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THE DETERMINATION OF LIKELIHOOD AND
THE TRANSFORMED REGRESSION MODEL

By D.A.S FRASER
University of Hawaii and University of Toronto

0. Survey and Summary. The traditional model of statistics is a class of
probability measures for a response variable. Under reasonable continuity this
can be given as a class C of probability density functions relative to an atom-
free measure. With a realized value of the response variable, the model C
gives the possible probabilities for that realized value—it gives the likelihood
function. The likelihood function can be accepted alone or in conjunction with
the distribution of possible likelihood functions.

In a variety of applications, the variation in a response variable can be traced
to a well-defined source having a known probability distribution. The model
then is not a class of probability measures but is a single probability measure
and a class of random variables. Under moderate conditions this can be given
as a probability density function and a class C, of transformations from the
variation space to the response space. And if the distribution for variation is not
completely known, the model becomes a class C, of probability density functions
and a class C, of transformations from the variation space to the response space.
With an observed response value, the component C, identifies a set, the set of
possible values for the realized variation. If C, is a transformation group, then
C, identifies a set—in a partition on the variation space. Standard probability
argument using C, then gives the probability of what has been “observed,” and
the conditional distribution of what has not been “observed”: it gives the
likelihood function from the identified set, and the conditional density within
the identified set. The likelihood function alone or with its distribution gives
the information concerning the parameter of C;; and for any assumed value of
that parameter the conditional density gives the information concerning possible
values for the realized variation, and accordingly gives the information con-
cerning the parameter of C,, it being what stands between the realized variation
and the observed response.

The probability of what is identified as having occurred—the likelihood
function—is a fundamental output of a model involving density functions. The
determination of this probability can however involve certain complexities as
soon as the class C, of random variables is no longer effectively a group.
Certainly the class C, identifies a set on the variation space. But in moderately
general cases the range of alternatives can be a partition on the variation space
depends on the element of C,. Thus an ‘event’ is identified but the range of
possible ‘events’ depends on the parameter of C,. For two kinds of generalized
model (C,, C,) this paper explores the determination of the probability of what
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LIKELIHOOD AND TRANSFORMED REGRESSION MODEL 899

is identified as having occurred—it explores the determination of the likelihood
function.

In Section 1 the notation and results are summarized for the special model
(C,» C;) with C, a transformation group. Two generalizations are examined in
Section 2: first, the class C, is a group but its application as a transformation
group has an additional parameter; second, the class C, is a class of expression
transformations L applied to a group of transformations G, i.e. C, = LG. These
two generalizations are not as distinct as they may at first appear but they are
quite distinct in contexts. The transformed regression model is the central
example.

Several formulas for volume changé in subspaces are recorded in Section 3
and used in Section 4 to make four determinations of likelihood for the
generalized model (C,, C,). These are applied to the transformed regression
model in Section 5 and compared by means of examples in Section 6.

The effects of initial variable on the likelihood functions is examined in
Section 7 and two compensating routes for analysis are proposed.

The class L of expression transformations is examined in Section 8 and shown
to be a group under mild consistency conditions. A corresponding invariant
likelihood is determined in Section 9, and a transit likelihood in Section 10;
the power-transformed regression model is examined in Section 11. In Section
12 the transit likelihood is shown to be the natural likelihood when the semi-
direct product LG is itself a group.

1. Introduction. For the traditional model of statistics in the continuous case,
let: 2’ be the space of values for the response Y, an open set in the cartesian
product R”; ® be the space of values for the quantity ¢ under investigation;
and C = {f(Y: ¢)dY: ¢ c @} be the class of probability distributions for Y
where f is continuous in its first argument and dY is Lebesgue measure.

For a realized value Y, the model C gives the possible probabilities for that
realized value: f(Y,: ¢)m with m unspecified positive. The model thus gives
L(Y,: «) = R*(Y,)f(Y,: +) where R*(+): 27 — {R*} is the constant map from
Z to the single image, the set of positive real numbers R* = (0, o).

