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PARAMETER ESTIMATION FOR AN R-DIMENSIONAL
PLANE WAVE OBSERVED WITH ADDITIVE
INDEPENDENT GAUSSIAN ERRORS!

By MELVIN J. HiNIcH and PAUL SHAMAN
Carnegie-Mellon University

Let ¢(¢, x) denote a stationary Gaussian process with Ee(t, x) = 0,
Eet,x) = o2Vte T ,xe 27, and Ee(t1, X1)e(tz, Xo) = 0 V11 # £2 0T X1 # Xa.
Let .7~ be the set of integers and 22”7 a subset of the r-dimensional
Euclidean space Rr. Given a coordinate system in R~ and a time origin,
observe y(t, X) = s(t, X) + «(t, X), where s(¢,x) = L1 A(wj) exp {ilw;t —
£(0jYXl}, 0j =2aj|/T, j=0,1,--,T— 1, and #(w;) is a vector of pa-
rameters in R*. If x(w) = (w/v)e, where e’e = 1, 5(¢,X) is the r-dimen-
sional generalization of a (discrete-time) plane wave which is propagating
with phase velocity » in a direction parallel to e. For a finite time let
the process y(¢, x) be simultaneously observed at each xe 27 = 81 x
Sg X o+ X Sp, §5=1{1,2, +..,n}. The maximum likelihood estimators
ff(wj) and &(w;) of A(w;) and k(w;), respectively, have a joint limiting
normal distribution in which appropriately normalized estimators of the
r components of k(w;) are mutually ihdependent, for each j=1, .-,
T — 1. Thedistributions of the estimators for different w;’s are mutually
independent. The analysis is generalized to the case where s(¢, x) is a
sum of plane waves with separation between the phase velocities.

1. Introduction. Lete(?, X), € .7 and x € 227, denote a stationary Gaussian
random field, where

Ee(t,x) =0, te 9, xe&Z,
(1.1) E&’(t, x) = o, te 9, xeZ,
Ee(t;, x,)e(t,, X,) = 0, LL#1, Of X #X,.

Let .7 be the set of integers and &2~ a subset of the r-dimensional Euclidean
space R". Given a coordinate system in R™ and a time origin, suppose that
we observe the real-valued random process

(1.2) Yt X) = T Su(t, X) + (1, %),

where for each m, s,(t, X) is the following periodic function in ¢ (of period T)
for each x € &£~

(13) Sults X) = LI An(@;) exp (il — £,(@,)'X]}

where w; = 27j/T, j=0,1, ..., T — 1, and for each w; and m ¥,(w;) € R" is

a vector of parameters contained in a closed set in the interior of one of the
orthants of K = [—=, z]". That is, each component of each &,,(w;) is bounded
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154 MELVIN J. HINICH AND PAUL SHAMAN

away from —r, 0, and z. The coefficients 4,,(w,) are the Fourier coefficients
of s,(t,0), i.e.,

A, (0;) = Lyr eioits (2, 0)
(1.4) T
A,(0;) = A, (0,_;), j=0,1,...,T—1.

From now on for simplicity we assume 4,,(0) =0,m =1, ..., M. If 4,(0) =0
it is necessary to calculate and remove the series mean before proceeding with
the analysis in this paper. Details when r = 1 are in Walker [19].

Suppose that the index ¢ has units of time associated with it, r = 3, the coordi-
nates of the vector index x € R® have units of length and #,(0) = 0v, Y (w)e,
where e is a fixed unit length vector in R?® and {v,,(w)} is a set of real functions
of w > 0. Then (1.3) defines a discrete-time plane wave which is propagating
in a dispersive medium with phase velocity v,(w) (Courant and Hilbert [5],
Chapter III, Section 3). The direction of propagation of the wave is parallel
toe.

In order to simplify the exposition let us first discuss the case where M = 1
with the subscript dropped from the expressions involved in s,(¢, x). The
analysis will be generalized in Section 5.

Although in general for propagating waves the phase velocity v(w) depends
on w, in most applications v(w) is a constant for the frequencies w of interest.
Ifv(w,)=wvforj=1,..., T — 1, the plane wave is called non-dispersive and
s(t, x) depends on ¢ and x only as a function of t — @'x, where @ = (a,, a,, @;)’ =
v7le, i.e.,

s(t, X) = s(t — a’x) = 17 A(w;) exp {iw,(t — a'x)} .

