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PROPER SCORES FOR PROBABILITY FORECASTERS!
By ARLO D. HENDRICKSON AND ROBERT J. BUEHLER
Virginia Polytechnic Institute and University of Minnesota

A probability forecaster is asked to give a density p of a random
variable . In return he gets a reward (or score) depending on p and on a
subsequently observed value of w. A scoring rule is called proper if the
expected score is maximized when the true density is chosen. The present
paper uses convex analysis to generalize McCarthy’s characterization of
proper scoring rules.

1. Introduction and summary. Let (Q, o/, u) be a measure space and let £ be a
convex class of probability densities with respect to the measure . A scoring rule /°
is a mapping from £ into the class £ of random variables on Q. Assume a fore-
caster has knowledge of a probability density p € 2, and is to receive the score (or
actual payment) f(p) for his disclosure of p. Since f(p) is a random variable, the
score depends on the outcome of the experiment w € Q. The score f has been called
proper if

(M E(f(p) 2 E(f(9) forall p,ge 2

where E,( ) is the mathematical expectation with respect to the density p. If (1)
holds, then the forecaster will maximize his expected score with respect to p by
disclosing this density p. To avoid difficulties in (1) we will assume E,( /' (g)) exists
and is finite.

The first suggested use of a scoring rule was apparently by Brier (1950) in con-
nection with weather forecasting. The independent work of Good (1952) explicitly
considered condition (1). For more recent work, see for example de Finetti (1962),
Winkler (1969), Savage (1970), and Staél von Holstein (1970). The latter notes that
scoring rules have also been called payoff or reward or incentive functions, and
gives an excellent bibliography .

While the above context in which p is known to the forecaster is adequate for
our purposes, other points of view are possible. For example the cumulative score
of any forecaster may be used as a measure of his forecasting ability; or the stated p
may be regarded as defining a subjective probability. But the present paper is
concerned only with the purely mathematical problems connected with the charac-
terization of functions f satisfying (1) (or strictly satisfying (1)). Our main result is
Theorem 3.1, which modifies and generalizes a theorem of McCarthy (1956), using
a generalization of Rockafellar’s (1970) definition of subgradient.

Theorems 4.2, 4.3, and 4.4 give additional conditions to ensure that there exists
an f satisfying the requirements of Theorem 3.1. The necessary preliminary defini-
tions and theorems are given in Section 2.
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2. Some concepts of convex analysis. The space .# of random variables on (Q, &)
is a vector space with an inner product defined whenever it exists by

@ p-q = [ p(w)q(@)du(w).

Let &, = Z,(2) be the set of all g € £ such that p - ¢ is defined for all p € #. The
range of a scoring rule f defined on £ is assumed to be contained in .£,(£). The
following relation is crucial for applying convex analysis to studying (1):

3 E(q)=pr"q ifpe2.
For given f, the expected score H is defined on £ by

“ H(p) = p - f(p);

and condition (1) is equivalent to

® Hp) zp /(@ for all p, g € 2.
The condition that f'be strictly proper is

(© H(p) > p-f(9) if p # q.

The following is a generalization of Rockafellar’s (1970) definition of sub-
gradient to the infinite-dimensional case:

DerINITION 2.1. If H is defined on a convex set D < .# and if there exists
g € D and g* € Z,(D) such that

@) H(p) =z (p—q) - q*+H(q) for all p € D,

then g* is a subgradient of H at q (relative to D).

It can be shown in the Euclidean case that a subgradient of a convex function H
is unique and equal to the gradient at every point where H is differentiable
(Rockafellar (1970), Theorem 25.1).

THEOREM 2.1. If H has a subgradient g* at each point q in a convex set D, then H
is convex on D.

ProoF. For any p, g€ D, let p,* be a subgradient of H at p, = (1—-A)p+1q.
Then H(p) Z (p—py) - p1* +H(py) and H(g) = (q—p,) * p*+ H(p,). It follows that
(1—=A)H(p)+AH(q) = H(p,).

The following is a variant of Euler’s theorem.