As notation for the variation-response model in the continuous case, let Z/
be the space of values for the variation U and 27 be the space of values for the
response Y where 27 = %/ is an open set in R", C, = {p(U: p) dU: p € P} be
the class of probability distributions for U, and C, = {Y = 6U: 6 ¢ G} be the
class of random variables, a transformation group from % to 2’ where the
group G is an open set in R?. For regularity suppose ¥ = hgY and § = hg are
continuously differentiable re 4, g, Y, and suppose there is a continuously
differentiable map [+]: 2 = G such that [gY] = g[ Y] for all g, Y.

By omission, a variation-response model can generate a traditional model:

C={p0='Y: p)d0~'Y = p(0-Y: p)J (60~ Y)J,((Y)dY:0eG, pe P
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where J,(Y) is the Jacobian determinant J,([Y]: X) = |0[ Y]X/oX| with X =
[Y]Y.

With an observed response Y, the component C, determines the set {g='Y,:
g€ G} = {gY,: g € G} = GY, of possible value for the realized variation U,; the
identified set GY, is an element of the partition {GU: Ue %'} of Z into orbits
GU. The conditional distribution describing the realized variation U, can be
obtained directly by variable change and normalization,

9([U]: Dy, p)d[U] = k7(Dy, p)p(LU]D, : p)¥([UIDo)J~([U]4[U]
where D, = [Y,]7' Y,, and J(g) is the Jacobian determinant |dgh/dh| with h equal
to the identity i; for given p this distribution gives the information concerning
the value of the parameter ¢. The probability for the identified set GY, can be
obtained by division,
pU0)dU__ _ 4oy TV . dU
9([U]: Dy, p)d[U] Jx([U]Dy) d[U]
using a cross-orbit measure at U, or
KDy ) LX) _dY,
([ Yo]Do)  d[Yo]
using a cross-orbit measure at Y; the likelihood function for the identified set
is then

LI(D0: P) = R+(Do)k(Do’ ,0)
which can be examined alone or with its distribution to obtain the information

concerning p. For further details see Fraser (1968).
As an example consider the variation-response model for regression. Let

Y = (J» - - +» ya) be the vector of response observations, let w' = (u,, - - -, u,)
be the corresponding vector of variables for variation, let V' with r row vectors
v,/(u =1, -- -, r) be the basis matrix for the r-dimensional response-level space

V), and let IIf(u;: p) du be the distribution describing the variation. For
notation amenable to matrix multiplication, let

=) o= = Gd)

be matrix labels for the response y, the variation u, and the transformation with
regression coefficients g’ = (8,, - - -, 8,) and variation scaling ¢. The model
then is (C;, C,) where
C, = {1t p(u;: p)du: peP}, C,={Y=0U:BeR",oeR"}.
2. Two generalizations. As a first generalization let G be a group and suppose
its application as a transformation group G, from % to Z/(=%/) involves a

parameter . For an element 6 in G let 6, designate the corresponding trans-
formation in G,. The generalized model is then (C,, C,) where

C,={pU:p)dU:peP}, C,={Y=0U:0eG, rek}.
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As an example consider the regression model but supose now that the vectors
in the response level matrix depend on a parameter «. This could arise for
example if there was doubt as to the natural form of expression for an input
variable. For matrix notation let

r=() v=0) o=(p 0)
yl u/ ﬂl g
but note that Y and U as response and variation do rot depend on r whereas

0 as a transformation ¢, does depend on « as the matrix multiplication shows.
The generalized model is then (C,, C,) where

C, = {llp(u;: p)du:pe P}, C,={Y=0U:BeR",0eR, reK}.

As a second generalization suppose that the natural response can be described
by a variation-response model with ¢ in a group G, but that the recorded
response is some transformation 4 of the natural response. The model is then
(C,, C,) where

C,={pU:p)dU:peP}), C,={Y=20U:0cG,icl}.

As an example consider the regression model but suppose that the natural
response variable, which has the additive form in terms of input variables, is
some transform /(y, 1) = 27y of the given response variable. For matrix nota-

tion let
y v g o

The generalized model is then (C,, C,) where

C, = {llpu;: p)du: pe P}, C,={Y=2U:8cR",0eR", 2el}.

