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CONVERGENCE RATES FOR EMPIRICAL BAYES
TWO-ACTION PROBLEMS I. DISCRETE CASE

By M. V. Jouns, JR.! AND J. VAN RyzIN?
Stanford University and The University of Wisconsin

1. Introduction and summary. Situations involving sequences of similar but
independent statistical decision problems arise in many areas of application.
Routine bioassay (Chase (1966)) and lot by lot acceptance sampling are typical
examples of such situations. In many instances it is reasonable to formulate the
independent component problems of such a sequence as Bayes statistical decision
problems involving a common, but completely unknown, prior probability distri-
bution over the state space. Robbins (1955) has shown for certain estimation
problems that the accumulated information acquired as the sequence of problems
progresses may be used to improve the decision rule at each stage. Such “empirical
Bayes” procedures may be asymptotically optimal in the sense that the risk for the
nth decision problem converges to the Bayes optimal risk which would have been
obtained if the prior distribution were known and the best decision rule based on
this knowledge were used.

Johns (1957) exhibits asymptotically optimal empirical Bayes procedures for
certain two-action (hypothesis testing) problems as well as for estimation problems
in a nonparametric context. Robbins (1963) and Samuel (1963) consider para-
metric two-action problems where the distributions of the observations are
members of a specified exponential family, and where the special loss functions of
Johns (1957) are used. Robbins and Samuel each exhibit asymptotically optimal
empirical Bayes procedures for both discrete and continuous observations.

The usefulness of empirical Bayes procedures in practical statistical applications
clearly depends on the rapidity with which the risks incurred for the successive
decision problems approach the optimal limit. The purpose of this paper and its
sequel (Johns and Van Ryzin (1967)) is to investigate rates of convergence to
optimality of empirical Bayes procedures for two-action decision problems when
the distributions of the observations are of exponential type. The present paper
considers discrete exponential families which include for example the geometric,
the negative binomial, and the Poisson distributions. The sequel (Johns and Van
Ryzin (1967)) considers continuous exponential families with particular emphasis
on the normal and the negative exponential distributions.

Each component problem in the sequence of decision problems for which an
empirical Bayes procedure is to be defined is assumed to have the following
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structure: An observation X is obtained having a distribution with probability
mass function '
1) pa(x) = h(x)2*p(%), x=0,1,---;0= A< d,

where h(x) > O for all x and where d may be finite or infinite. The observation X
may be thought of as the value of a sufficient statistic based on several i.i.d.
observations. The hypothesis H,: A < ¢, ¢ > 0 is to be tested against H,: 1 > ¢
with loss function

Ly(4)=0 if A<¢
=b(A—c) if A>¢,b>0,
L,(A)=b(c—4) if A<Zc
=0 if A>c,
where L;(A) indicates the loss when action i (deciding in favor of H)) is taken,
i =1,2, and A is the true value of the parameter. It is assumed that 1 may be
regarded as the value of a random variable A having prior distribution function

G(A). If the randomized decision rule d(x) = Pr{Accepting H, given X = x} is
used, then the risk incurred is

2 r(3, G) = [ Xx (L (Dpa(x)3(x) + Lo(A)pa(x)(1 = 5(x))} 4G(2)

=bY , ax)3(x)+ Cq,
where Cg =[L,(1)dG(%) and
(3) o(x) = [ Aps(x) dG(2) = cp(x),
where p(x) is the unconditional probability mass function for X and is given by
4) p(x) = § pi(x)dG(2), x=0,1,-.

We consider only priors G such that EA < oo to insure that the risk is always

finite.
A Bayes rule (i.e., a minimizer of (2) based on knowledge of G) is clearly given by

() d(x) =1, a(x) <0
=0, a(x) > 0.

The resulting (minimal) Bayes risk is

(6) r*(G) = inf; (8, G) = r(8¢, G).

For the case where p,(x) is given by (1) it is easily verified that

(7) a(x) = w(x)p(x+1)—cp(x),
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where p(x) is given by (4) and

h(x)

(8) w(x) = )

In the empirical Bayes context, a sequence of problems having the above
structure occurs but G(A) is not assumed to be known. However, for the (n+1)st
problem additional information in the form of the observations X, X,, -+, X,
obtained in the previous problems is available. The empirical Bayes procedures
considered here involve the construction of a sequence of estimates o, (x), n =
1,2, --- of the function a(x) where a,(x) is based on the observations X, X5, ---, X.
The decision rule used for the (n+ 1)st decision problem is then

©) 3,(x) =1, ) a,(x) <0
=0, l a,(x) > 0.

This rule imitates (5) but does not require knowledge of the prior G as long as
a,(x) does not depend on G. Specifically, if p,(x) is given by (1) so that a(x) is of the
form (7), we let

(10) 0,(x) =07 Ther Z()

where for each x, j,

(11) Z{(x) = w(x)U(x+1)—cU(x)
where
Ujx) =1, X;=x
=0, X; #x.

For a given x the Z;(x)’s are i.i.d. and EZ{(x) = a(x). Letting r, = the risk in the
(n+ 1)st problem using the decision rule (9) it is clear that »,—r*(G) is nonnegative
and it is easily shown (Robbins (1963), Samuel (1963)) that r,—r*(G) — 0, as
n — o0, i.e., that 8, is asymptotically optimal, provided only that FA < oo.