The parameters a;, a,, a, are called the wave slowness components of the propa-
gating wave (their units are time/distance), and

1

0= Le =L o), k=1,2,3,
v o
does not depend on w, with &(®) = (£,(0), £4(®), £ (w))'.

Let us now review the relevant literature dealing with the estimation of the
parameters of a propagating non-dispersive plane wave. Suppose that for
t =1, ..., T the process y(t, X) = s(t, X) + ¢(¢, X) is simultaneously observed
at a finite set of positions {x,, - - -, x,} where x, = (x,,, X5, x,;)’. From the
set of observations of y(¢, x) we wish to estimate the wave slowness components
a,, a,, a, and the Fourier coefficients A(w,), j=1, ---, }(T — 1).2

The classical applied problem involves waves which are measured by a col-
lection of sensors located on a plane (called a planar array). Examples are

2 From now on for exposition we assume T is odd.
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seismic waves measured by an array of seismometers on the earth’s surface
(Capon, Greenfield, and Kolker [2], Laster and Linville [10], Smith [17]),
acoustic and gravity waves measured by arrays of microphones and barographs
(sensitive barometers) (Clay and Hinich [4], Green, Kelly, and Levin [7]),
underwater acoustic waves measured by hydrophones on the ocean floor (Clay
[3] and Horton [9]), and electromagnetic waves measured by an array of radio
receivers (Barber [1]). If we choose the coordinate system of R® such that the
third axis is perpendicular to the array plane, the wave slowness components
are

sin y cos @ sin 7 sin @ cos 7y
1=___._.__, a2:4—__.__, a'3=_._,
v v . v

where 7 is the angle of propagation with respect to the normal to the array
plane, # is the azimuth angle of propagation in the plane, and v is the phase
velocity; see Figure 1. The coordinates of the pth sensor in the planar array
are just X, = (x,5, X,5, 0)".

The method which is generally used to estimate the parameters is called
“delay-and-sum beam forming.” (See [1]-[3], [7], [10]-[11], [13], [16]-[17].)
Let y(t, x,) denote the output of the pth sensor, and given delays a, and a, let
v(¢, &) be the sum

¥t a) = 300, y(t + a'x,)

where @ = (a,, a;, 0)’. In many applications the analyst has strong a priori

\
\

pth sensor at x,=(2,, Ty, 0)

F1G. 1. The diagram shows the array plane, direction of propagation (arrow), the elevation
angle of propagation 7, and the azimuth angle of propagation in the plane 0.
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notions about the shape of the waveform and he searches over «, and a, to
find delays such that he visually finds a pattern in y(#, &) similar to the wave-
form (Embree, Burg, and Backus [6]and Robinson [16]). In the many schemes
which have been employed to detect and analyze waves, there has been no
formal analysis of the parameter estimation problem. The work of Levin [11]
indicates that if &, and @&, are a pair of delays which maximize };7_, y*(t, ),
then &, and &, are maximum likelihood estimators of the wave slowness com-
ponents «, and a,, provided that e is restricted to lie in a closed bounded subset
in R® and s(t) = 0 for t > T — max, (a'x,) and ¢t < — min, (a’x,) in order to
avoid end-effects problems (Hinich [8]). The maximum likelihood estimator
of the waveform is y(z, @). The large-sample properties of these estimators,
however, have not been determined, except for a special linear array problem
(MacDonald and Schultheiss [13]). In this paper we treat the general parame-
ter estimation problem given an equally-spaced array of sensors which is ob-
serving a possibly dispersive wave embedded in a spatially-incoherent Gaussian
noise field. However our analysis of the problem concentrates on the statistical
aspects and avoids the specific physical nature of waves.

2. The statistical model and preliminaries. We now formally state the model
which is the basis of the statistical problem considered in this paper. We
continue to restrict attention to a single r-dimensional plane wave [M = 1 in
(1.2)]. The case M > 1 will be considered in Section 5.