The second generalization can be treated formally as a special case of the
first generalization. Let

0, = A0i1, U* = U

and p(U*: p, 2) dU* be the distribution of U*. The second generalization is then
(C,, C;) where

C,={p(U*:p,2)dU*:pec P, icl}, C,={Y=0,U*:0€G, 2el};
note that a parameter of C, is also a parameter of C,. This alternate form
suppresses any explicit recognition of the natural response space, the space on

which the group G operates.
The two generalizations can be compounded giving (C,, C,) where

C,={p(U:p)dU:peP}, C,={Y=20U:0eG,ceckK,2eclL}
which can be abbreviated

C,={pU:)dU:2eh}, C={Y=20,U:0cG, icAh)
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where 2 now embraces the three non-group parameters p, £, 4 in the original
expressions.

3. Volume change in subspaces. Consider a Q-dimensional subspace .&”(M) of
RY when M is a basis matrix of row vectors. A point x in (M) can be
represented by b in terms of the basis M :x’ = b’ M. This maps x in (M)
into b in R?. Alternatively a point X in (M) can be represented by means of
the Q-dimensional linear form 1 = Mx; this maps x (here in ~°(M)) into 1 in
R?. Consider volume change under these two maps.

For the first map the formula dx = |M|, db = |[MM’|*db follows trivially if
N = Q. The last expression uses the inner product matrix MM’ for the basis
vectors; in terms of the inner producti matrix the formula is independent of the
embedding Euclidean space R"; hence

dx = |MM'|} db

where dx expresses Euclidean volume in & (M).

The second map can be related to the first: 1 = Mx = M(b' M) = MM'.
Hence X’ = b’ M = I'(MM’)~* M and it follows that I provides coordinates with
respect to the basis matrix (MM’)~* M. The formula for volume change is then

dx = |(MM")~* MM'(MM")~1}} dl
= |MM'|-} dl.

4. Four determinations of likelihood. Consider the generalized variation-
response model (C,, C,) as defined in Section 2:

C,={pU:)dU:2ed}, C,={Y=20,U:0eG,iecA}.

For given 4 this model reduces effectively to the standard variation-response
model in Section 1. An observed value Y on the given response space
determines the transformed response Y, = A~' Y on the natural response space;
and by the argument in Section 1 this identifies the orbit G,U = G, Y, of
possible values for the realized variation U. The conditional distribution
describing U is given by

9([U]: D;, Hd[U]
= k(D3 Hp([ULiD; : HJ5([ULs 2 D)7 ([U]d[ U],

where D; = [Y,]'Y,. For given 1 this distribution describes the realized U in
the equation Y; = 6,U and hence gives the information concerning the value
of 9.

Now consider the probability of what is identified as having occurred. The
observed response Y identifies the orbit G,U = G, Y, on the variation space or
equivalently identifies the pre-orbit 4G, U = 4G, Y, on the given response space.
Thus the observed Y is equivalent to the observation 1G, Y, on the function G,
defined on 7. The probability for the identified orbit can be obtained by
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division:

p(U:2)du = k(D,, ) ULy . _4au
9([U];: D;, Ad[U]; Jy([UL;: D;) d[U],
using a cross-orbit measure at U, or
Jo([Ya]) . dY;
Jv([Y3]:: D) d[Y)],

using a cross-orbit measure at Y,. Likelihood can then be obtained by separat-
ing the 1-dependence from the cross-orbit measure.

k(D,, %)

4.1) The volume differential Y, on the natural response space can be ex-
pressed in terms of dY on the given response space

0A71Y
dY, = |———|dY = |J(27': Y)|dY.
o= |2 4y = va vy

The volume differential d[Y,];, on the group G can be expressed in terms of
volume on the Q dimensional orbit at Y, and in terms of volume on the Q
dimensional pre-orbit at Y; these last two volumes will be defined if RY is given,
say, the Euclidean distance. In terms of vector differentials

dY = J7A: V) dY, = J7A7: Y)W(Y)d[ Y],

where
o[Y,],D
WY = __%[ZYIZ] 2
212

isan N x Q Jacobian matrix; hence by Section 3
dlY,)]; = (=) (7 (@ )W)t dY .
The quotient of volume at Y by Euclidean volume on the pre-orbit through Y

is Euclidean volume dv, in the orthogonal complement to the pre-orbit at Y.
Thus the probability for the event identified by Y is