In Section 2 we give a very simple argument which provides an upper bound on
the rate at which r, approaches r*(G) as n becomes large. This result involves
conditions only on the unconditional probabilities p(x), which may be rephrased
in terms of the existence of moments of G(4). Although more refined results are
obtained in later sections the argument used in Section 2 forms the basis of the
methods used in Johns and Van Ryzin (1967) to treat the continuous case where
the technical difficulties are considerably more formidable. Thus a comparison
of the results of this section with the more precise results of Section 4 provides an
indication of the relative precision of the convergence rates obtained in Johns and
Van Ryzin (1967).

Section 3 contains the development of the asymptotic tools necessary to obtain
the exact rates of convergence to optimality presented in Section 4.
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Theorem 3 of Section 4 deals with the case where the natural parameter space
is compact. Without loss of generality this space is taken to be the unit interval.
The function A(x) appearing in (1) is taken to be of the form A(x) = &,(x)x”, where
hy(x) is a positive slowly varying function (i.e., 4,(cx)/h,(x) = 1 as x — co for any
¢ > 0). This theorem shows that rates of convergence as bad as n~ ¢ for ¢ arbitrarily
small may in principle be obtained when G’(1) behaves like (1 — A)° for A close to
one, for sufficiently small 6. However, if G’(4) decreases exponentially as A — 1,
the rate becomes n~! multiplied by a slowly varying function. If G’(1) is zero in
some interval (4o, 1), 4, < 1, then the rate n~! is attained and this is best possible
for procedures of the form (9), (10).

Theorem 4 deals with the Poisson case and similar results are obtained for the
cases where G’(4) behaves like A° or A%~°* ¢ > 0, as 1 — oo. For the Poisson case
and for other cases where the parameter space is not compact the rate n™! is
unattainable and a slowly varying factor (such as log ) always appears.

A comparison of these results with those of Section 2 shows that the more
elementary bounds are not far from being ratewise sharp. It should perhaps be
emphasized that without the exact rates obtained in Section 4 it would be impossible
to evaluate the degree of precision of the elementary rate results of Section 2 and
of the analogous but less elementary results for the continuous case given in
Johns and Van Ryzin (1967).

2. Preliminary results. In order to establish a simple upper bound for the rate of
approach of r, to r*(G) we first observe that, since r, is the risk associated with
the decision rule §, given by (9), we have, recalling (2),

Fo =bY  a(x)Ed,(x)+ Cg
=bY a(x)Pr{a,(x) < 0} + Cq.
We now state a lemma, useful here and in Johns and Van Ryzin (1967).
LeMMA 1. If r*(G) is given by (6), then
0= r,—r*(G) S by, |o(x)| Pr{|o,(x)—a(x)| = |oe(x)|}.
ProoOF. Recalling (5) we have
1= 1(G) = b Y. a(x)(Pr {o(x) < 0} —3())
= b o) |, (),
where
A(x) =Pr{u,(x)>0} if «x)<0
=Pr{o,(x)<0} if «x)>0.

The desired result follows from the fact that the event {|o,(x)—a(x)| = |a(x)|} is
implied by {o,(x) > 0} when a(x) < 0, and by {,(x) < 0} when a(x) > 0.
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The following theorem and its corollary provide simple conditions guaranteeing
specified rates of convergence. Let

(12) o(x) = Var(Z(x)).
THEOREM 1. If for some 6,0 < & < 2, there exists a constant K > 0 such that
Yees|a(x)] °lo(x)]° < K < oo,
where S = {x:a(x) # 0}, then
0<r,—r*G)< Kbn™%.

Proor. By Lemma 1 and (10) we have

B=r(G)< b T, Ju(v) Pr{ E |“(x>|"}

S5 2x) (2

)

AT -5()

<b Y |ofx)|'E
xeS

which yields the desired result.

COROLLARY 1. If p,(x) and w(x) are given by (1) and (8) and if for some 6,0 <
0 < 2, either there exist constants ¢, and ¢, such that

(i) max[w(x), p(x+1)/p(x)] < ¢o < o0,
and
(i) [w(x)p(x+1)/p(x)—c| > ¢; >0
Sfor all sufficiently large x, and furthermore
(i) Y. [p(x)]' ¥ < oo,
or alternatively, there exists a constant c, such that
(iv)  p(x)/p(x+1) < ¢o < 00,
and furthermore
(v) w(x)> o0, as x- o,
and
() Zew(e)iple+ 1)) # < co,
then there exists a K > 0 such that

0<r,—r*¥G)< Kn™%.
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ProoOF. By (7), if (i) and (ii) hold then |x(x)| = ¢?Vp(x) as x — oo, and by
(1) and (12)

0%(x) £ EZ*(x) = w(x)p(x+ 1)+ ¢*p(x) < K, p(x)

for some K, > 0 for sufficiently large x. Thus, the desired conclusion follows by
Theorem 1 if (i), (ii) and (iii) hold. Alternatively, if (iv) and (v) hold then
la(x)| ~ w(x)p(x+1), and ¢°(x) ~ wi(x)p(x+1) as x —» oo, and if (vi) holds the
conclusion follows.

We now discuss two illustrative examples. These examples are also considered
again later for comparison purposes using the results of Section 4.

