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ELFVING’S THEOREM AND OPTIMAL
DESIGNS FOR QUADRATIC LOSS!

By W. J. STUDDEN
Purdue University

1. Introduction. The purpose of this paper is to give a matrix analog of a geo-
metric result of Elfving in the theory of optimal design of experiments. The
connection with quadratic loss is indicated below.

Let f = (f;, ---,f,») denote m linearly independent continuous functions on a
compact set X and let 6 = (6,, ---, 6,,) denote a vector of parameters. For each
x € X an experiment can be performed. The outcome is a random variable y(x)
with mean value /(x) = Y, 0,f,(x) and a variance ¢ independent of x. (Primes
will denote transposes.) The functions f, ---, f,,, called the regression functions,
are assumed known while § = (0, -+, 0,,) and 62 are unknown. An experimental
design is a probability measure u defined on a fixed o-field of sets of X which
include the one point sets. In practice, the experimenter is allowed N uncorrelated
observations and the number of observations that he takes at each xe X is
“proportional” to the measure x. For a given u let

m; = my(p) = Iﬁf}d# and M(p) = “mij“'ir,lj=l’
The matrix M(u) is called the information matrix of the design.

Suppose p concentrates mass y; at the points x;, i = 1, ---, r and Nu; = n; are
integers. If N uncorrelated observations are made, taking n; observations at x;,
then the variance of the best linear unbiased estimate of af’ = Y ; a,0; is given by
62N 'aM ~(u)a’. The inverse M ~*(u) must be suitably defined if M(u) is singular.
A design u is called a-optimal if u minimizes V(a, p) = aM ~*(wa’. The following
geometric result was given by Elfving (1952); see also Karlin and Studden (1966).

THEOREM (Elfving). Let R denote the smallest convex set in Euclidean m-space
which is symmetric with respect to the origin and contains all of the vectors f(x) =
(f1(%), -+, f(%)), x € X. A design uq is a-optimal if and only if there exists a scalar
valued function ¢(x) satisfying |¢(x)| = 1 such that (i) | ¢(x)f(x)duo(x) = Ba for some
B and (ii) fa is a boundary point of R. Moreover Ba lies on the boundary of R if and
only if B* = v™! where v = min, V(a, p).

The quantity, analogous to V(a, 1), that we wish to consider is
(1.1) V(A,p) = tr AM ™Y (WA = tr M~ (w)AA’

where A is an m x k matrix and tr denotes the trace. We thus wish to minimize
the sum of quantities ¥(a, 1) where the a’s are given by the columns of 4.
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The expression V(A4, u) can be seen to be proportional to the expectation
EO—0)44'(0—0) where 0 denotes the least squares estimate of 0. This is the
reason for part of the title of the paper. Other discussions of the quadratic loss are
given in Karlin and Studden (1966, page 812) and Elfving (1959 page 64).

In the following sense the expression V(4, n) provides some ‘“‘generality”. Let
L(B) denote a linear function on the set of m x m matrices which is positive in the
sense that L(B) = 0 for B positive semidefinite. Then L(B) = tr BC for some
positive definite C. Thus V(A4, p) is the most general positive linear function in
M~ (w).

A design p is called A-optimal if it minimizes V(4, p). In order to state the
matrix analog of Elfving’s theorem we let ¢ = (¢4, ---, ¢,) and define R as the
smallest convex set of m x k matrices which contains all the matrices f'(x)¢ where
xe Xand Y ¢;> = |$|* < L. (The symbol |-| will denote the usual Euclidean norm.)
We then have the following result.

THEOREM 1.1. A design pg is Aq-optimal if and only if there exists a function ¢(x)
satisfying |¢>(x)| = 1 such that (i) [ f'(x)¢(x)duo(x) = BAy for some scalar B and
(ii) BA, is contained in the boundary of R. Moreover A, lies on the boundary of R
if and only if f~% = vy = min, V(d4,, p).

A more complete discussion of the function V(4, p) is given in Section 2 while
the proof of Theorem 1.1 and some preliminary lemmas are given in Section 3. A
more useful form of the theorem is given in Theorem 3.1. Various simple appli-
cations are given in Section 4 and in Section 5 we discuss briefly the choice of a
basis in regression theory.