T PR (LANE G Y)|
I Yala: Do) (-7 (2 N)W(Yy)[™
and it has orthogonal likelihood
= RAUDk(D;, HJo((V]) P2 V)|
Tv([Yali: Dy [(-=) (A s DY) W(Y))| ™

This is the marginal likelihood as used for the regression model (Fraser (1967))
and as obtained in general (Fraser (1968)).

V5

4.2) In some applications there may be natural sections to orbits on the
variation space, sections that are preserved under the group G,; a section might
join points having a given position in the conditional distributions. For con-
venience in formulas suppose that the base points D,(U) form such a section.
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Then [U], = constant describes a general section on %, [Y,], = constant
describes the corresponding section at Y, on the natural space, and [27' Y], =
constant describes the corresponding section at Y on the given space. This last
section can be described alternatively by orthogonality to the row vectors in
the O x N matrix

a[YI]X_a[YR]Z%_M YN(A-1:
oy T oy, oy (Y2712 X))

where

My(Y) =: —a[al;],]]

is a Q X N Jacobian matrix. Let v, describe Euclidean volume orthogonal to
the section:

dv, = |(M(Y)J(A": X)) (=-) | d[ V3], -
Then the probability for the event identified by Y is

K(D, 2) Jo([Y3]2) W Y)| )
FU T D) (M) )=y

where dv, = dY/dv, is volume in the section at Y. The corresponding section
likelihood is

= _RUDIKD;, e[ Yal) V(A )]
Tl Yala: D) [(My(Ya)J (4712 Y))(--)'|

This likelihood incorporates effects due to shearing when orbits on the natural
space are mapped to the pre-orbits on the given space. For the normal regres-
sion model this likelihood coincides with a conditional likelihood given a
sufficient statistic as developed by Sprott and Kalbfleisch.

(4.3) As in (4.2) suppose there are natural sections to orbits on the variation
space, sections that are preserved under the group G,. And in addition suppose
the application of G to the variation space does not involve 1:G; = G. For
notational convenience let the base points D,(U) form a natural section on Z/;
then other sections are given by [Y,] = constant. With no information con-
cerning U on its orbit GU in 7, replace the conditional distribution on the
orbit by a uniform distribution relative to the invariant differential: cdp[U] =
e ([U))d[U] = eJ" ([ Y,])d[ Y,]; this is feasible since the sections interrelate
the orbits. The probability differential at Y; is then

J[Y:) . 4%,
J(Y;]: D) d[Y;]

k(D,, 2) R (RARAR

and at Y is then
c|J(A1: Y) . dY

M A) G (0T Dy
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The corresponding fibre likelihood is
_ R DY(D, A A2 V)|
In([Y2]: Dy)
4.4) A fourth likelihood function can be constructed by customary likeli-

hood methods applied to the traditional model. The traditional model cor-
responding to (C,, G,) is

L3

_ ay .y @7 Y] D)) -1, .
C_{p(ﬁz V) .Y)|dY.0eG,zeA}

and the likelihood for Y'is .
gy o nIw@7NY3: DY) g0
RY(Y)p(6,71 Y, : )22 YA 1Y) .
PO, Iv([ Y3152 D) )

The profile likelihood for 4 is obtained by maximizing across 1 sections on the
likelihood domain:

where g, maximizes
p9D; : 2)Jy(9:D,) .