Let 227 be the set of N = n" lattice vectors given by &£27= 8, X S, X --- X §,,

where S; = {1, - - -, n}, i.e., the elements of 22”7 are of the form x = (x,, - - -, x,)’
forx,=1,...,n,j=1,-.-,r. Assume for t =0, --., T — 1 and x € &2~ we
observe

(2.1) Wt x) = 3550 Aw;) exp {ifot — £(0;)X]} + &(t, X)

where w; = 27j/T and k(w,) = (£,(w;), - - -, £,(w;))’. For each xe 2" and w,,

j=1, ..., 4T — 1), define
1

Z(w;, X) = 7 T e twity(t, X)

(2.2) = A(w;) exp [ —ir(w,)'X] 4+ u(w;, X) ,
= z)(w;, X) — izy(w;, X), j=1 .-, KT -1),

where for each w; and x
(2.3) u(w,, X) = 17 ST, emivite(t, X) = uy(w;, X) — it X)

is a complex normal random variable and
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Eu (w;,x) =0, Vo, xeZ", g=1,2,

2
(2.4) Euw;, X) = ;’T , Vo,xe2, g=1,2,
Eu(w;, X)uy(w;, X) = 0, Vo, xeZ,

Eu(w;, X, )u (@, X,) =0, j#+k or x,#x,, 9g,h=1,2.

We wish to estimate the ,(w;) fork = 1, ..., rfor each ;. These parameters

are called wavenumbers.
Since the u(w;, x) variables are independent for different values of j it will

be convenient to fix jand write simply
(2.5) z(X) = Ade#¥* 4 y(x),

where & = (k,, - - -, £,), 4 = 3(a + ib), z(X) = z,(X) — iz,(X), and u(X) = u,(X) —
iu,(x). The u(x)’s are independent normal variables, and u,(x) and u,(x) are
independent, each having mean 0 and variance 1o?/T. The estimators of the
«;’s which we shall consider are the maximum likelihood estimators, which

are obtained by minimizing the expression

(2.6) U@ b, #) = 52y |2(X) — Aemiex]

%1
= Dhepm [ZX) —2FA Y L (X)X onr| A

which is —¢?/T times the exponent in the likelihood of the z(x)’s, x € 2.
Denote
(2'7) Dn(‘) = Dn(’cl’ Tt IC,) = ].—.[;:=1 Dn(xj)
" e'x , sinlkn .
= 2opam € = 14 W%%ﬁ exp [i3x;(n + 1)] .

We assume & is contained in a closed set in the interior of one of the orthants
of K = [—m, n]" (i.e., each component of & is bounded away from —=, 0, and
7). This assumption is included to avoid identifiability problems in the model
(2.2). Minimization of (2.6) with respect to a, b, and & gives

(2.8) A= 3@+ i) = LT 20)e
and & = (&, - - -, £,) such that
(2.9) LRy o) &) = max,, o Lk, -+, £,)
where
(2.10) I(r) = (—2;‘5 |32, e Z(K)eE
= ! - Jmp=—(n—1) e_i'lmc(mv cee,m,)

2y s
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is an r-dimensional periodogramand C(m,, - - -, m,) is the sample autocovariance
function of z(x) defined by

C(ml, ceey, mr)

1

=;; leeXml e Zxrexm, 2(Xyy v vy X)2(Xy + 1y, -0, X, M),
where X,, = {1, ---,n —m}form>0and X, = {1 —m, --., n} form < 0.
(See Priestly [14] for the case r = 2.) We shall use I,%(x) to denote the
periodogram with z(x) replaced by u(x).

We shall have occasion to consider some partial derivatives of D,(). In
particular,

oD, (x : iex
(2.11) \_ﬂQ = T e Xy
J
< w4 O(w) j=1 -,
az‘Dn £ n i’ X
(2.12) EJ—;;;) = | D a1 XX €|
< %nr+2 + O(n’“) , ] =k,
<t oy,  jk, k=101,
and
aaDn £ n te’X
W = | D=t X X X0
(2.13) < Int 4 O(nmt?), j=k=1,
é%nr+3+0(nr+2), j=k;&l,
é _é_nr+3 _|_ O(nr+2) s

jik’ jil’ kil, j,k,l-:l,"',r~

Much tighter bounds are possible in (2.11)~(2.13) if each component of & is
bounded away from 0 and every integer multiple of 2z. Then (2.11) is O(n),
(2.12) is O(n*), and (2.13) is O(n°).