THEOREM 2.2. If H is homogeneous of degree r on a convex cone D and has a sub-
gradient q* € & (D) for some q € D, then rH(q) = q - q*.

Proor. The inequality A"H(q) = H(q) = (A49—q) - ¢* + H(q) implies

Ar—1 .
T H@D 299" if 2> 1,

with the reverse inequality if 0 < A < 1. Thus rH(g) = q * q*.
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It can be shown further that if ¢* is a subgradient at g of H in Theorem 2.2, then
(Ag)* = A"~ !g* is a subgradient of H at Ag for all A > 0.

In the sequel we will use the term “homogeneous” to mean “homogeneous of
the first degree.” If H is homogeneous on a convex set C, then by letting H(A4p) =
AH(p) we can always extend the domain of H to the convex cone D = {ip:p € C,
A > 0}

3. McCarthy’s Theorem. McCarthy (1956) stated without proof a characteriza-
tion of proper scoring rules for the case when 2 is the class of discrete distributions
on a finite set Q. Our Theorem 3.1 applies to more general 2 and distinguishes
between strict and non-strict inequalities.

THEOREM 3.1. A scoring rule f mapping 2 into % satisfies (1) [strictly] iff there
exists a function H defined on D = {Ap:p € P, A > 0} which is (a) homogeneous,
(b) convex [strictly convex on 2], and (c) such that f(p) is a subgradient of H relative
to D at p for all p € P. The function H satisfies H(Ap) = Ap - f(p).

ProOOF. Assuming (1) holds, define H(Ap) = Ap - f(p). Using (1),
H(p) z 2p - f(@) = (bp—q) - /(@) + H(q)

for all p, g € 2, A > 0, which establishes (c). Finally (b) follows from Theorem 2.1.
Conversely, (a), (b), (c) imply by Theorem 2.2 that H(4p) = Ap - f(p), and sub-
stituting this into the subgradient inequality gives the desired result (1).
Strict inequality in (1) is equivalent to no subgradient of H at p being a sub-
gradient of H at q, if p, g € 2, p # q. This is equivalent to H being strictly convex
on .

ExAMPLE 3.1. A familiar example is the logarithmic score suggested by Good
(1952) for the binomial case. In the general case we put

® f(p) = logp.

A well-known inequality shows that f is strictly proper. If 4 is finite, then H(4p) =
Ap - f(p) is finite for Ape &, * where £, " = {q:q(w) = Oforallwe Q, [ ¢*du < oo}
and H is continuous with respect to the %, norm | - [ defined by the inner
product (2).

In the finite discrete case let the density p(w) be replaced by a vector p of proba-
bilities p;. For this pe 2, H(p) = Y. p;logp;, but for g =Aipe D, H(g) =
AY p;logp; =Y q;log(q;/y qi). Marschak (1960), page 97, attempted to show
that the logarithmic score gave a counterexample to McCarthy’s theorem, errone-
ously considering the gradient of Y. p; log p; rather than of ) ¢;log(g;/}’ qu)- A
proper understanding of the theorem requires a clear distinction between 2 and D
not explicitly stated in McCarthy’s paper.

If we wish to define f on D as well as on 2, then a natural choice is f (4p) = f(p).
In particular for the logarithmic case f(g) = log (q/ [ gdu). Unlike log g, this f(q)
is a subgradient of H for all g € D.
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EXAMPLE 2.3. For 2 < %,(u), the “quadratic” score f(p) = 2p—||p|* (Brier
(1950), de Finetti (1962)) is strictly proper. H(ip) = 4||p|>.

EXAMPLE 3.3. For 2 < #,(u), the “spherical” score f(p) = p/||p| is strictly
proper. H(4p) = A||p|.

4. Expected score functions. It might be asked what class of homogeneous and
convex functions on D satisfy the additional requirement of Theorem 3.1 of having
subgradients relative to D at each point in 2. The following is an example of a
function which has no subgradients and yet is homogeneous and convex.