5. The transformed regression model. Consider the regression model as gener-
alized in two ways in Section 2:

C, = {lIp(u,: 2)du: 2e A}, C,={Y=20,U:BecR",0eR*, 2c A}

where
V V I0
n=(2) =) =(g.)
2 yzl o ‘qu

and y* = [(y : 2) = 27y for each response coordinate. For notation let b,(u),
s;(u), and d,(u) be the regression coefficients, residual length, and unit residual
for u on £ (V)); let

I 0 _ Vi .
[U1: = (b/(u) s(u)) - PO =LELTE= (d;(i;))’
and let
dy,’
dy,
Ja iy = —— = .
dy.t
dy,
For additional details such as the calculation of the Jacobian determinants J,
and J, see Fraser (1968). The likelihood functions of Section 4 require matrices
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W (Y) and My(Y):

Y, = D/(Y)) (28:;) ’

_ ay2 — ’ .
wi(Y) = m = D,'(Y);
<b1(Y1)> = (D(Y,)D,'(Y,))*Dy(Y,)Y;
s(y2)
b
1)

ay,’

My(Y) = = (D, D;)"'D; .

The four likelihood functions from Section 4 can now be calculated. For the
second and third likelihoods, orthogonal (least-squares) sections are used on
the natural response space. And for the third likelihood, V; = V. The four
likelihood functions are

LR KDLV iy
577,) 1D, ) D,
k(D;, 2) |J(A* 1 y)|

8,"""7(y,) 1D, D[ D, (27 y)Dy|E

L, =R+ k(Dz, 2) |J(Z‘1 : y)|

s™(¥,)
L, = R+ A 1Y)l sups ¢ T3 (30,00 + cdi = 7).
$;™(¥2)

For normal variation the normalizing constant k(D,, 2) is given by

k™(D;, 2) = A,_, [V, V|t = 4., |D; D]}

L, = R+

9

where 4, = 2x/1?T'(f/2) is the area of the unit sphere in R/. The four likeli-
hood functions are then

L =R+ @A~y ,
|D, D, s;"="7X(y,) |D; J=* (271 : y)Dy| 7
L, =R* (2" 1 y)| ,

|D,D;|7% s,»~""Yy,) |D,J*(A7 : y)D,|
L, = R+ (27" 1 )|
5"(¥2)

L e MATY)]
«= R $;"(Y2)

Consider now the regression model but with known scaling for the variation:

b

C,= {llf(u;: A)du: e A}, C,={Y=20,U: BeR", ic A}
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n=(y) =) 0=(e1)

and y* = I(y: 2) = 27y for each response coordinate. For notation let b,(u),
d,(u) be the regression coefficients and residual vector for y on (V)); let
0= () P00 ().
The required matrices are
WAY) = Ty, M) = (ViV) VI )
Four likelihood functions from Section 4 can now be calculated. For the

second and third likelihoods, orthogonal (least-squares) sections are used on the
natural response space. And for the third likelihood, ¥, = V. The four like-

lihood functions are

where

k(Dy, 2) [J(27 1 ¥)|
VIV
g MDDy
ViV [T (A y) vy

L, = R*k(D;, ) |[J(A7' 1Y) »

L, = R+ |J(A 1 y)| sup, [1IF f(Za,v,; + d7: 2).
For normal variation with variance ¢,2, the normalizing constant is given by

K(D;, B) = (V, V)4 (2rog)~ """ exp {—|d,*/20,%} .
The four likelihood functions are then
exp {—|d,205} V(A7 : )|
o " Vi ViV I A iy V[
L, =R* exp {—|d,*/20,%} |[J(A7" 1 y))| ,
o " [V VTV AT i y) V|
L, = R+ P {=1dil/200} JAT 2 )]
a.on—r

L= R SPA= 14203 VA )]

a,"

L, =Rt

L =R*

6. Comparisons by means of examples. Consider the likelihood functions of
Section 4 as they apply to a succession of examples that introduce progressively
some of the complexities of the general model in Section 2.

ExampLE 1. Consider the location model with normal variation having
variance g%,
Zu;?

2
20,

yeR}.