The following lemma will be used to establish the consistency of £. Itisa
straightforward generalization of a result in Walker [18] for r = 1.

LEMMA 2.1.
Emax, . I,y -+, £,) = O(nt") .

The next two lemmas give further properties of the periodogram of the u(x)
process.

LEMMA 2.2.

EmaxzeK __1_“ IZ: ey gp=1 ei‘,xxju(x)lz = O(ni"‘+2) ’ ] = 1, HRIP A
(2mn)" Lot
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LEMMA 2.3.
1
(2mn)
In Section 3 we shall show that the maximum likelihood estimators 4 and
&k are consistent and have a joint limiting normal distribution when appropri-
ately normalized. The example when r = 3 mentioned in Section 1 is further
discussed in Section 4. In Section 5 we treat M > 1 [see (1.2)].

3. Properties of the maximum likelihood estimators. We follow techniques
employed by Walker [19] for the case r = 1. In the following discussion 4,
and &, = (K, - - -, £,0), When used, will distinguish the true values of 4 and
&, respectively. (When there is no ambiguity the subscript 0 will not be used.)
Each component of «, is assumed to be bounded awa)? from —=z, 0, and =, and
furthermore x,e K = [—m, #]". We shall denote this set of admissible values

of &, by K’.

Emax,, . [ X € XX X u(X) P = O™, jik=1,...,r.

THEOREM 3.1. Let k = (&, - - -, £,) be defined by (2.9). Then
3.1 B; — £ = 0,(n7"), j=1,.-r,
as n— oco.

Proor. By (2.10)
(3:2)  QanyL(k) = |13, . ey € (o700 4 u(x))[?
= (2an)"L,*(k) + 2 {AD,(k — &) X%, ... o1 € A(X))
+ |AD, (6 — &)
When & = &, the real and imaginary parts of 32 . . _, e u(x) each have
varjance o’n"/(2T), and (3.2) is therefore |4,|*n*" + O,(n*"). That is,

2 4

(3.3) (5 1) = 142 + 0,n7¥).
n

From (3.2) and Lemma 2.1 we have

(3.4) max,. g |(27)"L,(k) — 17| Ao*|Dy(k — &o)[*

= 0,(n'") + O,(n*").
If ¢ is small and r is sufficiently large (depending on 9)
sinid \”
MaX|, o ion15,i=1,0r, cc & [ Da(® — k)| = <§n—1:t§>
z
(see Walker [19]), and by (3.4)

27\" I
’;1‘ maxlxj—xjolgn‘lﬁ,jzl,u-,r,xeK 'n(‘)

1 16 27
< nr|d 2<S’L> o(1
s Al (G2 o)

= |4,* (sm 30 )2"< in~'o )2' + op(l) .

1 in 1yp—1
10 sin $n~'0
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Then

. 27\"
P hmn—»w <7 maxlxj—-xjolgn—lb,j=l,-~,r,:eKIn(E)

1 15 27 . 2 r
= 14 (T320)" < 1 = plim,... () 1),
E n

and (3.1) follows because d can be chosen arbitrarily small.
Consistency of the estimator 4 given by (2.8) isa consequence of Theorem 3.1.

THEOREM 3.2.
P lim,,_,“, /f = A0 .
Proor. By (2.8) .

- A|<'A°'|D<x—~>—n*|+ 3 e

By the law of the mean
aD,(x)
0k; |,

J

3.5 D, (k — k) —n = 315, (R; — Kjp)

where £* = (x*,, - -+, k*,) = 0(k — k,)and 0 < § < 1. By(2.11)and Theorem
3.1 n~~ times (3.5) is o,(1). Finally, the result follows from Lemma 2.1.

