u = (1, -+, 1). To establish this inequality take any t = (#;, -+, ) €T,
and set u, = (1, -, 1, £, 4, =+, )0 < p < @), so that u, = t and u, = u. The
assumption that X vanishes along the lower boundary of T then yields

1X(up )| = i {2ty ) Xt = Xty )3+ G,
< M+ [X(w,)
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for 1 < p £ g; together, these inequalities imply that |X (t)l is majorized by the
middle term of (1).

To describe the hypotheses under which we will derive the desired bounds,
we will make use of the following notation and terminology. 4 bleck B in T is a
subset of T of the form (s, t] = Hp(sp, t,] with s and ¢ in T the pth-face of B = (s, 1]
is [ [, ,(s,, t,]. Disjoint blocks B and C are p-neighbors if they abut and have the
same pth face; they are neighbors if they are p-neighbors for some p (for example,
when ¢ = 3, the blocks (s, t]x (a, b] x (¢, d] and (¢, u]x(a, b]x(c,d] are 1-
neighbors (s £ t £ u in T,)). For each block B = (s, t], let

X(B) = Zsl=0,1 26q=0,1 (_ l)q—zper(sl +81(t1 "sl)’ T sq+sq(tq—‘sq))

be the increment of X around B; X(-) is a (random) ﬁpitely additive function on
blocks. For each pair of neighboring blocks B, C, put

m(B, C) = min {|X(B)|, |X(C)|},
m(B, C) is small iff at least one of the increments X(B) and X(C) is small.
Now let § > 1 and y > 0, and let u be a finite nonnegative measure on 7.

Again for simplicity, we assume that u assigns measure zero to the lower boundary
of T. Say that (X, p) satisfies condition (8, ), and write (X, u) € €(B, y), if

®) P{m(B,C) 2 1} S ™ (u(BL C))

for all A > 0 and every pair of neighboring blocks B and Cin T. From Chebychev’s
inequality, one sees that (2) is implied by its moment version, namely E(m(B, C))’ <
(u(B U C))*, as well as by the frequently employed moment condition

(3) E(|X(B)["*|X(O)]*) = (u(B))(u(C))",
where y4, y,, B, and §, satisfy y;+y, = yand f,+f, = f. Wheng=1land T

is finite, condition (2) is essentially (12.11) of Billingsley (with f here equal to 2«

there, and y here equal to 2y there).

Define constants K (B, y) and L,(f, y) inductively as follows: Put 6 = 1/(1+7),
p= 2_(ﬂ_1)éa K(ﬁ? Y) = zy(l_p)—l/ﬁ, Kl(ﬁ? Y) = Ll(ﬁ9 )’) = ZBK(ﬁ’ )’), and for
rz 2, KB, y) = KB, N(AL— (B, )(r=1D"T+ 1DV, L(B, y) = rK,(B, 7). Here is
the main result, which for ¢ = 1 is a variant both of Billingsley’s Theorem 12.5
and Chentsov’s (1956) Theorem 1.

THEOREM 1. If (X, p) € €(B, ), then
(4) P{M,'(X) 2 2} < K (B,7)27"((T))? (1=p=q)
(5) P{M'(X) = 2} < L(B,7)2~"(w(T)Y’

Sfor all positive A.

A few remarks should be made at this point. When T = [0, 1]% and u is con-
tinuous, the factor 2 may be dropped from the definition of K,(B, ), thus giving
smaller universal constants. For T finite and ¢ = 1, Theorem 1 reduces to
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Theorem 12.5 of Billingsley, except that Billingsley gives a different value, namely
22*Y=PK (B, y), for the universal constant. The K’s are quite large; for example,
when ¢ = 1 and, as in many applications, f§ = 2 and y = 4, K,(f, y) is approxi-
mately 1,750,000. Finally, the assumption that the process X and the measure p
vanish along the lower boundary of T can be removed, provided condition (8, ) is
strengthened so as to restrain the behavior of X over the lower boundary; what is
needed is simply that (X, u') satisfy condition (8, y), where (slightly abusing our
convention concerning time domains) 7' =T, x --- xT,), T, = {—=1} U T,
and X’ (resp. ') equals X (resp. p) over T and zero over T’ ~ T (note that
M;"(X) £ M" (X))