The application of Theorem 1.1 is, at present, somewhat limited (as are most
results on the optimal choice of design) in that it appears difficult in any given
situation to determine the points where the observations are to be taken. Some
iterative computational procedures are available both for the minimization of
tr M~ '(u)AA’ and for maximizing the determinant of M(u). See for example
Fedorov (1968) and Fedorov and Dubova (1968).

We wish to thank Professor J. Yackel for a helpful discussion concerning

Lemma 3.1.

2. The function V(A, ). Whenever M(u) is nonsingular the quantity V(4, u) =
tr AA’M ~1(u) is well defined. With the aid of Schwarz’s inequality it is immediate
that for any m x k matrix E

2.1 tr2E'A S tr EM(WEtr AM ™4
and equality occurs if and only if 4 is proportional to M (u)E. Therefore
tr2 E'A
2.2 V(A, 1) = i
( ) ( .u') SupE tr E’M(ﬂ)E

When M = M(u) is singular we take V(4, u) as defined by (2.2) where the
sup is over those E such that both numerator and denominator do not vanish
simultaneously. Thus, in order that ¥(4, u) be finite we must have each column of
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A orthogonal to every vector e such that Me = 0. That is, the columns of A4
must be in the range of M(u). We can therefore restrict the columns of E also to
be in the range of M. (This is equivalent to each column of 4 being estimable with

respect to u.) Let A, ---, A, be the nonzero eigenvalues of M with associated
orthonormal eigenvectors vy, ---, v,. Then M = ) A;'v;, and if we define
2.3) M* =Y Ay, for e=+1 or +14

then M*M ™% = Yv/v,. If the columns of 4 are in the range of M it follows that
(Qv/v)A = A. Then by Schwarz’s inequality

(2.4) tr2 E'A = tr? EM*M~*4
<trEMEtr AM™'4

and equality occurs if and only if 4 is proportional to ME. We shall usually take the
proportionality constant so that

(2.5) BA = ME or BM ™A =E

where f~% = tr A’M ~'A. The reason for this normalization will become clear
later. ,

We have now shown that when the columns of 4 are in the range of M(u) then
V(A,p) = tr A’M~'(u)4 where the inverse is given by (2.3). Otherwise
V(4, ) = .

3. Preliminary lemmas and proof of Theorem 1.1.

LemMMA 3.1. Let R denote the smallest convex set containing the m x k matrices

f'(x)¢, xe X and |§|> = Y'¢;> < 1. Then
R = {A|tr* E'A < sup, f(x)EE'f'(x) VE}
where E is an m x k matrix.

ProoOF. Let R, denote the convex set defined in parentheses above. Then for
A = f'(x)¢,
3.1) tr‘2 Ef'¢ < tr f(X)EE'f'(x) tr ¢’
= f)EESf'(x).

Therefore R = R,. Now suppose A, ¢ R. Since R is easily seen to be closed and
bounded there exists a hyperplane strictly separating 4, and R. Thus there exists
E, and a, such that

3.2) tr Ef’A < aq < trEjA, forall AeR

Without loss of generality we take aq = 1. In (3.2) we take A4 = f'(x)¢ where
¢ = f(X)Eo/| f(X)Eq|. Then

(3.3) FOEEY f'(x) £ 1 < tr? Ey'Aq

for all x and hence 4, € R,.
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COROLLARY 3.1. (i) Every matrix A € R has a representation A = Y f'(x,)p(v)p,
where |q§( v)| < land}p, = 1 and the x, are not necessarily distinct.
(ii) Every matrix A in the boundary of R has a representation

3.4 A4 =3, (x)d(x,)p,

where |¢>(xv)| =1, Y.p, = 1 and the x, are all distinct. Both of the sums in the above

representations are finite.
Arguments similar to those used in Lemma 3.1 may be used to prove the follow-

ing lemma.

LEMMA 3.2. A matrix A of the form (3.4) is a boundary point of R if and only if
there exists a “‘supporting plane” E such that

(3.5) FREEf (xX) <1 forall xeX

and equality holds for each x, (if p, > 0). Moreover $(x,) = f(x,)E/ ] f(x)E I and
tr E'4A = 1.

