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A NOTE ON THE ESTIMATION OF THE MODE'

BY EDWARD J. WEGMAN
University of North Carolina

Let X;, -+, X, be a sample from a unimodal distribution, F, and let
{a,} be a sequence converging to zero. A nonparametric estimate of the
mode is the center of the interval of length 2a, containing the most obser-
vations. This estimate is shown to be strongly consistent and conditions
on the speed at which a, may converge to zero are given. This estimator
of the mode is related to the naive density estimator, (F,(x + an) — Fu(x — an))/
2a,, where F, is the empirical distribution function. A simple strong con-
sistency result for this naive density estimator is given. Also other estimators
of the mode are discussed briefly and an application of estimators of the
mode is mentioned.

1. Introduction and review. The estimation of the mode of a probability distribu-
tion has received the attention of several authors, Chernoff (1964), Dalenius (1965),
Grenander (1965), Nadaraya (1965), Parzen (1962), Robertson, Cryer and Hogg
(1968), Venter (1967) and Wegman (1970), recently. Without exception, to demon-
strate consistency, these authors at least assume continuity of the density function,
f, and of course, define the mode, M, as that number which maximizes f. That is,
f(M) > f(x) for every x # M. By a distribution of Type I, we mean that there is
an M such that f (M) > f(x) for every x # M. We shall not require continuity.

One could define the mode in several other cases. If there is exactly one infinite
discontinuity in the density function, then the location of this discontinuity is the
mode. That is, if there is exactly one M such that one or both of lim,, , f (x) and
lim, | 5 f (x) is infinite, then M is the mode of f. We shall call this a Type II uni-
modal distribution function. Even more generally, if the distribution function may
be written as the sum of an absolutely continuous distribution and a discrete distri-
bution with isolated mass points, then the mass point with largest probability is
the mode. This distribution we shall call a Type III unimodal distribution.

Estimates of the mode may be obtained either directly or indirectly. The indirect
estimates are found as by products of density estimation procedures and include
estimates found in Parzen (1963), Nadaraya (1965), and Wegman (1970).

A number of direct estimates of the mode have also been given. Chernoff (1964)
chooses a sequence a, (which converges to 0 sufficiently slowly) and picks at his
estimate the center of the interval of length 2a, which contains the most observa-
tions. This estimate is identical to the estimates of Parzen and Nadaraya when the
kernel is chosen to be the uniform kernel. Chernoff and Parzen each present an
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argument for weak consistency and Nadaraya gives one to demonstrate the strong
consistency. The results of Parzen and Nadaraya are by products of similar results
for density estimates.

Venter (1967) and Dalenius (1965) apparently independently propose another
estimate. Whereas Chernoff fixes the length of the interval and chooses the interval
containing the most observations. Venter and Dalenius fix the number of observa-
tions and choose the shortest interval containing this fixed number of observations.
Venter also provides a proof of strong consistency. This estimate is related to the
“nearest neighbor” density estimate of Loftsgaarden and Quensenberry (1965).
Moore and Henrichon (1969) discuss the relation of the Venter-Dalenius estimate
of'the mode to this nearest neighbor density estimate.

A refinement of the technique proposed by Venter and Dalenius is found in
Robertson, Cryer and Hogg (1968), who define a function k(n) and choose the
shortest interval containing k(#) observations. Within this interval they choose the
smallest interval containing k[k(n)] observations, repeating until a smallest interval
contains something close to a fixed number of observations. These authors also
provide strong consistency results.

Finally, Grenander (1965) provides several estimates, one of which he shows is
consistent. Grenander’s consistent estimate is based on the fact that raising a
density to a power makes the mode more and more pronounced. Grenander’s
estimate is appealing because it uses all of the data, whereas the other estimates
use only a portion of the data. Dalenius (1965) concludes from a Monte Carlo
study that the Chernoff-type and Venter-type estimates are on the average closer
to the mode than the Grenander-type but the former have larger variances than
the latter. Finally, we remark that Chernoff, Venter and Grenander each develop
the asymptotic distribution theory for their respective estimates.

In this paper we shall focus our attention on the Chernoff-type estimate and give
strong consistency results when the sample is selected from distributions either of
Type I, Type Il or Type III.

2. Strong consistency. We limit our attention to proving strong consistency
results from the Chernoff-type estimate. Let X;, X, ---, X, be a sample from either
a Type I, II, or III unimodal distribution. Let a, be a sequence of numbers to be
described later and let (/,, r,) be the interval of length 2a, containing the most
observations.

We prove two theorems: one applying to Type I and Type II distributions and
the second to Type III distributions. The first theorem shall require a somewhat
unusual condition on the distribution which we call Condition 1.