ProoF oF THEOREM 1. The proof will be carried out in several steps, as follows:
(i)g=1,T=1[0,1], u = Lebesgue measure, (ii) ¢ = 1,.7 = [0, 1], u atomless,
(iii) ¢ = 1, T finite, (iv) g = 1, T = [0, 1], u general, and (v) g = 2.

Step 1. Here condition (f8, y) reads
(©) PLmin {|X ()~ X(s)], | X(u) =X (0]} = 2] < 27 (u )’
forallA > Oandall0 £ s £ ¢t £ u £ 1; we shall show that (6) implies

P{M"z 2} S K(B, 7)™
for all A > 0.
Take any positive numbers 6;, i = 0, set

Sin=(n—=1)2"u;, =027 1, = (S0 Ui 0)/2,
and define events
F;, = {min(|X(t;,) — X(s;,0)|, | X (us.0) — X(1:,,)]) < 26,}
F; = ﬂ1§ngziFi,n
F=Jogi<oFi
If F;, occurs, then one has a “favorable’’ comparison of the two increments

involved, in the sense that at least one of them is “small.”
On the one hand, the probability that all comparisons are favorable is high, i.e.

(1) PF) S L2 P(Fi) < Xa2(40) 7277 = 27" Yogicw2 0,7

where « = f—1 > 0. On the other hand, whenever all comparisons are favorable,
M" is small, i.e.

(8) F c {M” é 2(20§i<00 0,)1}.

To see this, let S; = {n27% 0 < n £ 2'}, let w € F, and, referring to the definition
of the F;’s, construct w-dependent order-preserving maps ¥;: S;+; = S; such

that
| X(¥i(s))(e) — X(s)(e)| < 26,

for all s€ S;,; and all i. Piece the ¥,’s together to produce an (w-dependent)
order-preserving map  from § = ( J;S; to {0, 1} such that

[X(¥(s))() ~ X(s)(@)] < A Xosi<w 01
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for all s € S. By the monotonicity of ¥, one must have y¥(s) = y(¢) or Y(¢) = Y(u)
for any three points s £ ¢ < u in S. Our assumption about the smoothness of the

sample paths of X now implies that (8) holds.
From (7) and (8), one sees that M " is likely to be small, i.e.

P{M" 2 2} < A77inf,f(£),
where & = (£;);5, ranges over all probability measures on {0, 1, 2, ---} and where
f(&) =27 Y5027

Elementary calculations show that f achieves its minimum at that ¢ for which
& = p'(1—p) (all i) and has there the value K(B, y).

Step 2. Proof for q = 1, T = [0, 1], u having continuous distribution function F.
For F both continuous and strictly increasing, a transformation of the time scale
making use of the well-defined inverse function of F reduces the present case to
that treated in Step 1, and yields
©) P{M" z 2} < K(B,7)A7"(F(1))’

(F(0) = 0 by assumption). For F merely continuous, first note that (9) holds with F
replaced by F+el (I = identity function), and then pass to the limit as &0.

Step 3. Proof for ¢ = 1, T finite. Let 0 = t, < t; < --- < t,, = 1 be the points
of T. Let Y = (Y(u))o<,<1 be the process, defined on the same probability space
as X, having right continuous sample paths constant over the intervals separating
the ¢,’s and satisfying Y(¢;) = X(¢;) for 0 < i < m, i.e.

Y () = Yogi<m X(8)peieis 1y (1) + X ()L, 5(10).