PrOOF OF THEOREM 1.1. First suppose that u, and ¢ are such that [ f"(x)$(x) x
dpo(x) = BA, and that f4, is on the boundary of R. Then by Lemma 3.2 there
exists an E, such that

3.6) ptrEyAy =1 and f(x)EqEyf'(x) =1 forall x
with equality holding for x in the spectrum of u,. Therefore,
(3.7 sup, f(X)EoEo'f'(x) = 1.
For any design ¢ we have
tr E'M(W)E = tr EE'[f'fdu
< sup, tr EE'f"(x)f(x)
sup, f(X)EE’f"(x).

Il

Then
tr? Ey' Ao - tr? Ey' A,
tr Eg’ M(W)E, ~ sup, f(x)EoEo'f"(x)’
This inequality together with (3.6) and (3.7) imply that
(3.8) V(do, 1) 2 B2
Now for the measure p, and any E we apply Schwarz’s inequality twice to give
tr? E'dg = B~ 2(tr E'Jf' () (x)dpo(x))?
< B3 ltr Ef'(x)(x)] dpuo(x)
< B72ftr (E'f'(x)f(X)E)dpo(x)
= B2 tr E'M(uo)E.

V(A 0> /.t) ;
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Therefore
tr2 E'A, < 1

V(Ao o) = SUP ——— = —.
( 0 :uO) sup tr EIM('U.O)E = ﬂz

This inequality combined with (3.8) shows that y, is 4y-optimal.
Note that there always exists a design u satisfying (i) and (ii) so that the above
analysis proves the last sentence of the theorem, namely that v, = B~ for A

on the boundary of R.
We now let u, be any Ay-optimal design and wish to show that (i) and (ii) are
satisfied for some ¢. We take B~ 2 = v, so the 4, lies on the boundary of R. Then

there exists E, so that

(3.9 SXEEf'(x) £ 1 = B> tr? Eg'A,.
Integrating the left side with respect to u, we obtain

(3.10) tr Eg’M(ug)E, = 1.

However since y, is Ao-optimal we have

tr? Ey A, 1
— 2% _ < V(4,, = —
T E MGy = | 01 T
so that tr Ey’M(ug)Ey = B2 tr? Ey’A, = 1. Therefore tr Ey’M(po)E, = B tr? x
E,’A, and by the sentence containing (2.4) we must have A, proportional to
M(uo)E,. The latter part of (3.9) shows that

(3.11) BA, = eM(ug)E, where &= % I

In this case

BAo = &ff'(x)f(x) Eodpo(x)
= [f'x)p(x)duo(x)

where ¢(x) = ef(x)E, for x in the spectrum of pu,. The vector ¢ has length one
since equality must occur in (3.9) for x in the spectrum of .

For a given matrix A it is usually difficult to determine the spectrum of any
A-optimal design p. Theorem 3.1 below is sometimes useful in determining those
A which have an optimal design supported on a given set of points.

In many cases the “boundary representation’

(.12 BA = 3, )by, o) =], Xypy =1

will reduce to a finite sum with at most m terms. If the number of terms is less than
m we add arbitrary points with corresponding p, = 0. We shall assume in this case
that the determinant F with columns f’(x,) is nonzero.

Let I'(x) = Tf'(x) denote the vector of Lagrange functions for the points
Xy, s Xy 160 [(x}) = 8;;. Inserting the values xy, -+, x,, in I'(x) = If'(x) gives
I = TFso that T = F~!, If we multiply (3.12) by T and let T4 = B then

ﬁB = Zv ll(xv)()b(xv)pv'
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In this case b, = ¢(x,)p, where b, denotes the vth row of B. Then

(3.13) B=Ib,D7"  py=Blb| and ¢(x,) = b5,

In case |bv| = 0 we have p, = 0 and ¢(x,) need not be defined.

For any matrix B we take each nonzero row and replace it by b,]b,|~'. The
resulting matrix is denoted by B,. Thus if B,”! denotes the diagonal matrix with
diagonal elements |b,| =" for |b,| # 0 and zero if |5,| = 0 then

(3.14) B, = B,”'B.

The following theorem characterizes those 4 with an optimal design supported
on a given set xq, ---, X

me

THEOREM 3.1. If F is nonsingular then an A-optimal design is supported on
X{, **y X,y If and only if there exists a matrix B such that

(1) I(x)ByBy'I'(x) £ 1 Vx.
(ily 4 = FB.
The optimal weights are then proportional to the lengths of the row vectors of B.