}du:aoeR““}, Cz={u=,al—|—u:q€RJr
0

C, = {(27:002)—"/2 exp { _
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For illustrative purposes here, the identifiable variation underlying the scaling
0, is not separated out. The likelihood functions are

_ el 2(y, — 9’
L, = R’rLexp{_M} .
a," 20,

Each likelihood is based on the response variable Z(y, — 7)* which is a?y* on
n — 1 df. The first three likelihoods are in fact the likelihood functions from
such a variable; the fourth likelihood has an additional factor ¢,~* and is not the
likelihood from Z(y; — 7)>. The maximum-likelihood estimate from L,, L,, L,
is the usual sample standard deviation; the maximum-likelihood estimate from
L, is the traditional embarrassment (Z(y;, — y)*/n)t. °

ExaMPLE 2. The essentials of Example 1 but with nonnormal variation:
— . . . N =t .reR
Co= {flu,: Nfwy: Hydu:2e A}, C,= {;Z e zeA}’
L1=L2=L3:Rff(ylil)
L= R fn: Hf(a,: 2)
where a, maximizes f(a: 2). The profile likelihood L, contains an extraneous
factor, the modal height of the density along the orbit.

ExampLE 3. Example 2 with the addition of an expression parameter

P —
Co={f(u,: Af(u, : 2)du: e A}; CZ:{$1‘::1+u:§21§}
2 — 2

where 1 indexes a bijective transformation from y* to y.

2
L =L,=R"f(y,': 4) (fil ,
341
dyt| |dy?
L. — R+ PN N s I Lo ¢ ,
o= RSO ||
) dy;? ldyz
L, =R* LW A R s B 2 A).
4 St 2) @, dy, Sfla; 2 2)

The likelihoods L,, L, are the likelihood from the response variable y,. The
likelihood L, has an extraneous factor measuring dilation along the orbit, and
L, has a further factor, the modal height of the density along the orbit.

ExampLE 4. Example 3 with a more complex expression parameter involving
shearing

P —
C, = {fluy: )f(uy: Ay du: 2e A}, CF&IZ’} e f;i‘f}
2 1 — 2

The expression transformation here is not covered by the diagonal Jacobian
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matrix in Section 5 but a simple generalization gives the needed formulas:

L = R* fips: 2|24

dy,
dy,’
L= R A —
T <W>
L= R* f(y: 1) ‘%lj : ‘%2: :
2 1y
L= R+f(y3:z)[% : %f(af:z).

The likelihood L, is the likelihood from the response variable y,. The remaining
likelihoods all have extraneous factors referring to within-orbit properties.

The four examples suggest that L, is the preferred likelihood for inference
concerning 4 : L, is the likelihood function for the observed orbit; the remaining
likelihoods have extraneous factors introducing irrelevant aspects of the observ-
ed response. '

The succession of examples, however, omits one major complexity that can
arise with the generalized model in Section 2—dependence of the pre-orbit
partition on the parameter 2. Some effects with this complexity are discussed
in the next section.

Without this complexity, L, is the correct and only likelihood for the
identified orbit. This can be seen analytically by noting that the tangent space
A(W)(Y))isindependent of 2. Typically the other likelihoods have additional
factors referring to within-orbit characteristics.

7. The pre-orbit partition with dependence on 1. Consider the more general
models that allow orientation of the pre-orbit to depend on the parameter 2.

The analysis in Section 4 uses the Euclidean distance for the response Y.
Now consider a new response X = h(Y) generated by a diffcomorphism #; let
K(Y) = 0Y/oX be the Jacobian of old with respect to new variable. The
analysis of X can be viewed as an analysis of ¥ but with the Euclidean distance
assigned locally to K~*(Y)dY. The change in likelihood formulas follows by
replacing J(47': Y) by J(47': Y)K(Y) and the new likelihood functions are

L(X) = (=)@ DW(X) |~ [K(Y) L(Y)
(==Y (KX D) W(Yy)[

Ly(x) = (ALY D)) p oy
[(M(Y2)J (27" V)K(Y)(--)'|*

Ly(X) = Ly(Y) ,

L(X)=L(Y).