One has M;"(X) = M{,,1,(Y). Now look at m(s, t, u)(Y). This quantity is zero

unless
0t | Ss<LESE<HSU<liey

for some 0 < i < k £ m, in which case the hypotheses on X yield
P{m(s,t,u)(Y) 2 2} £ 27" (Lic;cx b{t}))
S A< (u{t )+ ul{t;- )Y
= A_Y[F(”)_F(s)]ﬂ’

where F is that continuous distribution function, satisfying F(0) = 0, which is
linear over [¢;_,, ;] with

F(t))—F(t;- 1) = u({t;})+u({t;-1})
for 1 £ j £ m. Since F(1) £ 2u(T), it follows from Step 2 that
P{M"(X) 2 2} < 277K, (B, 7)((T)Y.
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Step 4. Proof for q =1, T =[0,1] (u arbitrary). Let 0 = t, < t; < -+ <
t, = lbepointsin T, put U = {t4, -+, t,,}, ¥ = (X()),cv»> and let v be the measure
on U such that

v({t;}) = u((t;- 1, 1,]), if jz1
=0, if j=0.

Since (X, u) satisfies condition (8, 7), so does (Y, v). Apply Step 3 to (Y, v) and
make a suitable passage to the limit to get the desired result.

Step 5. Proof for ¢ = 2. We now know that Theorem 1 is true when g = 1, i.e.
when we are dealing with univariate time. The rest of the proof proceeds by
induction on ¢q for (4) and (5) simultaneously. Consider (4), with p = 1 for con-
venience. The key observation to be made is that the univariate-time version of
Theorem 1 may be applied to the (function space valued) process (X, ),cr,,
once bounds on the increments of this process are found; these bounds will come
to us from (1) and the induction hypothesis. More specifically, let s < ¢t < u in
T,, and define processes ¥ = X,V — X" and Z = X,V — X, having T, x --
x T, as index set. From (1), we have

M(Y) < (¢—1)M'(Y)+[Y(1)], M(2) < (- 1)M"(2) +[2(1)]
(where 1 = (1, 1, -+, 1)), so that
my(s, £, u)(X) = min {M(Y), M(Z)} < (q—1)[max {M"(Y), M"(Z)}]
+min {|Y(1)], |Z(1)[}.

Using the fact that the increment of Y around a block B in T, x --- xT, is the
increment of X around the block (s, ¢t]x B in T, one gets from the induction
hypothesis that

P{M"(Y) 2 2} £ A77L,_ (B, y)(F(t)— F(s)),
where F is the distribution function of the marginal of u on T;. Similarly,
POMY(Z) 2 2} S 277Ly(Bo)(F(u)— F(2))
while from the original hypothesis on X,
Pmin {| Y(1)},JZ()]} 2 1] S 27 (Fw)~ FG).
It follows easily from this, the estimate
P{U+V z 2} S P{U z A} +P{V 2 A&,}

(valid for any random variables U, V and positive numbers &,, &, such that
& +&, = 1), and the relation

inf {C,/&,"+Cy[E," ¢ +E, =1} = ((:16‘*‘C26)1/(s
(6 = 1/(147y)) that
P{m(s, t,u)(X) = 4} = A7([(q = 1)"Ly-1(B, )1+ 1) /*(F(u) = F(s))’.
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In other words, the process X*) meets the hypotheses of the theorem for the case
of univariate time, so that (4) holds; of course, (4) implies (5). ]

3. Convergence criteria. Let T denote the unit cube [0, 1]%. Call a function
x: T — R!a step function if x is a linear combination of functions of the form

t_)IElezxn-xEq(t), where

each E, is either a left-closed, right-open subinterval of [0, 1], or the singleton {1}
and where I; denotes the indicator of the set E. Let D, be the uniform closure,
in the space of all bounded functions from T to R!, of the vector subspace of
simple functions. The functions in D, may be characterized by their continuity
properties, as follows. If e T and if, for 1 < p < ¢, R, is one of the relations
< and 2, let Qg ... g (t) denote the quadrant

{(s1,-->5)eT:s,Rpt, 1 < p =< gl

Then (see Neuhaus (1969), or Straf (1970), page 29) x € D, iff for each 1€ T, (a)
xg = limy,, ;. o X(s) exists for each of the 2, quadrants Q = Qg,, -, r,(1), and (b)
x(t) = Xgs,... > In this sense, the functlons of 2, are “continuous from above,
with limits from below.”