ExaMpPLE 1. (The geometric distribution). Suppose that
pi(x) =25(1=2), x=0,1,--;021<1,

and that the prior distribution has probability density function

G'(2) = (y+1)(1=2y, 0<i<ly>—1.
then
! (y+)I(x+1)I(y+2)
) — X, EAY A —
p(x) (HDLMI Aythda T(x+7+3)
~(+DI(y+2)x~ 0", as x = 0.

Taking 0 < ¢ < I and noting that w(x) = 1 for this case, we see that (i), (ii) and
(iii) of the corollary are satisfied for 6 < 2(y+1)/(y+2). Thus, for a given value of
y we are assured of a convergence rate faster than n~ %! ~9/0*2) for any & > 0.
If y is taken sufficiently large, the rate becomes arbitrarily close to n™ .

The fact that, for this example, the value of y also determines which moments of
(1—A)""! exist, suggests that moment conditions can be given to assure any
specified rate of convergence. It can in fact be shown that, for the geometric case, a
convergence rate of at least n~*° is achieved provided only that p(x)/p(x+1) — 1
as x » o, and E(1—A)"" < oo, where t = §(1 +¢)/(2—9), ¢ > 0. The argument
which is based on Corollary 1 is similar to that of Corollary 3.1 of Johns and Van
Ryzin (1967) and will not be reproduced here.

ExaMPLE 2. (The Poisson distribution). Let

< x 0,1,:4>0
pl(x) _F(;._i—_—l_)s X =U,1, > 0.

Then letting the prior probability density be G'(1) = e~ % 1 > 0, we have

1 © 1 x+1
e x , —2A Y
p(x) = l"(x+l)L e *tdl = <2>
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Thus, for this case w(x) = x+1 and conditions (iv), (v) and (vi) of the corollary
are satisfied for every 0 < 6 < 2. The rate of convergence to optimality is therefore
faster than »n~!*¢ for any ¢ > 0. In Section 4 it will be shown that this is really a
consequence of the exponentially decreasing tail of G'(4).

3. Bounds and asymptotic propositions. In order to determine exact rates of
convergence it is necessary first to develop certain asymptotic results. The main
tool used in Section 4 is Theorem 2 given below which provides upper and lower
bounds for r,—r*(G). For this result we do not assume that p,(x), a(x) and Z;(x)
are necessarily of the forms given in (1), (7) and (11) respectively. We assume only
that for each x the Z ;(x)’s are i.i.d. with means «(x) and variances a?(x).

Let my(t) = Eexp {1Z,(x)}, () :_66_; m(1),
n*(x) = Pr{Z,(x) > 0},
n~(x) = Pr{Z,(x) < 0}.
CONDITION 1. a(x) = 0(c%(x)), as x = c0.
ConpITION 2. For some & > 0, m,(¢) exists for each x for all t € (=, J).

ConprTtioN 3. For all real 7 in some open interval containing zero, there exists a
positive constant K, independent of x and 7, such that sir,(t|a(x)|/6%(x)) £ Ko?(x),
for all x.

THEOREM 2. If a,(x) is given by (10) and if S* and S~ are the x sets where
o(x) > 0 and a(x) < O respectively, then

(13) r,—r¥G)z n) s+ a(x)n” (x)[1—n"(x)—n"(x)]""*
1Y es- (X)) 1=n*(x)—n"(x)]"" .
If Conditions 1, 2, and 3 are satisfied, then there exists a positive constant ¢,

such that
aZ(x):ln

(14) rn—r*(G) = b; |a(x)| [1 _CO;Z—(_;j
ProoF. We first note that, as in Lemma 1,
(15)  r,—=r*(G) =bY ccs+ a(x) Prio,(x) S0} =b Y s- a(x) Pr{a,(x) > 0}.
But
Pr{a, (x) <0} = h  Pr{Z(x)=0,j=1,2,-,k=1,k+1,--,n;Z,(x) < 0}
=nn"(x)[1-n*(x)—n"(x)]"" "

Similarly,
Pr{a,(x) > 0} 2 nn*(x)[1—n*(x)—n"(x)]"" ",

and (13) follows immediately from (15).
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Now by Condition 2, for 0 < ¢ < ¢ we have

(16) P (2,(x) > 0} < [ (O]
(17) Pr{o,(x) £ 0} < [m(—1)]".
For t € (—0, 0) we may write

(18) m (1) = 1+a(x)t+ i, (0(x, 1))1?/2,

where 0(x, ) lies between 0 and ¢. Now s1.(f) = E{Z,*(x) exp {tZ,(x)}} so that for
te(=9,0)

(19) W (0(x,1)) £ EZ*(x)+ E{Z *(x)exp {1Z,(x)}}
= EZ,*(x)+,(1).

Hence by (18) and (19), for t € (=9, )

(20) m(t) £ L+a(x)t +(EZ *(x) + i (1))1%)2.

Now by Condition 1 and the summability of «(x) we have «*(x) = 0(a*(x)) so
that for some ¢, > 0, for all x

(21) EZ *(x) £ c,0%(x).

Hence, by (20), (21) and Condition 3, taking ¢, = t|a(x)|/6?(x) for sufficiently
small T > 0, there exists a constant ¢, > 0 such that for xe §7,

o (x)

(22) my(t,) < 1—?(?)(1:—%12(@ +K))

o’ (x)
<1- CO?'(x—).
Similarly for xe S*,
o?(x
(23 =1 S 1= o

7

The desired result (14) then follows from (15)-(17), (22) and (23), and the proof of
the theorem is complete.