The main result of this section is that the estimators (2.8)-(2.9) have a joint
limiting normal distribution when appropriately normalized. By the law of
the mean, with U, defined by (2.6),

"oU, ] otU, U, &, |
da oa’ oa db Oa ok g
) ob " | dadb  ob ob ok G
U, »U,  *U, U, Fo— ¥
L J“O”’O"O | 0a ok 0b ok LA I

where a*, b*, £* denotes a point on the line segment between the vectors
(ays by, k) and (4, b, £’). In fact, different values of a*, b*, k* are possible
for each row of the matrix in (3.6). Here dU,/dx denotes the r-component
vector with entries U, [0k;, 0*U, [0k the r X r matrix with entries 6*U,/ok; 0k,

etc.
First we note the joint limiting distribution of the left-hand side of (3.6),

after appropriate normalization. From (2.5) and (2.6)

3.7 aU, = — 2% ep=1 [COS KX Uy (X) 4 Sin £yX uy(X)] .
ao,bo,xo
The other derivatives are evaluated similarly. The covariance matrix of the

left-hand side of (3.6) is to terms of greatest order
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or 0 3b,nl,’
(3.8) 32”7 0 1 —lanl,’ |,
tbonl, —ianl, 4|4,'n*C,

wherel, = (1, ---, 1) isr x 1 and C, is r X r with }’s along the main diagonal
and 1’s elsewhere. By the Lindeberg condition the limiting distribution of
n~t times (3.7) is N(0, 0*/T), and the same result holds for dU,/db|
The limiting distribution as n — co of n~#~* times each variable oU, /o«
is N(0, 20 4,)*/T).

By the Lindeberg condition (Loéve, Section 21.2) applied to an arbitrary
linear combination the joint limiting distribution of

LRI

jlao,bo,lo

(3.9) < - aU, e a‘Un, b ou, )r
“oa ob 0K /agbgieg
is normal with mean vector 0 and covariance matrix 3¢*/T times
1 0 3b,1,’
(3.10) 2= 0 1 —%a,1,’

1b1, —3a,1, 4/4)|C,
Now we analyze the second-order partial derivatives appearing in (3.6).
First we note

*U, U *U
3.11 n — n — 1lpr s S n —
@.11) bt 2 9a ob
Next
Y "
(3.12) aalajz B s X3y SIN (£* — k)X
la*,b¥, s>

+ 1b,cos (k* — K,)’X 4 sin £¥'X u,(X) — COS £*'X uy(X)] .
By the law of the mean
(3.13) i Xn ....-1X;exXp [i(k* — £)'X]

_ D) .
= ok + 2iie (£ ) T

J
with &** = 6(x* — &) and 0 < 6 < 1. By Theorem 3.1 £,* — £, = 0,(n7").
Therefore (3.13) is iin"(n + 1) + o,(n"*'), where we have used (2.12). Thus
(3.12) is

9D, (K)

=1, r,
0k ; 0K, | jon J d

82Un — _‘]i_bon'r—lvl + oﬂ(nr+1)
00 0K ;| o o, o
+ 2n e X;[SIN £¥X 24,(X) — COS E¥X uy(X)] j=1,..,r.
Therefore, by Lemma 2.2
(3.14) plim,_ ot 20 — 1b,, J=1, e

0a 0K ;| gu v o+
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A similar analysis yields

U,

3.15 lim,_ . »"!
(3.15) plim, . n7 i

= —1a,, j=1, 1.

Other second-order partial derivatives in (3.6) include

U,
ok 2

J la* b e*

(3.16) = 3% o X [B(a%a, + b*b;) COS (K* — KX

—1(a*b, — ab*)sin (£* — £)'X
+ a*(cos £*'X u,(X) + sin £*'X uy(X))
+ b*(sin £*'x u,(X) — cos £¥'Xuy(x))], j=1,---,r.
The law of the mean yields ’
A A x;* exp [i(x* — &,)'X]

= a—D—"(?x-) + i (6 — £io)
ok ; 0

J

= —in(n+ 1)2n + 1) 4+ o,(n™), j=1,--,r,

where x** = 0(k* — &,), 0 < & < 1, by Theorem 3.1 and (2.13). Therefore
(3.16) is

9°D,(x)
0k ;* 0K | o

azU — * * r+2 7+2
n = 4(a*a, + b*b)n** 4 0, (n"*?)
asz a',b‘,"
+ 2 apm x}a*(cos £*'x u(X) + sin £*'X u,(X))
+ b*(sin £*'x u,(X) — €OS £*'X Uy(X))] , j=1,..-,r.

By Lemma 2.3 and Theorem 3.2
U,
ok?

J

(3.17) plim,  »n"?