One can introduce a metric topology on D, which for ¢ = 1 coincides with
Skorohod’s well-known and useful J,-topology (see Billingsley (1968), for example).
For this, let A be the group of all transformations A:T — T of the form
Mty o, 1) = (A4(ty), =+, A,(t,)), where each 4,:[0,1] - [0, 1] is continuous,
strictly increasing, and fixes zero and one. Define the “Skorohod” distance between
xand yin D, to be

d(x,y) =

where |x—yi| = sup {|x(t)—p(A1)|: te T} and [4] = sup {JAn)—1]:te T}
With respect to the corresponding metric topology (S-topology), D, is separable
and topologically complete, and the Borel o-algebra 9, coincides with the o-
algebra generated by the coordinate mappings (Billingsley (1968), Neuhaus (1969),
Straf (1969)). Consequently, a stochastic process (X(¢)),.r taking values in D, is
2,-measurable.

We turn now to a discussion of weak convergence for D -valued processes. For
simplicity we shall speak only of sequences of processes, but everything we say is
true for generalized sequences, i.e. nets. A sequence (X,),> ; of D,-valued processes
is said to converge weakly in the S-topology to a D,-valued process X, written
X, — X, if Ef(X,) » Ef(X) for all S-continuous bounded functions f: D, > R.
According to the general theory of weak convergence, X, — X is equivalent to
f(X,) = f(X) (in the sense of weak convergence for real-valued random variables)
for all 9, measurable functions f: D, - R which are X-continuous in the S-
topology (i.e., continuous almost surely with respect to the distribution of X). If X
takes all its values in C,, the subset of D, consisting of continuous functions, then
one has f(X,) - f(X) even for Z,-measurable functions f which are X-continuous
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with respect to the stronger topology of uniform convergence (see Billingsley
(1968), Neuhaus (1969) and Straf (1969)).

A criterion for the weak convergence of D, -valued processes can be given in
terms of the weak convergence of the corresponding finite-dimensional distributions
together with a tightness condition. To make this explicit, define ng: D, > R®
by mg(x) = (x(5)).s, for each finite set S < 7. Let I be the collection of subsets
of T of the form U, x --- x U,, where each U, contains zero and one and has
countable complement. For each D, -valued process X, put Ty = {teT, n, is
continuous with probability one with respect to the law of X on (D, 2,)}; one
can show Ty € J (Billingsley (1968), Neuhaus (1969), Straf (1969)). Finally, call a
partition of T formed by finitely many hyperplanes parallel to the coordinate
axes a 0-grid if each element of the partition is a ““left-closed, right-open’’ rectangle
of diameter at least §, and define w;': D, — R by

wy'(x) = infy maxg c Asup; . g [¥(£) — x(s)],

where the infimum extends over all 6-grids A in 7. Following the development of
Billingsley (1969), it is easy to prove the following fundamental result (confer
Straf (1970) page 36):

THEOREM 2. Let X,, n = 1, be D -valued processes. In order that the sequence
(X,) converge weakly, it is necessary and sufficient that

(1) (mg(X,)) converges weakly, for all finite subsets S of some member © of I, and

(ii) plimg lim, wy'(X,) = 0;
and then X, — X, where the distribution of the D -valued process X is determined by
ns(X,) = ns(X) for all finite S et n Ty. (Condition (ii) means lim;,, lim sup,
P{w;'(X,) = ¢} = Oforall e > 0).