ExaMPLE4.1. Let 2 be the class of continuous, bounded densities (sup p(w) < o0)
on (R, %, u) where p is Lebesgue measure and 4 consists of the Borel sets. Define
H(p) = sup, p(w). Then H s clearly convex on . However, H is neither continuous
at any p € 2 (with respect to ||p|} nor does H have a subgradient for any p € 2.

Let # < # be a Hilbert space, R the real numbers, and let 5 x R have the
usual product topology and inner product. # can be taken to be the smallest
closed subspace of .Z,(u) containing 2, where 2 = Z,(u). If D < 2 is the convex
domain of a real-valued function H, then the epigraph of H, epi (H) = # xR, is
the set {(p, ®):a = H(p), p € D}. H is a convex function iff epi (H) is a convex set.

The following is a partial converse to Theorem 2.1.

THEOREM 4.1. Let D be a convex set in S whose interior is nonempty. Let H be o
convex function on D which is continuous at a point p € int (D). Then H has a sub-
gradient q* € S at each point q € int (D).

Proor. The assumptions imply epi (H) is a convex subset of the Hilbert space
A x R whose interior is nonempty. If this is satisfied then epi (H) has a closed
hyperplane of support through each of its boundary points. (See for example
Valentine (1964), Theorems 2.15 and 4.1.) The supporting hyperplane at the boun-
dary point (g, H(q)) is seen to give one of the following inequalities for some g* € #:

® H(p) Z (p—9) - q*+ H(q) for all pe D,
or
(10) q-9*zp-q* for allp € D.

Clearly, (10) is satisfied only if g € bdry (D). Hence (9) is satisfied if ¢ € int (D).

THEOREM 4.2. If the set of densities D = H is a convex set and if H is convex and
homogeneous on D and continuous at a point p in the interior of D, then there exists f
such that conditions (4) and (5) hold on the interior of D. The range of f may be
taken in .
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ProOF. Whenever p € int (D), apply Theorem 4.1, and let £(p) be a subgradient
of H at p. The proof follows from Theorem 2.2.

The following theorems give equivalent conditions on f for continuity conditions
on H. We assume the range of fis in 5.

THEOREM 4.3. If D is a convex cone in s whose interior is nonempty and if H
and f satisfy (4) and (5) on D, then H is continuous at p € int (D) iff there exists a
neighborhood of p on which || f(+)|| is bounded.

PROOF. Let p, p,€ D, |p,—pl = 0 as n - . Let g, = /' (p,)/l f(p,)|*>. Then
H(p,+q,) = (p,+q,) - f(p,) = H(p,)+1. Thus, if H is continuous at p, we cannot
have |lg,]l — 0. Hence || f( - )|l is bounded on a neighborhood of p.

Conversely, if || f( - )] is bounded on a neighborhood of p then by the Cauchy-
Schwarz inequality (p,—p) - f(p,) = 0if ||p,—p| — 0. This implies lim sup H(p,) =
limsupp - f(p,) < H(p). Also liminf H(p,) = lim p, - f(p) = H(p). Hence, if
Ip,—pll — O then H(p,) - H(p).

We will now assume that f'is defined on the convex cone D such that
an fUp) = f(p) if pe D, A > 0.
This condition, although natural, is not necessary because the homogeneous
function H may have several subgradients at any p € D.

COROLLARY 4.1. If f and H satisfy (4), (5), and (11) on a convex cone D < S,
then H is continuous on the interior of D iff || f ()| is bounded on every closed set
contained in D.

PrOOF. Since f(Ap) = f(p) if 1 > 0, | ()| is bounded on every closed set
contained in D is equivalent to || /(- )|| bounded on every compact set in .D, which
is equivalent to the requirement of Theorem 4.3 that | /(- )| be locally bounded
at each point p € int (D).

THEOREM 4.4. If H and f satisfy conditions (4), (5), and (11) for all points in a
Hilbert space S, then the following are equivalent:

(i) H is continuous,
(i) H is bounded on the sphere {p € 3¢ |p| = 1};
@iii)) || f ) is bounded.

PrOOF. We need only show (ii) implies (iii). This follows from H(f(q)/ll f(@)]) =
@IS @D - f@) = 17Dl
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