RemMARK 1. If n¥(x) and n~(x) approach zero as x becomes large it is always
possible to choose a sequence of integers x, such that

(24) max [n+(xn),n—(xn)] =n~ 1),

provided G is not degenerate at O in which case (24) cannot be achieved. Then by
(13) we have

(25) ra—r*(G) 2 |a(x,)| ™.
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In the particular case where p,(x) is given by (1) and a(x) by (7) we have 17 (x) =
plx+1) and 77 (x) = p(x), and typically |a(x)| = p(x +1)e®" = p(x)e®"). Under
these circumstances (25) yields

r,—r¥G)z n~"' %M,

so that the rate of convergence to optimality of n~ ! is best possible for the decision
procedures under consideration. Instances where this rate is actually achieved are
discussed in Section 4.

Inspection of the form of the conclusions of Theorem 2 shows that application
of this theorem to specific cases will require results about the asymptotic behavior
for large n of quantities of the form

(26) ‘»b(”) = szof(x)[l —g(x)]n’ \

where f(x) = 0and 0 < g(x) £ 1 for all x = 0. We shall assume throughout that
f(x) is summable so that ¢(n) always exists. Our investigation of this subject will
involve “slowly varying” and “‘regularly varying” functions and we recall the
following standard definition:

DEFINITION 1. A positive function k(-) defined on (0, o0) is said to be a slowly
varying (s.v.) function if for any ¢ > 0, k(ct)/k(t) — 1 as t - O (or alternatively as
t — ).

We remark that a function of the form k(¢)7° with — 00 < ¢ < oo is said to be a
regularly varying function with exponent o if k(7) is a s.v. function. We shall also
need the notion of a function which is slowly varying with respect to another
function as detailed in the following:

DEFINITION 2. A positive function k,(-) on (0, c0) is said to be slowly varying
with respect to the positive function k,(-) if k,(tk,(t))/k,(#) - 1 as t - O (or
alternatively as ¢ — o0).

It is easy to construct examples of s.v. functions which are not s.v. with respect
to one another. Typical examples of functions which satisfy both Definitions
1 and 2 are logarithms, iterated logarithms and their powers and roots.

Throughout the remainder of this section we shall make use of certain standard
results concerning s.v. functions and a fundamental Abelian theorem. These results
are now readily available in admirably complete and concise form in Chapter
VIII, Sections 8 and 9, and Chapter XIII, Section 5 of Feller (1966). We shall
refer directly to the appropriate propositions in Feller (1966) without reproducing
them here. In the remainder of this section and in Section 4 we shall make con-
siderable use of the symbol ¢°") indicating a positive function asymptotically
bounded away from zero and infinity (the argument of the function being under-
stood from the context). This will enable us to achieve a degree of notational
simplification without important loss of precision. In many (but not all)
instances, as will be noted in the appropriate contexts, these symbols could be
replaced by specific constants.
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The general asymptotic properties of ¢(n) needed for our applications are
described in Lemmas 2 and 3 below.

For given positive functions f*(x) and g*(x) defined for nonnegative integer
values of x, let

(27) S*(t) = {x:9*x) < t,x aninteger}
and
(28) V) =Y esvo S (%), fort = 0.

Then for ¢(n) given by (26) we have

LemmA 2. If f(x) ~ f*(x) and g(x) ~ g*(x) = 0, as x - oo, and if v¥(t) =
e?WOk(t)t?, where f > 0 and k(t) is s.v. as t — 0, then

(29) ¢(n) ~ ®Pk(n~")n=* asn—»oo.
Furthermore, if v¥(t) ~ k(t)t* as t — 0, then
(30) ¢(n) ~T(B+1)k(n™ )" as n— .
Proor. For t = 0 let
S(t) = {x: —log[1—g(x)] < t,x aninteger}
and
(1) = Yxesi /().
Then from (26) we may write
(31) d(n) = [F e "dv(t) =n[3 e " v(t)dt.

For (29) it suffices to show that v(f) = e?Mv*(¢), as t — 0, since the desired result
then follows immediately from the Abelian conclusion of Theorem 2, page 421
of Feller (1966). (The symbol ¢°") appearing in the asymptotic expression for
v(t) can be “brought through the integral sign” in the second integral of (30).)
Now for arbitrary fixed ¢ > 0, there exists an x, such that x > x, implies

(1=8)f*(x) </ (%) < (1+8)/*(x),
and
(1—¢)g*(x) < —log[1—g(x)] < (1+&)g*(x).

Furthermore S(f) and S*(¢) will contain only x’s greater than x, for all sufficiently
small values of ¢, so that for such values

S*(t/(1—¢)) 2 S(t) = S*(t/(1 +¢)),
and hence

(L—ep*(t/(1+e)) < v(t) < (1+e)v*(t/(1—¢)),
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which completes the proof of (29) since ¢ is arbitrary. The proof of (30) is essentially

the same.
The next lemma applies Lemma 2 to the two specific cases of interest in our

investigation.

LEMMA 3. If (i) f(x) ~ fi(x)x™ "' and g(x) ~ g,(xX)x™" as x — 00, or (ii) f(x) ~
f1@)e " and g(x) ~ g, (e ™ as x - o, where 0 < f < 1, and where for
both casesr,s > 0 and f,, g, are s.v. functions with f, and g, each s.v. with respect
to [e®Vg 11", then for case (i)

(32) d(n) ~ 90(1)fl(nl/’)[gl(nl/’)]'S/’n“s/r,
and for case (ii)

(33) d(n) ~ 2Vf (0 [g1(n""7)] " (log n)l/B‘—ln—s/r
asn — oo.