One can deduce (cf Theorem 14.4 and 15.4 of Billingsley (1968)) from this
basic result the corollary below, which is sufficient for our purposes. First define
ws": D, - R by

ws"(x) = max, w;"P(x)
where

ws"P(x) = sup {min (| x,? — x|, |, —xP|):s S t Sw,u—s5 < 5}
(1 £ p £ ¢). To motivate this definition, we note that the set-theoretic identity
D,=D(I%,R) = D,(I, Dq_l)

is valid via any one of the correspondences x(-) <> x.%”)(*), provided on the right-
hand side D,_, is equipped with the supremum norm. This is easily proved
(confer Straf (1970), page 32) by first considering step functions and then their
uniform limits. The modulus w;” can thus be viewed as a more or less natural
generalization of Billingsley’s modulus, of the same name, for p = 1. Another
consequence of the above identity is that for any D,-valued process X, lim,TlX,“’)
exists uniformly over [0, 1]9"'. This limit will be X, provided the finite-
dimensional distributions of the X,”’s converge to those of X,?, as will be the
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caseif, say, X(sy, =+, Sp—15 1, Sp1 1, *+5 §g) converges to X(sy, -+, 5,_4, 1, Spa1s 5 8g)
in probability for all choices of the s;’s. We shall say that X is continuous at the
upper boundary of T'if lim,,; X, = X, ® for each p, with probability one.

COROLLARY. Let X,,n = 1, and X be D -valued processes, and suppose that X
is continuous at the upper boundary of T. Then in order that X, — X, it is necessary
and sufficient that

ns(X,) — ns(X) Jor all finite subsets S of some member t of T,
(10) plim,lim, w,"(X,,) = 0.

Proor. Here is the proof of the sufficiency. The proof uses induction on ¢. For
g = 1, the corollary is just Theorem 15.4 of Billingsley (1968). Suppose now that the
sufficiency part of the corollary is known to hold for §—1; we shall show that it
holds for g. We have only to verify that condition (ii) of Theorem 2 holds. For
each p, define w,"® on D, by

Ws (p)(x) = ianp maxg Ap Sups,t eG ||xt(p) _xs(p)” s
where the infimum here extends over all o-grids A, in [0, 1]. Clearly,
W' S Yispzas P

Moreover, a simple but tedious argument (cf Billingsley (1968), Theorems 14.4
and 15.4) shows that

WiB(x) < 2[wy"P(x) + LP(x) + R,P(x)],
where
LsP(x) = supo< <5 |12 — x| < 2%, = %0P]| +ws"P(x)]

RyP(x) = supr<iz 1 %P =% < 2%, P = x. 2] +w,"P(x)]

¢ = 1-9).

Thus it suffices to show that the plim inf; lim,’s of
[(X)s® =(X)o @] and (X = (X))

are zero. As the arguments in both cases are similar, we shall discuss only the
first case. Fix p, and set Z, 5 = (X,),? —(X,)o'?, Z; = X,;P— X,®; Z; and the
Z,5s are D,_,-valued processes. We will show below that Z, ; — Z; for all but
countably many &’s. Since ||-| = d(-, 0) is an S-continuous function on D
we will then have ||Z, 4| > ||Z,| for all but countably many &’s. But the identity
D, = D,(I, D,_,) implies that |Z,| — 0 as § — 0. All this gives

lim inf; lim sup, P{||Z, ;| = &} =0
for all ¢ > 0, as desired.

It remains to show that Z, , — Z, for all but countably many ¢. One finds easily
that

(a) for any ¢, the process Z, is continuous at the upper boundary of [0, 11771,

q—1>
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(b) one has w;"(Z,,) < 2w;"(X,), where on the left-hand side w; " is the modulus
appropriate for D,_,, and, with t = U; x - x U,
(c) for any teU,;, one has ng(Z,,) - ns(Z,) for all finite subsets S of

U, x - xU,
The g—1 dimensional version of the corollary now implies that for te U,,
Zy~Z. ]

For these results to be useful in practice, one needs easily verifiable conditions
which imply the somewhat awkward tightness condition (10). This is where the
fluctuation inequality of the previous section comes into play. The following
theorem extends Theorem 15.6 of Billingsley.