Thus L, and L, are independent of the initiating variable for analysis. L, and

9
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L,, however, can depend on the initiating variable, can depend on the metric
used on the response space. In fact, L, can depend on the initiation variable
even when the pre-orbit partition is independent of 2. The implied ranking
L,L, L, L, in Section 6 must now be qualified with the adverse property
associated with L, and L,—the possible dependence on the choice of initiating
variable. Two simple routes seem open to accommodating L, in these new
circumstances.

The transformations 27! applied to the given response variable Y generate
the various possibilities ¥, = 271 for the natural response variable. Let r in
place of 2 be used to index these possible natural response variables. The model
Y = 29U for the given response, then becomes Y, = (z=?2)6U for the possible
natural response Y,; the transformations {1: 2e A} for Y become {r~'4:2¢ A}
for Y,. Let L(4:r) be the likelihood function L, for 2 calculated with Y, as
given variable.

As a first route consider the relative likelihood function L,(2: 7) defined on
A x A. Any r-section assesses other 2 values with respect to 2 = .

As a second route consider a practical modification of the preceding: from
an initial variable r, calculate the maximum likelihood value 4, from L,(1 : 7,);
from 7, = , calculate the maximum likelihood value 2, from L,(4: 7,); iterate;
assuming stability use the limiting likelihood form. The need for a relative
likelihood can be viewed as a sort of non-linearity and the relative likelihood
as a local linearization.

8. The expression transformations. Consider the expression transformation
used in the second generalization in Section 2:

Y] = I(Y, 2) =AY

where Y,, for some 2, is the natural response variable that has the standard
variation-response model. For the regression model the expression transforma-
tion was taken to operate coordinate by coordinate. Now for the general model
suppose the expression transformation operates coordinate by coordinate
Y,...,Y,onY.

For the regression model Box and Cox (1964) examined two kinds of ex-
pression transformation. The first is the power transformation given by

Iy, 2) =y A+0,

= lny A=0 N

where ' here designates the Aith power of y. The transformation maps (0, o
Yy g P y P

onto (0, o) for 2 = 0 and onto (— oo, oo) for 2 = 0. A modified form of the
power transformation

I(y, 2) = 27 — 1) 1#0
—Iny 1=0

has continuity at 2 = 0 but the range now depends strongly on 2 (the location-



LIKELIHOOD AND TRANSFORMED REGRESSION MODEL 911

scale adjustment can be absorbed by the regression parameter in the typical
analysis). The second transformation provides a location adjustment followed
by a power transformation:

Wy, 2) = (y + )" 4 #0
=In(y+ 1) 4 =0.
This transformation maps (—2,, o) onto (0, o) for 4, # 0 and onto (— oo, co)

for 4, = 0.

The context for the first kind of transformation might be: a range of pos-
sibilities exists for the natural variable and, whatever it is, the given variable
is some transformation of it. This gives primary status to the natural variable.

The context for the second kind of transformation might be: the preceding
relative to 2;; and the given variable is in doubt as to its zero point. The
additional argument here gives primary status to the given variable.

Now consider the second generalized model and suppose that it has expression
transformations 4 = {a} that are appropriate to the first kind of context. From
a given variable Y the class of possible natural response variables is
{a7'Y:ae 4}. But the given variable might equally have been a,a,™' Y where
a, is the actual transformation. The class of possible natural variables would
then be {a'a,a,"' Y : @ € A}. The equality of these classes gives A~ a, a,™' = 4™
and hence a,47'a,a,"! = a, A" for all «,. It follows that the transformations
{aa,' : a € A} form a group. And if the given space is relabelled so the identity
is in 4, then the transformations 4 form a group. Thus if the possible natural
variables are identified from any given variable then the class 4 is effectively a
group. As examples consider: the power transformations with 2 > 0; the power
transformations with 2 = 0.

Now suppose that the class 4 is enlarged to a class A as a consequence of
certain doubts concerning the given variable. Similar arguments then present
A as a union of left cosets of the group 4. As an example consider: the power-
location transformations with 2, # 0.

9. Invariant likelihood. Consider the second generalization (Section 2) of the
variation-response model. And suppose that the class 4 of expression trans-
formations 4 is group, that the group 4 operates coordinate by coordinate on
the natural response, and that 4 is exactly transitive on any coordinate variable.