ProoF. We first treat the slightly more complicated case (ii) and identify the
functions f* and g* in (28) and (27) with the asymptotic expressions for fand g for
this case. Using the Karamata representation for s.v. functions (see the corollary
on page 274 of Feller (1966)) we have for y = x,

;'E:f,%expﬂjff <—-><>}

where a(x) and ¢(u) are functions such that a(x) converges to a positive constant as
x — oo and &(u) — 0 as v — oo. Hence for arbitrary ¢, 0 < ¢ < r,

g*(»)

(34) 70) <(1+e)exp{(e—r)(y’ —x")} < 1+¢,

for all x large enough so that ls(u)] < ¢ for u > ¢ and a(e’”) < (1+¢)a(e™”) for
y > x. Now for fixed 9 let

(35) x(1,8) =r~"*{log[g, (¢t~ /)™ 1]+ 8} 1P
Then
g*(x(t,9)) = g.([g,(t7 /")) /=M g ()] e ~teT? ast—0.

Hence, observing that x(t, ) - oo as t — 0 and choosing J, > 0 such that
e~ % < 1—¢, we have g*(x(1, 5,)) < t(1—e¢) for all sufficiently small 7. Thus from
(27) and (34), for all sufficiently small ¢, and for integer x,

(36) x > x(t,80) = g *(x) < (1—¢)t < t=>xeS*(1).
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Similarly, choosing §, < Osuch thate™®" > | +¢ we have x < x(1, §;) = g*(x) >
(14+¢&)~g*(x(t, 5,)) > t for all sufficiently small r. Hence for all such ¢

(37) xeS*(t)=g*(x) < t=x > x(t,9,).
From (28), (36) and (37) we have for all sufficiently small ¢,
(38) Zx>x(t,61)f*(x) = v*(t) = Zx>x(t,6o)f*(x)‘

The asymptotic behavior of v*(¢) is now deduced by examining the sums appearing
in (38). For fixed 4,
Yoo xenr) *(X) = Lo xen f1(€) e,

and since for any ¢, fy(e*t")e S F fi(xF) e ~ o7 #71 as x - oo,

we may bound the left-hand sum by the corresponding integral multiplied by
appropriate constants (and indeed these constants may be taken to be arbitrarily
close to one for small 7 except when 8 = 1). Furthermore, letting v = ¢*”,

0

1 =]
fl(ex/x) e dx == fl(v)(logv)(l/”)‘lv_s'l dv
ﬂ exhB(1,8)

x(t,0)
1 xB(t,8) 1—=p —sxB(t,0)
~B;f1(e N[x(t,8)] P e ast— 0,

by Theorem 1, page 273 of Feller (1966). Substituting x(z, 6) given by (35) in the
expression above and making use of the properties of f; and g, we obtain

(39)  Teoxwan/ () = A9, - log P TIT as 1,

upon observing that log[g,(t™ /")t ']+ ~ —logt as t - 0. Now from (38) we
see that v*(¢) must have an asymptotic expression of the same form as the left-hand
side of (39). The desired result (33) follows immediately by Lemma 2. The result
for case (i) follows by a similar argument with x(t,8) = (L+8)[g,(¢™ /")t~ 'J/".
The integral approximation for v*(f) for this case has integrand f;(x)x~“*" to
which the theorem of Feller (1966) cited above may be applied directly. Thus we
obtain v¥(t) = e?f (171" [g,(t7") ]’ as 1 >0, and the desired result (32)
follows by Lemma 2. This completes the proof of the lemma.

A considerably more delicate argument would be needed to replace the e
symbols by specific constants and in fact it appears that for case (ii) with g =1
an oscillating factor is unavoidable.

The next three lemmas relate the asymptotic behavior of the unconditional
probabilities p(x) to the tail properties of the prior c.d.f. G(1). Lemma 4 treats
the case where the function A(x) appearing in (1) behaves asymptotically like a
power of x so that the natural parameter space is the unit interval. For this case we
suppose that G possesses a density near A = 1 which approaches zero either
algebraically or exponentially as 4 — 1. Lemma 5 deals similarly with the Poisson
case. Lemma 6 applies to both models for the case where G assigns probability
one to an interval [0, 4,] which is a strict subset of the natural parameter set.
In these lemmas the letter C will represent a generic constant.

0(1)
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LeMMA 4. If p,(x) is given by (1) with
h(x) ~ hy(x)x" as x — 00,y > —1,
and if G'(1) exists for 1 —¢ < 1 < 1 for some ¢ > 0 and
G'(A) ~ G, (1=2)(1—2)exp{—o(1—2)"7} as -1,

where t > 0, and either ¢ > 0 or ¢ = 0 and 5 > — 1, and where h; and G, are
s.v. functions, then when ¢ > 0

h
(i) p(x) ~ Ch(—x:/((xr)Tl)) Gl(x—1/(1+1))x(t(v—%)—6—2)/(1+1)
1

exp{— (147 ) (or)"/ -+ DxT/EFDY
as x = oo, and when ¢ = O and 6 > —1,
(ii) p(x)~ CG(x™")x7°"% asx— 0.
ProOF. We first consider case (i) where ¢ > 0 and recall
(40) p(x) = h(x) fo A*B(2) dG(2), where
(B~ =[5 e 9% h(x) du(x),

where p represents counting measure on the integers. Hence by the previously
cited Abelian theorem, since log A™! ~ 1—Adas 1 — 1, we have

[B(A]~ 1~r(y+1)h( >(1—1) vt as i 1.