THEOREM 3. Suppose that each X, vanishes along the lower boundary of T, and
that there exist constants p > 1, y > 0 and a finite nonnegative measure i on T
with continuous marginals such that (X,, u) € €(B, y) for each n. Then the tightness
condition (10) is in force.

PRrOOF. It is enough to show plim, lim, w;"®(X,) = 0 for each p. For this, put
w(a i) = sup {min (|(X,) 2~ (X)L [(X)P ~(X) P[0 S s S 1 s ).
Since

wiP(X,) < max, <, w((2/—2)/2k, 2j/2k; n)
+max < ;< w((2/—1)/2k, (2/+1)/2k; n)
it suffices (cf Billingsley (1968) page 130) to show that

(11) P{w(o,7;n) Z e} < e 7K, (B,7)(1,((0,7]))

where u, denotes the (continuous) marginal of u on the pth edge of 7. But (11)
is an easy consequence of Theorem 1 and the fact that in the definition of
w(e, T; n), X, can be replaced by Y,, where Y,, defined on T* = [0, 1]?" ! x
[0, 7] % [0, 1]7? so that (Y,),? = (X,),? —(X,),? for ¢ < t £ 1, vanishes along
the lower boundary of T* and has the same increments around blocks in T* as
does X,. I

Actually, Theorem 3 is not flexible enough to apply to some of the simplest
processes. The following extension will be useful. For each n, suppose that there
exists a subset 7" = T,"x -+ x T," of T such that

(a) T," contains 0 and 1 for each n (1 < p = q),

(b) w;"(X,) may be computed using 7" as the time set (instead of T),

(c) T" becomes dense in T as n grows large, and

(d) Condition (8, y) holds for blocks whose corner points lie in 7™.
Then the conclusion to Theorem 3 holds; the proof is essentially the same (with
the role of the equally spaced points j/2k, 0 < j < 2k, in the estimate of w{{?(X,)
being taken over by almost equally spaced points from 7,"). The theorem may be
extended further by allowing p to depend on n and to have discontinuous marginals,
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while requiring that the new u,’s converge weakly to a limit p having continuous
marginals (under this condition, (11) holds with a lim sup, prefixed to
the left-hand side; inspection of the argument on page 130 of Billingsley (1968)
shows that this is good enough). Finally we note that an analogue of Theorem
15.7 of Billingsley (1968) can be proved by essentially the same method,and thusthat
there is no loss of generality in considering only D,-valued processes from the
outset. Specifically one has

THEOREM 4. Let & denote the class of finite subsets of T. Let (vg)s.o be a con-
sistent family of probabilities on the finite-dimensional spaces (R°, #%), S e &.
Define v on the algebra| ) sc yns™'(#°) of subsets of R" so that vng™* = vg for all S
in &. Suppose that

(i) v{xe RT: x(t) = 0} = 1, if any coordinate of t e T_is 0,

(i) v{xeR": ‘x(t+h)—x(t)| =¢e}—>0 for all ¢ >0, as h tends to 0 “‘from
above,”

(i) v{x e R |x(Sy, s Spo1s by Spats =55 S = X(S15 =+, Spoty Ly, Spiys 05 8| 2
ey = O0ast — 1, for all choices of p and of the s}’s, j # p, and for all ¢ > 0,

(iv) for some B > 1,y > 0, and some measure u on T having continuous marginals,

v{xeR":min(|x(B)|, |x(C)|) =2 4} £ 17" (u(Bu C))

for all A > 0 and all pairs of neighboring blocks B and C in T.
Then there exists a D valued process whose finite dimensional distributions are the

vg's.

4. Applications. Our purpose here is to illustrate the use of Theorem 3 in
establishing weak convergence results. Accordingly, no fuss will be made about
convergence of finite-dimensional distributions, which in most of the examples
below is obvious. Some of the results have been deduced before, by a variety of
different methods.

(D) Partial sum processes. For convenience, we work with 2-dimensional time.
The following theorem extends the classic result of Prohorov (for ¢ = 1) (cf
Prohorov (1956) and Wichura (1969)). For each n, let X f"}(l Sisl,1 2757
be independent random variables with zero means and finite variances

Var (X)) = a,"b;™
Yia” =1=3%;b.