The same steps as above show
0*U,
0k ; Ok,

TueOREM 3.3. Let z(X) = A exp (ix'X) + u(x), where k€ K', A = L(a + ib),
and the variables u(x) = u,(X) — iuy(X) are independently and normally distributed,
with u,(X) and u,(x) being independent and each having mean 0 and variance 30°|T.
If 4, b, and k are defined by (2.8) and (2.9), then as n— co (n*"(d — a), n¥"(b — b),
nt* (k& — &))" has a limiting normal distribution with mean vector 0 and covariance

=LA, j#+k, JEk=1,.-,r.

a*,b*, "

(3.18) plim,_ n""?

matrix
4|4 + 3rb? —3rab —6b1,’
20 g’
(319) —T—Z“ = —Z_fz_‘i—; —3rab 4|A|2 + 3ra® 6al,’ |,
l l —6b1, 6al, 121,
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where 1, = (1, ---, 1) is r X 1 and 1, is the identity matrix of order r.

Proor. We drop the subscript 0 from a,, b,, &, and 3, as in the statement
of the theorem. Denote the matrix appearing in (3.6) by
o v,
Uy Uz
where Uy is2 x 2, Uy = (Uy) is 2 X r, and U isr X r. By (3.11), (3.14),
(3.15), (3.17), and (3.18)
. —rUn* n—r—lUn*
3.20 hmn_ml: n 1 12:] =13,
( ) P e 3z

defined by the right-hand side of (3.3¥0). From (3.6) we obtain

i e s
Ik — k) 0y iUy 8812]

nir

L —ag,bg, g

The desired result follows from (3.20) and the fact that (3.9) has limiting dis-
tribution N(0, (3¢*/T)Z) as n— oco. Theorem 3.3 with r = 1 was originally
stated by Whittle [20] and was rigorously proved by Walker [19]. See also
Rao [15].

THEOREM 3.4. Let z(w;, X) = A(w;) exp {—ik(v,)’x} + u(w,, X), where & € K*,
A(w,) = 3[a(w;) + ib(w;)], and the variables u(w,, X) are normally distributed and
satisfy (2.3)and (2.4),j=1, ..., 3(T — 1). Let d(w;), b(w;), and k(w) be defined
by (2.8) and (2.9) with z(X) replaced by z(w;, X) and & replaced by k(w;) in the
corresponding expressions. Then the distributions of (4(w;), b(w,), &(w;)')’ are inde-
pendent, j=1, . .., 4T — 1), and as n— oo (n¥"[d(w;) — a(,)], nt"[b(w;) — b(v,)],
n Y k(w;) — &(w,)]') has a limiting normal distribution with mean vector 0 and
covariance matrix (20°/T)Z;~", where the latter is given by (3.19) with a, b, and A
replaced by a(w;), b(w;), and A(w;), respectively.

4. Planar array example. Recall the definition of a planar array of sensors
given in the Introduction. Conforming to the sampling design used in this
paper, the array consists of a square of n’ sensors located at the grid points
X = (%, X,, 0) for x;, x, = 1, ..., n. The process y(¢, X) is simultaneously ob-
served for ¢ = 1, ..., T at each sensor position. Suppose that the plane wave
is non-dispersive, M = 1 and the Fourier coefficients 4(w,) are zero for every
w; except for one frequency which we denote simply o, i.e., the wave is

s(t, X) = Aexp{io(t — ayx; — ax,)},
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where a, = (siny cos )/v, a, = (sinysin0)/v, 0 < y < n(y # 47), and 0 <
0 < 2n(0 + 4=, m, 3r), and A(w) = A. Such a wave is called monochromatic
and is characterized by its wavelength 2 = 2zv/w. In order to avoid spatial
aliasing it is assumed that the distance between adjacent sensors along the axes
of the planar array is at most 14.

Let £, £, denote the maximum likelihood estimators of the wavenumbers
Ky, Ky, given by (2.9), with r = 2 as the appropriate dimension for the planar
array. Since £ = oa, it follows that if £, > 0

4.1) 6 = arc tan (£,/£,)
is the maximum likelihood estimator of the azimuth 6. If £, <0, 6 =

arc tan (k,/£,) + =. By the delta method and Theorem 3.3 the large sample
mean square error of 6 is

E@ — 0y ~ (1 + £26,772k20, + £, ") E(R, — £,)?
(4.2) = (k' + &) E(R, — £,)°
1 32%°
nt 2mT|A|*sin?y ’

since E(£;, — k)’ = E(k, — K,)".