Hence p(x) may be bounded above and below by expressions of the form

hy(x)x’ T
@ e, ()]
G (1=2)(1=2)°""" ! exp{xlog A—a(1— 1) "}dA,

where the constants C may be taken arbitrarily close to one for sufficiently small
¢ > 0, provided (41) is of larger order than ¢~ ** which bounds the order of the
neglected portion of the integral in (40). Now let § = (1 — )x!/C+D _(gr)V/C+ D),
Then log A ~ —[0+(a7)/C*D)x~YE*D yniformly for 0e(—e¢,8) as x — oo.
Furthermore, G;(x /" D)/G ([0 + (a0)/C*D]x 1D o | yniformly for 0 € (—e,
¢) as x — oo, and the analogous result holds for /,. Hence, neglecting contributions
of exponentially smaller order, the integral in (41) is asymptotically equivalent to

Gl(x~1/(t+l))
(42) WT’_))_ x—(6+y+2)/(r+1)exp{_(1 +T—1)(O,T)1/(t+l)xr/(r+1)}
1

e [0+ (oT) /D]
cexp { — x4+ 6[0+ (1) /D] = a(a7)” /D)L dO.



1534 M. V. JOHNS, JR. AND J. VAN RYZIN

The coefficient of —x¥*1 in the exponential part of the integrand of (42) is of
the form 1(t+1)0%(140(1)) as 0 — 0, so that by the well-known asymptotic
theorem for Laplace integrals (see e.g. De Bruijn (1961), pages 63-65) the integral
in (42) is asymptotic to (2r)¥(a7) 7T D/ D[(r4 [)x/F V] 74 ag x — 0, and the
desired result follows.

For case (ii) where ¢ = 0 and § > —1, we let A = ¢~ ? in (41) and extend the
range of integration to (0, c0) resulting in a contribution which is exponentially
small in x. Since 1 =4 ~ 6 as A — 1, the desired result follows by the fundamental
Abelian theorem and the proof of the lemma is complete.

REMARK 2. In Lemma 4 we require y > — 1 in the expression for s(x). The case
of y < —1 is not substantially different. For this case f(4) — (1) > 0as 1 - 1,
and in Lemma 4 the power of x is reduced by (y+1)/(t+1) and the factor
hy(x"EF D)1 disappears in asymptotic expression (i) for p(x). In expression (i)
of Lemma 4 the power of x becomes — (5§ —y+1) and /,(x) appears as a factor.

We now consider the Poisson distribution which illustrates the case where the
natural parameter space is unbounded.

LeMMA 5. If h(x) = T(x+1)"" and G'(A) exists for all sufficiently large A with
G'(A)~ Cot’e™"*, ¢>0,0rc=0and < —1,

as A — oo, then
p(x) ~ C0x5(0_+1)—(x+5+1),
as x — oo.

ProoF. For this case f(4) = e~ * and

o0

T Co
= — X ,— A ~—_— ax+d ,—(a+1)A g4
p(x) = e I)J A e *dG(2) e I)J itle da,

0 T

as x — oo, provided the integral on the right is asymptotically independent of T’
and of larger order than 7**° which bounds the order of the neglected portion.
But if the range of integration is extended to (0, co) the integral becomes
I'(x+6+1)/(g+1)**°"! and the desired result follows since

Mx+3+1) i x s
[(x+1) ’ ’

by Stirling’s formula.
The final lemma of this section is concerned with the case where G(4) assigns
all its probability mass to an interval [0, 4,] which is strictly contained within the

natural parameter range.

LEMMA 6. If p,(x) is given by (1) and if o > 0 is such that G(Ao) = 1, and there
existsa A > A for which B(A) > 0, and if for some & > 0, G'(2) exists in (Ag—¢, Ao)
and

G'(2) ~ Gy (ho—A)(Ao—A)’, 5> —1,as A1 A,
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where G is s.v., then

1
p(x) ~ B(A)T(6+ l)h(x)Gl<;) x0TI et
as x — oo.
ProOOF. We observe that (1) - B(4y) > Oas A T A, for this case, so that
p(x) = h(x) [¢°e*"?* B(1)dG(2)
~ = B(Ao)A* [& e™* 19 24 dG(A) as A 1 .

The desired result follows as in part (ii) of Lemma 4.

4. Exact rates of convergence. The first theorem of this section is concerned with
the case where the natural parameter range is bounded above. This theorem
connects rates of convergence of r, to r*(G) with upper tail conditions on the prior
distribution G(A).

Without loss of generality, we consider the parameter space to be the interval
[0, 1) since this may be obtained by a simple scale transformation of any parameter
space bounded above. Also, to avoid trivialities, we take the constant ¢ appearing
in the loss functions and expression (7) for a(x) to lie strictly between zero and one.