AP =Yzia," B =Yz, b,
and define D,-valued processes S, by
Sit) = Yisa oo LisswnX i

where A™(f) (resp. B(1)) is the largest 4, (resp. B,\™) not exceeding 7, (resp. #,)
(t = (11, 12))

such that

Put



MULTIPARAMETER STOCHASTIC PROCESSES 1667

THEOREM 5. If the X"} satisfy Lindeberg’s condition, namely
im, [35 ) fiix, o1 2 ((X7)? dP] =0 foralle>0,
and if max; a,"” —» 0, max; b;"” - 0,
then S, — S, where S is a Gaussian process with zero means and covariances
Cov(S(ty,u,),S(t;, u,)) = min(t,, 1,) min(uy, u,)
(i.e. S is a Brownian motion process on [0, 1]?).

ProoF. For each n, put T" = {4,; 0 < i< L}x{B,™: 0<j<J,} If
B and C are a pair of neighboring blocks with corner points in 7", then by
independence one has

E[S,(B)S,2(C)] = Var [5,2(B)] Var[5,%(C)] = (B)A(C)

where A denotes Lebesgue measure on [0, 1]2. Consequently inequality (3) holds
for S, with y, =2 =19y, and f;, =1 =, (sothat y =4, f =2 > 1), and the
theorem follows from the remarks after Theorem 3 (which is not itself directly
applicable). [J

L. LeCam informed us that in an unpublished work carried out several years
ago, he used the methods of LeCam (1958) to prove a theorem, involving partial
sum processes, which is analogous to the normal convergence criteria for sums of
u.a.n. variables. This of course includes Theorem 4.

(ID) Sampling from finite populations. Let p, y, -, py,y be N given points in
T = [0, 1]%. Suppose that m points are drawn at random without replacement
from this population. Distribution free tests in the g-variate two sample problem
involve comparing the distribution of the drawn points to that of the remaining
ones (see Bickel (1969)). This is conveniently done in terms of the following
process. Let Hy be the (non-random) distribution function of the uniform prob-
ability over py y, -, py,y» and let F, (resp. G,) be the (random) distribution
function of the uniform measure over the m drawn (resp. n = N—m undrawn)
points. Define a D -valued process X,, , by

Xynp = (mn|N)H(F,y—G,) = (mN/[n)(F,,— Hy).

The convergence of the X,, , was studied by a different method in Bickel (1969);
in particular, it was shown that if Hy - H as N — oo, then X,, , » X as mand n
tend to oo, where X is a Gaussian process with zero means and covariances
Cov (H(t), H(u)) = H(min (¢, u))— H(t)H(1) (the minimum being computed co-
ordinatewise). Here we show how Theorem 3 may be applied to establish the
tightness condition (assuming H is continuous).

For any two neighboring blocks B and C in 7, one has

E(X 1y (B)) (X 1u.n(C))? = (N/mn)?E(N 3 — mpp)*(Nc—mpc)?,
where Ny, N¢, and N, = N— Np— N, have a multiple hypergeometric distribution:
P{Ny =i,Nc = j,Np =k} = ("=)("5)("¢)/ (&)
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(i+j+k = m) with pg = Hy(B), pc = Hy(C), pp = 1 —pp—pc. By the extended
version of Theorem 3, it suffices to show that for N = 4
(12) E(Ny—mpp) (Nc—mpc)* < 33(mn/N)*Hy(B)Hy(C).

For this note that given Ny, N¢ is hypergeometric with parameters Ngp (total
population size), Np (sub-population size), and m — Ny (sample size) (g5 = 1—pp).
It follows that the left-hand side of (12) does not exceed

(pC/qB)ZE(NB - mPB)4 + (PCPD/(‘IBZ(N‘]B - 1)))['"”‘132E(NB - mPB)2
+qg(m—n)E(Ny—mpg)’].