If the wave is not monochromatic, then 4 is computed for each w; where
A(w;) # 0 and an estimator of @ is a weighted average of these f(w,)’s.

Let us now discuss estimation of v when the angle y is known. The maximum
likelihood estimator of v is

wsiny
(B, + &)}
By the delta method and Theorem 3.3 the large sample mean square error
of ¥ is

(4.3) b=

(4.4) E(b — vy ~ g; sin=t 7 E(#, — )’

- 1 320%?
nt 2n*T|Af sin? y )

A planar array design using n* sensors can be prohibitively expensive. A
commonly used design consists of sensors located on the arms of a cross
(Barber[1]). To be more explicit, suppose that the array consists of 2z sensors,
where n sensors are located at the points x = (x,, 0,0)' for x, = +4, .- -, +1n,
and the remaining sensors are at the pointsx = (0, x,, 0)' forx, = +4, ---, +3n
(assuming n even). See Figure 2. The arm along the x,-axis is a linear array
in a one-dimensional Euclidean space, and similarly for the arm along the x,-
axis. The wave in the x, space is 4 exp [iw(t — a,x,)] and the wave in the x,
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FiG. 2. Cross array with sensors on coordinate axes.

space is A exp [iw(t — a,x,)]. The errors (¢t =1, ..., T) for each sensor are
independent and normal, with mean 0 and variance ¢°, and errors for different
sensors are independent.

Let £, and £, be the maximum likelihood estimators of ¥, = wa, and &, = wa,,
respectively. Since the two linear arrays have no common sensor, £, and £,
are independent. From Theorem 3.3, as n — oo n¥(£;, — &) has limiting dis-
tribution N(0, 60%/[T|A4}*]), and similarly for £,.

The maximum likelihood estimator of 6 is § = arc tan (&,/#,) if £, > 0, and
its large sample mean square error is, from (4.2) and Theorem 3.3,

1 32%?

E(f — 0 ~ nE@ — 0) ~ -0
n® 2mT|A|*sin® y

Clay and Hinich [4] used an ad hoc estimator for § which had the same
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properties as 4, given a cross array. Similarly the maximum likelihood esti-
mator of v is ¥ = w sin y/(£* 4 £,%)}, and its large sample mean square error
is Var (9) ~ nVar (4). Thus the number of sensors in a cross array is a factor
of 2/n times that of a square array, but the large sample variances are n times
as large.

5. Estimation for a sum of plane waves. In this section we treat the model
(1.2) when M > 1, generalizing the treatment by Walker [19] of r = 1. The
plane waves are of the form (1.3) and 4,,(0) =0, m = 1, ..., M, is assumed
to hold. Then

() Hopx) = DS e x)

= Lim=1 An(@;) exp [— ik, (0,)'X] + w(o;, X) ,
j=1 o HT = 1),
where for w; and X, u(w;, X) = u,(w;, X) — iu(w;, X) is a complex normal ran-
dom variable given by (2.3), and the moments of the u(w;, x)’s are given by
(2.4). As before, since the u(w;, X)’s are independent for different values of j,
we fix j and write

(5.2) 2(X) = Yimey Ape ™ + u(X) ,

where 4,, = }(a,, + ib,,) and the variables u(x) = u,(x) — iu,(x) are independent
and normal and u,(x) and u,(x) are independent, each having mean 0 and vari-
ance ¢’/T. Here wedenotex,, = (1, - -+, £,,)sm=1, ..., M. The maximum
likelihood estimators are those which minimize

(5-3) B gt |2(X) — DM A e %
= Zya0et2p=1 !Z(x)l2 - 2‘% Zfr{:l Am Zzl,n.,zr:l Z(x)e—i'm’x
4+ NE |47
We assume
(54) minj=1,...,, minls,n*,gM ]/cmj — ,cljl > 0 , K, e K! , m— 1, . M,

where K’ is defined at the beginning of Section 3. We denote the set of
(&, - - -, &y) satisfying (5.4) by K. We cannot minimize (5.3) in unrestricted
fashion. Let R, denote the set of (,, - - -, &) satisfying

(5.5) lim,_, min;_, .. min,_, ., ,"|k,; —£; =, ¥,ekK,
m — 1, ey, M.