THEOREM 3. If p,(x) is given by (1) with h(x) ~ hy(x)x?, y > —1, as x - o0,
where h(x) is s.v., and if 6 (x) is given by (9) with a,(x) given by (10), then if G'(4)
exists for | —¢ < A < 1 for some ¢ > 0, and

(a) G'(A)~G(1=2)(1=2)?° as A1->1,6> —1,
where G, is s.v., and G, and G,* are s.v. with respect to G,"/®* 2 then as n - oo
F _r*(G) — eO(l)[Gl(n—l/(5+2))]1/(5+2)n—(5+1)/(5+2)‘
Alternatively, if

(b) G'(A) ~ Gy(1=D)(1—AY exp {—a(1—2)""} as A— 1, a,t>0, and if
[hy(x)Gy(x™ D) (x D) for € = 1,2 is s.v. with respect to the same
unction with & = (141~ ")ot)"Y“* D), then as n — oo,

r,—r*(G) = e®Vlogn]""n™".

Finally, if for some Lo, ¢ < Ay < 1, and some ¢ > 0, G(4y) = 1 and G'(4) exists in
().0-8, lo) With

(©) G'(A)~ Gy(ho—A)Ao—AY, 6> =1 as A1 Ao,

where G, is s.v. and [G(x~Dh(x)]* for € = 1,2 is s.v. with respect to the same
Sfunction with & = (—log Ay)™"', then as n — oo,

ra—1*G) = e®Wn".
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PRrOOF. For this case w(x) = h(x)/h(x+1) - 1 as x - co. Furthermore, for cases
(a) and (b) we have p(x+1)/p(x) - 1 as x - oo by Lemma 4, and for case (c),
p(x+1)/p(x) » Ay > ¢, as x - o0, by Lemma 6. Thus, by (7), (11) and (12) we see
that for each case, for some ¢y, ¢, > 0

(43) a(x) ~ cip(x), and o*(x)~ c,p(x), as x - 0.

Furthermore, by (11) the quantities = *(x) and =~ (x) appearing in (13) of Theorem
2 are given by

(44) ¥ (x) = p(x+1),n7(x) = p(x).

Thus, the lower bound on r,—r*(G) given by (13) is of the form n¢(n— 1) where
¢(n) is given by (26) with

F() ~ e1p?(x), 9(x) ~ 2p(x), as x - .

If (a) holds then the desired conclusion follows for the lower bound by Lemma
3(1) and Lemma 4(ii) upon setting g,(x) = 2I(y+6+2)T(y+1)"'G(x~ ") and
fi(x) = te19,%(x), and observing that r = 6+2 and s = 2(6+2)—1 in Lemma 3
for this case. Similarly, the desired conclusions for the lower bound are obtained
for the cases where (b) or (c) hold by applying Lemma 3(ii) to the results of Lemma
4(i) for case (b) and Lemma 6 for case (c).

To verify that the upper bounds given by (14) of Theorem 2 are also of the
desired order we must first verify that Conditions 1, 2, and 3 are satisfied.
Condition 1 is implied by (43), and by (11)

(45) my(t) = p(x+1) "™ + p(x)e™,
so that Condition 2 is also satisfied. Furthermore, differentiating (45) twice yields
(46) (1) = wi(x)p(x+1) e+ c?p(x) e,

and by (43), t|a(x)|/o*(x) ~ tc,/c, as x — 0, so that Condition 3 is satisfied.

The upper bound (14) of Theorem 2 is of the form ¢(n) given by (26) with
f(x) ~ ¢, p(x) and g(x) ~ coc,%c,” 'p(x). Hence if (a) holds the desired conclusion
for the upper bound follows by Lemmas 3(i) and 4(ii) upon setting f(x) =
co ey le,9,(0) = e, T(p+6+2)T(y+1)7'G(x™") and r = s = 642 in Lemma
3(i). The upper bounds for cases (b) and (c) are verified similarly using Lemmas 3,
4 and 6, and the proof of the theorem is complete.

REMARK 3. It is possible to construct functions /,(x) which do not satisfy the
conditions of Theorem 3 and yet for which A(x) = A,(x)x" defines an exponential
family whose natural parameter space is [0, 1). Nevertheless, the family of functions
hy(x) which do satisfy these conditions is sufficiently broad to include not only the
geometric and negative binomial distributions and their obvious modifications,
but also all other distributions ever likely to be proposed as models for the naturally
bounded parameter case. It should be noted that the theorem could be modified
to include the case y < —1 in accordance with Remark 2.
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ReMARK 4. The significance of Theorem 3 is that the rate of convergence to
optimality is essentially n” ' in any situation likely to arise in actual applications
of the empirical Bayes method to the cases under consideration. As noted in
Remark 1, the rate n~! which is actually attained under condition (c) of the
theorem is best possible.

Although algebraically slower rates occur under hypothesis (a) of the theorem,
the prior distributions satisfying this condition put excessive weight in the right tail
(near one) to the extent that the unconditional distribution p(x) lacks higher
moments (by Lemma 4(ii)). Such priors are not likely ta represent real world
situations.

REMARK 5. Although Theorem 3 does not actually give the first term in an
asymptotic expansion of r,—r*(G), the two constants, (one for each bound of
Theorem 2) obscured by the factor ¢ could be obtained explicitly from the
lemmas and the proof of Theorem 2. This was not done, because the result would
still be only asymptotic and would not shed much light on the behavior of
r,—r*(G) for small n. A more delicate analysis, replacing the lemmas of Section 3
by actual bounds on ¢(n) and p(x), would be required to obtain sharp bounds on
r,—r*(G) valid for all n.