From David, Kendall and Barton (1966) page 216, one finds
E(Ng— mPB)4 .
_ [Npsqa(ps® +45°)(N(N + 1) — 6mmn)ymn + 3N2p32q32mn(m - 1)(" -]
B N(N—-1)(N-2)(N-3)
E(Ny—mpg)® = Npyqs(ps— gg)mn(n—m)[[N(N —1)(N—2)]
E(NB - mPB)2 = manqB/(N - 1)-
Simple manipulations now yield (12).

(IIT) Empirical distribution functions. We lead into the next application of Theorem
3 with a central limit theorem for D, valued processes. Let Z, Z, Z,, --- be
independent identically distributed D,-valued processes. Suppose that Z vanishes

along the lower boundary of T = [0, 1]%, that EZ(t) = O for all ¢ in 7, and that
there exists a continuous finite measure y on T such that

EZ*(B) < i(B)
EZ*(B)2*(C) < (B)(C)
for all pairs of neighboring blocks Band Cin T.
Define D, -valued processes X,(n = 1) by

X,(s,1) = (n"H X< Z/(1)

(seI=10,1], teT). Suppose that there exists a D,-valued Gaussian process
X =(X(s,))ser, 1 T With zero means and covariances

Cov (X(sy, 11), X(s, £5)) = min (s, $,)T(21, 1),

where I'(,, t,) = Cov (Z(t,), Z(¢,)). Assume that X is almost surely continuous
along the upper boundary of 7x T. Such an X exists by Theorem 4 if, for example,
T" is continuous.

THEOREM 6. In the present context, X, — X.

Proor. This follows easily from the remark following Theorem 3, inequality
(3), and the inequalities below:

@) 1 2E[Yicass ZB [ <ast ZB)T = [(=1)/n]u(B)  [(k—j)/n]u(B)
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(ii) h _ZE[zKaéj Za(B)]z[ZKaéj Zd(C)]2
< n7?[(j—i)EZ*(B)Z*(C)+(j—i)(j—i—1)EZ*(B)EZ*(C)
+2(j-1)(j—i-1)(E(Z(B)Z(C)))’]
< 3[(j—i)/n]u(B)- [(/—1)/nIu(C),
holding for neighboring blocks Band Cin T. []

In passing, we note that it is known that for function space valued processes,
even so simple a central limit theorem as the assertion X,(1,-) — X(1,-) is not valid
without assumptions beyond those of independence and equi-distribution, zero
means, and finite variances (see, e.g. Dudley and Strassen (1969)). Now let
(U1 be a sequence of i.i.d. T-valued random variables having a continuous
distribution, say Q. Define D,-valued processes Z, by

Z,(t) = 1o (U) - 0(C(9)),
where C(t) = [ 1,0, ,1(t = (¢, -+, 1)), and define G, by
G(t) = (1/k*) X1 <<k Zi(0).

G, is of course nothing but the normalized empirical distribution function based
on Uy, -+, Uy. Define a D, ;-valued process X, by

X,(s,1) = ([ns]/n)*Gru(t) = (%) ¥) stm1 Z(1)
(se[0,1],¢2€T). Since
EZ*(B) = Var (Z(B)) = Q(B)(1 - Q(B)) = Q(B)
E(Z(B)Z(C))* = Q*(B)Q*(C)Q(B)+Q*(B)Q*(C)P(C)
+0*(B)Q*(C)(1-2(B)-2(C))
< 30(B)Q(C),

Theorem 5 implies that the X, converge weakly (to a Gaussian process having
continuous sample paths). In particular, the G, = X,(1,-) converge weakly. But of
course much more than this is true. For example, using the methods of Billingsley
(1968), Section 17, one can easily deduce (cf. Wichura (1968)) that Gy converges,
to the limit of the G,’s, whenever (V,),>  is a sequence of positive, integer-valued
random variables such that, for some sequence of constants ¢, — oo, N,/c,
converges in probability to a positive random variable (see Fernandez (1970) for
a different approach).
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