ConpiTtioN 1. If (b,, c,) is a sequence of irtervals with &, and ¢, both converging
to — oo or to + oo and with ¢, — b, converging to zero, it is clear that the probability
measure of (b, ¢,) converges to zero. In addition, we shall require that the proba-
bility measure of (b,, c,) eventually be less than the probability measure of I, where
I, is either of the form («, a+c¢,—b,) or of the form (x—c,+b,, «). Here o is any
real number.
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This condition is met if the density, f(x), eventually decreases monotonically to
zero as x — +oo and — oo. Also we assume that fis either left- or right- continuous
at each of its finite discontinuities if any.

THEOREM 2.1. If the distribution F is of Type I or II and satisfies Condition 1 and
if a, converges to 0 more slowly than [log (log (n))/n]*, then I, and r, converge to the
mode, M, with probability one.

PrROOF. Let Q' = [lim sup,. ., W,[n/(loglogn)] = 27%] where W, =sup,
|F,,(x)—F(x) ] and F, is the empirical distribution function. Smirnov (1944) shows
that Q" has probability 1. (A proof in English may be found in Chung (1949) or in
Cséki (1968).) Since Q' < [lim,_,, W,/a, = 0], we shall restrict our attention to
points in Q.

If [, fails to converge to M with probability one, By the extended Bolzano-
Weierstrauss Theorem, there are points in Q' for which one of three consequences
may occur:

() limsupl, = + o0,
(ii)) liminfr, = — o0,
(iii) there is a subsequence /,; such thatl, — [ # M.

Cases (i) and (ii) are similar so we investigate only lim inf 7, = —co. There is a
subsequence r,, diverging to —co. Choose o < M so that 0 < f(x—) < f(M)
(or lim, _, ,, f (x)). Now

Fnj(rnj_)_F”j(r”j) = |Fn,~(rnj_)_F(rnj)|+ IFn,-( nj)_F(l”j)I+ |F(r”j)_F(l”1)|'
Dividing throughout by 2a,; and letting j — oo, we obtain

F(rnj) _F(ln,)
P 2a,, ’

Fnj(rnj_)_Fnj(l”j)
2a

(2.1) lim sup < limsu

nj
By Condition 1,

F(r,)—F(l,) _ F(0)—F(e—2a,)

<
= 2a eventually.

2a,

Thus

F”j(r”j_)—F”j(lnj)
2a,,

=f(@-).

lim sup
Thus we may obtain a subsequence of n; (for convenience let us relabel it ;) such
that

Fnj(rnj_)_Fnj(lnj)
2a,,

=f@-).

lim;_,,
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On the other hand, let (/,*, r,*) be the interval of length 24, with center at the
mode, M. If the Type I distribution has a jump at the mode or if only one of
lim,; 5 f (x) and lim, ; 5, f (%) is infinite, a slight change in the choice of (* r,¥) is
necessary. Consider

F(r})—F(I}) < |[Fr}) = F, (rk =)|+ |[F(I5) — F, (13)| + |F, (r¥ =)—=F,(I%)].
As before

F(r¥)—F(l¥
- (rn)—F(l,,

. Fnj(r::'_)_Fnj(l::j)
2.2) lim1 24

< liminf
" 2a,,

But the left-hand side is either f (M) in the Type I distribution or co in the Type Il
distribution. In either case we have

Fora—)—FEy(1) < Fi(rs* =)~ Fy(1,*)ico,

That is to say, the number of observations in (/, r,) is less than the number of
observations (,*, r,*) infinitely often. But (/,, r,) was chosen to be the interval with
the most observations so that we have a contradiction. Thus lim inf r, # —oo. By
a similar argument, we obtain lim sup /, # + 0.

Suppose then there is a subsequence /,, such that /,, > / # M. By an analysis
similar to that we used to obtain (2.1), we obtain

Fn~(rnj_)_Fn (lnj) . F(r”')_F(lnj)
j s < J
p 2a < lim sup———— -

nj nj

2.3) lim su

The right-hand side is less than or equal to the maximum of f (/—) or f (I+), both
of which are less than f (M). Thus we may obtain a subsequence of n; (which as
before we relabel 7;) such that

Fnj(r”j_)_FIIj(l'lj)
2a,

<f(M).

lim;,
i

By arguments similar to those leading to (2.2), we obtain

Fnj(rnﬁ;_)_Fn(l:;
)

(2.4) liminf
nj

As before, this leads us to a contradiction, so that /, can converge only to M.
Since r, = 1,4 2a,, and a, converges to zero, r, converges to M, which completes

the proof.
Note that the proof just given does not require continuity of the density.