REeEMARK 6. The exact rates of Theorem 3 may easily be compared in particular
cases with the upper bounds given by Corollary 1 of Section 2. In Example 1 of
Section 2 it was shown that for the geometric distribution (i.e., A(x) = 1) with prior
density

G'(A) =@+1)(1-42), 0si<l,y> —1,
the rate of convergence of r, to r*(G) was at least as fast as n~ @*179/0+2) for any
¢ > 0. Theorem 3 shows that the exact rate for this case is n~ @ 1/0*2) Thuys, for
this case the simple results based on Theorem 1 only miss the mark by an arbitrarily
small power of n. As was noted before, this fact has implications for the sequel
(Johns and Van Ryzin (1967)).

THEOREM 4. (Poisson case). If p(x) is given by (1) with h(x) = T(x+1)""', and if
5,(x) is given by (9) with a,(x) given by (10), then if G'(A) exists for all sufficiently
large A with

(a) G'(A)~ Cot’, 06 < =2,
as A — oo, then
ra—1*(G) = M= 1 *29,
Alternatively, if
(b) G'(A)~ CoMe %0 >0,
as A — oo, then

r,—r*(G) = e’ (logn)n™".
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Proor. For this case w(x) = h(x)/h(x+1) = x+1, so that by (7), (11), (12) and
Lemma 5,

(47) a(x) ~ ¢;x* " o +1)7%,0%(x) ~ ¢, x* 2o +1)7*

as x — oo, for a certain ¢; > 0.
Since (44) holds for this case also, the lower bound (13) of Theorem 2 is of the

form n¢(n— 1) where ¢(n) is given by (26) with
F(X) ~ X a4+1)7%,  g(x) ~ c3x(a+1)77,

as x — oo, for suitable c¢,, ¢; > 0, by Lemma 5. The required conclusion for the
lower bound then follows for case (a) (¢ = 0) by Lemma 3(i) with f,(x) = c,,
g1(x) = ¢3, r = —0 and s = —25—2. The conclusion for case (b) follows by
Lemma 3(ii) with =1, 2r=5=2 log (o6+1), f(x) = c,(log x)>**! and

91(x) = c;(log x)°.
The upper bound (14) is of the form of ¢(n) given by (26) with

f(x) ~ex® M o+1)75,  g(x) ~ ey x*(a+1)77,

as x — co by (47). Also, by (47) and (45) Conditions 1 and 2 are satisfied, and by
(47) t]a(x)|/o*(x) ~ x~" as x —> oo, s0 that by (46) and Lemma 5, Condition 3 is
satisfied. The desired result follows for case (a) by Lemma 3(i) with f;(x) = g,(x) =
¢, ¥ = —d and s = —9—2. The conclusion for case (b) follows by Lemma 3(ii)
with =1, r =5 =log(o+1), fi(x) = (log x)°*' and g¢,(x) = (log x)°. This
completes the proof of the theorem.

ReMARK 7. The conclusions of Theorem 4 are completely analogous to those
for the corresponding cases (a) and (b) of Theorem 3 and the relevant comments in
Remarks 4 and 5 therefore apply also to the Poisson case. The requirement
0 < —2in case (b) of Theorem 4 is related to the fact that we must have EA < oo

for this case.

REMARK 8. The rate n~! cannot actually be achieved for the Poisson case even
when the support of G is bounded. To see this we note that the lower bound (13)
of Theorem 2 behaves like ny , xp*(x)[1 —2p(x)]"~ ! and if we choose x, such that
p(x,) ~n~'asn— oo, then the expression for the bound is itself bounded below
by e” ?x,/n, and x, — 00 as n — 0.

This remark applies also to all cases where /(x) becomes small at an even faster
rate than T'(x+1)"! (e.g., h(x) = e*") since w(x) > w0 as x — co for such
examples. We do not discuss these cases further here because for technical reasons
it appears that each example must be treated separately if precise results are to be
obtained. It seems likely that the rates of convergence for such cases would be at
least as good as those for the Poisson case under similar circumstances.

REMARK 9. The Poisson case was discussed in Example 2 of Section 2 where
it was shown that the rate of convergence to optimality was faster than n~!*¢
for any ¢ > 0 when G'(1) = e~ % By Theorem 4, case (b) we see that the exact rate
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is (log n)n~" for this case. Thus again, as noted in Remark 6, the results based on
Theorem 1 only underestimate the correct rate by an arbitrarily small power of n.

ReMARK 10. In all of the cases considered in detail in this paper, p,(x) has been
of the form (1) and Z;(x) has been a trinomial given by (11). It should be noted,
however, that there exist other examples, both parametric and ‘“‘non-parametric”
in the sense of Johns (1957), to which the results of Sections 2 and 3 apply. Such
an example is provided by the reparameterized negative binomial distribution,

E N/ A\
p,l(x)=h(x) m m , A>0,x=0,1,--

where k is a specified positive constant, #(0) = 1 and

_ k(1) (ktx—1)

h(x) T x=1,2,-
The appropriate choice of Z ;(x) in this case is
kh(x)

Zi) = ity Xj=x+y,y=12

= —C, X} =X

=0, otherwise.

Rate results analogous to those of Theorem 3 could reasonably be expected from a
detailed analysis of this example using the results of Section 3.
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