ProOF. Suppose first that a matrix B exists satisfying (i) and (ii). An 4-optimal
design then concentrates mass p, on x, where p, is proportional to the vth row of
B. To see this we observe that with p, and ¢(x,), as in (3.13), we have (3.12) holding.
Moreover (i) implies that

JX)T'ByB,’Tf'(x) £1 forall x
and
tr B,’T(BA) = ptr B'B,”'B
=pBtrB, BB = 1.

Therefore A € Bdry R and the result follows by Theorem 1.1.

Now suppose that an optimal design p, is supported on x, -+, x,,. The optimal
weights p, must be as in (3.13) and f4 = Y p,f'(x,)$(x,) with B4 € Bdry R. The
hyperplane supporting R at A then gives

(3.15) S (EE)f(x) =1 =trEyA

so that (i) holds with B, = F'E,. From (2.5) we know that f4 = M E, so that
pA = BFC F'E, where C = TA. In this case (iii) holds with B = C,B,,.

4. Applications. Polynomial extrapolation. Theorem 3.1 with k=1, X =
[—1,1], f(x) = (1, x, ---, x") reduces fairly readily to the extrapolation result of
Hoel and Levine (1964); see also Studden (1968). If k = 1 the matrix 4 has one
column. We take x,, v = 0, ---, n to be the extrema of the Tchebycheff polynomial
T, of the first kind, i.e. x, = —cos (va/n), v=0,1, -+, n and T,%(x) < 1 with
equality holding at x = x,. If we take the elements of the column vector B to have
alternating sign then /(x)ByB,'!’(x) < 1 since I(x)By, = + T,(x). Clearly 4 = FB
for some such Bif 4 = f'(x,), |x0| > 1. Thus the optimal design for extrapolatnig
to x, concentrates on the x, defined above.
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Linear regression. In this case we take f(x) = (1, x) and X = [a, b] and apply
Theorem 3.1. It is readily seen that (i) holds with x, = a and x, = b for any
matrix B due to the linearity of the regression functions. That is, if /(x)B, =
(Py(x), P5(x)) then P,%(@)+P,*(@a) < 1 and P,%(b)+P,%(b) £ 1, (usually equality
will hold). Then x = aa+(1—a)b where a = (b—x)/(b—a) so that P(x) =
aPa)+(1—a)Pb) and P,%(x)+P,*(x) £ 1. For any matrix A4 we let a, and a,
denote its rows. Since the weights of the A-optimal design are then proportional
to the rows of B, we find that the weights on a and b are proportional to the square
roots of b2|a,|? +|a,|*—ba,a,’ and a?|a,|? +|a,|*—aa,a,’. Note that in the case
a = —b the weights will be equal if and only if a;a,” = 0, i.e. the two rows of 4
are orthogonal. This is the situation when, for example, (i) 4 is diagonal or (ii)
A has rows (1, 1) and (1, —1), i.e. we estimate the sum and difference of the
regression coefficients.

Linear spline regression. Here we take X = [a, b] and let f(x) consist of the
functions 1, (x—&g) 4, (x—&) o, (x=&) 4, -+, (x=&)y Where &y = a < &, <<
¢y < &y =bandz, = zforz > 0and O for z < 0. The regression function is a
polygonal line segment. The argument used for the ordinary linear case shows
that (i) again holds for x,, ---, x,, equal &y, &;, -+, &,,, and any matrix B. The
matrix T = F~! has three nonzero entries starting at the diagonal (except for the
last two rows). The first row has 1, — (&, —&,) ™", (¢, —&o) ™! while the (i + 1)st row,
fori =1, -+, h+1, has entries

1 —(Cir1—&i-1) 1
I I A (T (T T R TP
If we take h = 1 and A4 to have zero entries except in the lower right corner we
then wish to estimate the coefficient of (x—¢&,) .. The optimal design has weights

52_51 1 51—5’0

on the points a = &y, €, and b = &,.

For general & we take 4 = (a;;) again to be diagonal with a;; = a,, = 0 and
a; = yfori=2,--, h+2. If the &; are equally spaced on (&, &, ) the optimal
design has weights on &, &, -+, &, 4+, proportional to 1, 5%, 6%, 6%, ..., 6%, 5%, 1.