THEOREM 2.2. If F is a Type 111 distribution and a, is any sequence converging
to 0, then I, and r, — M with probability one.
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ProoF. Let Q' = [lim,_, , sup, |F,(x)—F(x)| = 0]. Q" has probability one by
the well-known Glivenko-Cantelli Theorem. We restrict our attention to w € €'.
As in the proof of Theorem 2.1, one of three things may happen if I, # M:

() limsupl, = +o0
(i) liminfr, = — oo
(iii)  there is a subsequence /,, such that , — [ # M
Again cases (i) and (ii) are similar and we will only investigate case (ii).
There is a subsequence r,, diverging to —oo. Pick « so small that F(a—) <
P(X = M). But since eventually (, 5 Tny) © (=0, 0),
(2.5) F,(r,=)=F,(l,) < F,(a=).
Also eventually by the Glivenko-Cantelli Theorem,
F, (o) <F,(M+)—F,(M-).
Let (1,*, r,*) be as in Theorem 2.1 so that
(26) Fnj(a) < Fnj(M+)_Fnj(M_) é Fnj(rnt_)_Fnj(ln’l; .

Combining (2.5) and (2.6) we have the contradiction that ([,*, r,*) contains more
observations than (/,, r,) infinitely often. Thus we have lim inf r, # — co. Similarly,
we may conclude lim sup /, # + 0.

Let us suppose that /, converges to / # M. If / is a mass point of the discrete
part of the distribution, then

liminf {F, (r,,—)—F,(,)} < P(X =),

otherwise
lim inf {F, (r,,—)—F,(1,)} = 0.

On the other hand

limsup {F, (=) —F, (1)} = P(X = M).
Since P(X = M) > P(X = ), we again have the contradiction that the number of
observations in (/,, r,) is less than the number of observations in (L,*, r,*) infinitely
often. Thus we can only conclude that /, and r, converge to M for all points in Q'.

In Section 1, we pointed out that this estimator of the mode suggested by

Chernoff is related to the kernel estimators of the density, where the kernel is

chosen to be the uniform kernel. The type of analysis found in Theorem 2.1 can
be extended to show a simple proof of strong consistency for the kernel estimate

with uniform kernel.

THEOREM 2.3. If f,(x) = [F(x+h,)—F,(x—h,)]/(2h,), where h, converges to 0
more slowly than [log (log (n))/n]?, then at every continuity point x of f, f,(x) — f(x)
with probability one. In addition, if f (x) is uniformly continuous, then f,(x) = f(x)
uniformly in x with probability one.
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Proor. Let Q' be defined as in Theorem 2.1. Fix w € Q. By noting that
Fn(x + hn) '—Fn(x - hn)
2h,
- |F,,(x+h,,)—F(x+ h,)| |F,,(x— h,)—F(x— h,,)| F(x+h,)—F(x—h,)
= 20, + 2n, + 20,
and letting n diverge to infinity, we have

Fn(x+ hn) _Fn(x— hn)
p

2.7

lim su 2h, < f(x).
Similarly
F(x+h,)—F(x—h,)
(2.8) o
< IF(x+hn)—Fn(x+hn)| |F(x_hn)_Fn(x_hn)| Fn(x+hn)_Fn(x_hn)
= 2h, + 2h, + 2h,

Letting n diverge to infinity, we have

Fn(x + hn) - Fn(x - hn)
2h ;

f(x) £ liminf
which is sufficient to complete the first part of the theorem.
Let us now assume that f is uniformly continuous. By combining (2.7) and (2.8),

F(x+h,)—F(x—h,)| |F(x—h)—F(x—h,)| |F(x+h,)—F(x+h,)|
J¥) = 2h = 20, 20, '

n

Taking supremums over x and then limits as » — o0,

F(x+h,)—F(x—h,
RO ALl Y

2.9) lim,, ,, sup,

But by the Mean Value Theorem,
F(x+h,)—F(x—h,)
2h,
for some 0 with |0—x| < 2h,. Let ¢ > 0. Since f is uniformly continuous, there is a

8 > 0 such that for every x and 6 with |x—6| < 6, then |f(x)—f(0)| < ¢/2.
Choose n sufficiently large so that 24, < J and such that

sup. | £.(0)— F(x+ h,,)271 F(x—h,) <o

=/(6)

Then,
sup, | £,(6) —f(x)| < sup, | £,(x)—f(0)|+sup, [ /() —f(x)] <e.

That is lim,_, , sup, | /,(x)—f(x)| = 0.
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The results of this section are not surprising since this estimate (as well as the
others mentioned in Section 1) rely on the fact probability is concentrated near
the mode. This is even more the case with distributions of Types II and III than
with those of Type I. We note however that to our knowledge there are no other
proofs of strong consistency without assuming continuity of the density.

Finally we should like to point out that one can use estimates of the mode to
calibrate blood flow curves. The details of this application can be found in Benson
(1970). The intuition behind the application is interesting. Clearly, there is a mean
flow of blood through the body (or else we should all perish immediately). However,
in some arteries, the most frequently occurring value of flow is zero corresponding
to the rest period (diastole) of the heart. Knowledge of the latter is of much more
interest to physiologists because the zero flow is much less dependent on the shape
of the flow curve than is the mean flow.

Acknowledgments. I thank the referee for his helpful suggestions.
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