We minimize (5.3) subject to (5.5), which is comparable to the condition of
Walker [19] when r = 1. If the minimization is not so restricted, estimators
of &, for more than one m will converge to the same value, when, in fact,
(&1, - -+, &,) € K™, i.e., the &,’s are separated.
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Minimization of (5.3) with respect to a,, b,,, £,,, m = 1, ..., M, then yields

A . P 1 A,
(5'6) Am = %(am + lbm) = n_’ Zzl""”’r=1 etrm "z(x) . m = 1, ey, M,

and £, = (£, + - +s £p,)s m = 1, - .., M, such that

(5'7) 21}::1 In(ém) = Sup(:lwth)eRn Z%=l In(‘m) 4
That is, we find the M greatest maxima of 7,(x) subject to the separation condi-
tion (5.5). In the following the subscript 0 will denote the true value of the

corresponding parameter. Thus we assume (&, - - -, £,,) € K™.
From (2.10) and (5.2)

(58)  (2eny D, I(x,) ‘

= Xim=1 IZ:I ,,,,, zp=1 e nu(x) + 31, Ay D, (x, — £)* .
When (&, - - -, &) € K™ and («,, - - -, £y) € R, only M of the M* differences
&, — k;, can have components which are O(n~'). We label the &,,’s so that the
differences &, — &,,, have components which can be O(n~?). Then from (5.8)
we obtain

Sup(:l,n-,:M)eRn |(2n.)'r Z%=l In(‘m) —nr 1’;{=1 |Am0|2|Dn(‘m - ‘m0)|2| = Op(nr) ’

which is the analogue of (3.4). Denote R, ; = R, N {(&y, - - -, £y): |y — Kpjol =
no,j=1,.--,r,m=1,..., M}. Thenifdissmalland nis large it follows
that

27\" sin 10\
Sup(tl,-“,:M)eRn’a <"nit> Z%:l Ifn(‘m) é Z%=l IAm0|2( 2 ) + op(l) .

1
10
Since

. 2m\"
(5:9) plim, o (Z) T L) = Dt [Anef

we obtain the generalization of Theorem 3.1 for M > 1,

(5.10) Bpi — Kpjo = 0,(n77), j=1L..r, m=1,.... M,

mj
asn— oco. However, it is still necessary to align the £,,’s and the &,,’s properly.
By the law of the mean
. ol (x
(k) = L(kw) + Tjor 22

J Em,

(iemj_,cmjo)’ m:l,---,M,

for an appropriate &,,*. From (2.11), Lemma 2.1, Lemma 2.2, (5.9), and
(5.10), we conclude

plim,__ 2zr/n)L,(k,) = |A.l*-
If the subscripts are arranged so that |4,,[* = - . - = |4,,[’, then the probability
tends to 1 as n — oo that I, (k) = ... = I,(k,). That is, if £,, determines the
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mth largest maximum of 7,(#), subject to (5.5), it corresponds to the mth largest
harmonic component in the estimation procedure.

The remaining results in Section 3 follow in similar fashion, with appropriate
generalization. The estimators (5.6) are consistent,

(5‘11) Plimn—ooo‘AAmzAmo’ m=1,"'3M~

For each m = 1, ..., M there is a set of equations of the form (3.6), with U,
defined by (5.3). These lead to the following generalization of Theorem 3.3.

THEOREM 5.1. Letz(x) = Y ¥_ A, exp(—ix,/'X) + u(x), where (k, - - -, K;) €
K™, A, = Xa,, + ib,), and the variables u(X) = u,(X) — iu,(X) are independently
and normally distributed, with u,(X) and-u,(X) being independent and each having
mean O and variance 30*|T. If 4,, b,,, k,, are defined by (5.6) and (5.7) then as
n—s oo (n¥(4, — a,), n*(b,, — b,), n¥"*\(k, — &,)) have independent limiting
normal distributions with mean vectors 0 and covariance matrices (26*/T)2,,7,
m=1, ..., M, where (26°|T)Z,,~" is defined by (3.19) with a, b, and A replaced
by a,, b, and A,, respectively.

The independence for different values of m is a consequence of the separation
conditions (5.4). Theorem 3.4 also generalizes in the same manner.

Acknowledgment. The authors wish to thank Professor C. S. Clay for his
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