Quadratic regression. For simplicity we take X = [—1, 1] and f(x) = (1, x, x?)
and consider those designs supported on the three points —1,0, 1. Since /(x) x
B,B,'l'(x) is a quadratic form and a polynomial of degree four, it can be checked
that it is at most one on [—1, 1] if and only if its derivative vanishes at x = 0.
This can be seen to be the case if and only if the second row of B is orthogonal to
the first minus the second. For example we can take B of the form

by, by, bys
B =| by 0 b3
L b1y =by2 bys
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The corresponding matrix 4 = FB is of the form

" a 0 €
A=10 B 0
Lo 0 Y

Again the weights are proportional to the square roots of the diagonal of BB’ =
TAA'T'. If ay, a, and a, denote the rows of 4 then the diagonal elements of
TAA'T' are
[b1|? = [b3]? = H(ay|>+]as|?), |b,]? = |a,|*+|as|*—2a,a5".
As special cases we take § = ¢ = 0 then
|b1|2 = Ib:&l2 (B*+yD)/4
lbllz = a?+y2.
If A =TI = the identity, then « = f = y = 1 and the weights on —1,0, 1 are

proportional to 1, 2, 1. This design can also be shown to minimize [f(x)M ~'(u) x
f'(x)dx = tr M~*(u)C where

Co 0 c,
C=10 c, 0
¢ 0 ¢, |

and ¢; = [_;! xdx.

Cubic regression. For simplicity we take A =1, X = [—1,1] and f(x) =
(1, x, x2, x*). One can show that there exists an A-optimal symmetric design on
four points —1, —s, s, 1. The quantities 4 and F are thus determined and B = T4.
We can argue that I(x)B,B,'!'(x) < 1 for all x if and only if the derivative of the
left side is zero at x = 5. A rather tedious calculation shows that s = (7¥—2)/3
and that the weights on —1, —s, 5, 1 are proportional to the square roots of
1+s% (145572, (1+5%)s™2, 14s* These values are approximately s = 0.215
and the weights are 0.087, 0.413, 0.413 and 0.087.

5. Choice of basis. In this section we indicate a connection between the quadratic
loss designs discussed above and the design which maximizes the determinant of
M(u) (see Kiefer (1960)). The result is of a simple nature and follows fairly readily
from the known result that if G is a positive semidefinite matrix and |G| denotes
the determinant then

5.1 n]Gll/" = ming - tr GH

where H is also positive semidefinite. Equality occurs if H is proportional to G™*.
If we consider a change of basis g’ = Pf’, then M, (n) = [9'9du = PM ()P’

and tr M,”'(u) = tr M~ '(u)AA’ where A = P~'. As a measure of how good the

basis is we consider

(5.2) L(P) = min, tr M,~"(p).
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Some normalization of P must be used and we consider those P with |P| = 1.
Thus g; = P, f'is better than g, = P, fif L(P,) £ L(P,). Using (5.1) we then have

THEOREM 5.1. If L(P) is defined as in (5.2) then
min p =y L(P) = m|M; ™" (uo)|""™

where pu, is the design maximizing IM f(:“)l' The “best” P is proportional to M~ *(u,).

As an example we consider f(x) = (1, x, .-, x") on X = [—1,1] for n = 1, 2.
It is well known that the design maximizing |M f(:“)l concentrates equal mass on
—land 1 forn=1and on —1,0 and 1 for n = 2. (The general case has equal
mass on the n+1 zeros of (1—x?)P,’(x) = 0 where P, is the Legendre poly-
nomial.) We consider four different bases; namely

1. f(x) = (1, x, -+, x").

2. T-basis: g = k(T,, -++, T,) where T, is the nth Tchebycheff polynomial.

3. B-basis: g’ = k(B,, By, -+, B,) where B; denotes the Bernoulli polynomial
By(x) = (1 —x)"(1+x)""".

4. L-basis: where L,(x) denotes the ith Lagrange polynomial corresponding to
n+1 points xo, Xy, -+, X, i.6. Li(x;) = 0.

In each case the proportionality constant k is used so that P = 1.

The case n = 1 shows no distinction between the four bases. In each case
L(P) = 2 as a direct calculation will verify. For n = 2 however we get 1. L(P) = 8;
2. L(P) = 5.90; 3. L(P) = 8.03; 4. L(P) = 5.67. It is not clear that the ordering
will be the same for higher values of n. The result for n = 2 is in accord with results
in approximation theory which indicate that the Tchebycheff basis is “good.”
By the above definition the Lagrange polynomials on —1, 0, 1 are better.
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