The density function for the given response variable is given routinely in
terms of the volume generated from length for each component variable. A
density function for orbit, however, needs a volume measure in subspaces
unaligned with the coordinate axes. In Section 4 such a volume measure was
generated from the Euclidean inner product—in a sense because “it was there”
and not because it related in any natural way to the model. The arbitrariness
of this volume measure became apparent with the examination of change of
initiating variable in Section 7.

The group A4 is exactly transitive on each coordinate. For the ith coordinate
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an invariant length measure can be constructed as follows: let d; be a reference
value; let (Y, be the transformation (in 4) such that (¥,>d; = Y;; let J,({Y;>)
be ¢; [0 Y;>X/0X| with X = d; and c¢; constant; then dn,(Y;) = dY,/J,(KY;)) is
invariant. Now consider a transformation A near the identity and choose c; or
d; for each coordinate so that the effect of 1 on each coordinate is the same;
the invariant lengths are standardized. If the group has the same application
on each coordinate then the preceding standardization can be obtained by
having ¢, = 1 and d; = d.

Now suppose that at any point in R¥ volume in a subspace is generated from
the Euclidean inner product based on the invariant lengths dn; on each axis.
Then in the notation of Section 7, K¢Y) = dia J;({Y,>) where dia designates the
diagonal matrix constructed from the elements that follow it. Thus the change
to invariant length is equivalent to replacing J(27*:'Y) by J(27': Y) dia J,(( ;).
The resulting invariant likelihood is

Lx = _ RED)K(Dy, Ho([ X)) (A7 DT TKYD)
Iu([Ya] 2 Dy) (=) (dia (K YR)IH(27t: V) W(Xy))l

This invariant likelihood has the properties associated with L, in Section 6 and
in addition is independent of the choice of initiating variable. The likelihood
function is not affected by a common rescaling of the invariant lengths.

Consider briefly the generalization in which 4 is not necessarily a group. For
this suppose that 4 operates identically on each coordinate axis and is exactly
transitive. Let d be a reference point, let (Y;) be the transformation carrying
d into Y,, let J({Y;>) be |0( Y, >X/0X| with X = d, and let dn(Y,) = dY;/J(Y,}).
A change in d will typically change the length measure nonhomogeneously.
This length measure may, however, be a more appropriate length measure than
the original measure; and if 4 is a group then dn(Y;) will be the invariant length.
The formula for L;* can be applied with the present definition of J({¥;}) and
the resulting likelihood is an L, likelihood—presumably better than the original
L, likelihood, certainly better in the case of a group 4.

10. Transit likelihood. Consider the second generalization (Section 2) of the
variation-response model. And suppose, as in Section 9, that the class 4 of
expression transformations is a group, that the group 4 operates coordinate by
coordinate on the natural response, and that A4 is exactly transitive on any
coordinate variable.

Let dn(Y;) = dY,;/J,((Y;>) be the standardized invariant length for the ith
coordinate. And suppose that at any point in R" volume in a subspace is
generated from the Euclidean inner product based on the invariant lengths dn;.
Then the probability for the identified orbit is

k(Dy, )Jo([Y,]) [J(A71 2 Y)|TIT Jo(KY3p) 1 dns
Jy([Y3] : Dy)d[ Y]

The vector differential d[Y,] on the orbit can be related to the Euclidean
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differential on the orbit as derived from the invariant lengths dn;:
dn = dia=' J,( Y, 5)J A1 : VYW(Y)d[ Y] .

If the corresponding Euclidean volume element is used on the orbit, then the
probability element for orbit is based on Euclidean volume orthogonal to the
orbit and the likelihood L,* of Section 9 is obtained.

Now suppose the Euclidean differential on the orbit is projected onto the
orthogonal complement to the A-orbit. Let dn now refer to the projected
differential; it can be calculated directly.

The tangent vector to the A-orbit is 1 = (1, - .-, 1)’ in terms of the standard-
ized invariant lengths dn;. The projection into the orthogonal complement of
1 is obtained by P = I — n~'11’; the matrix P replaces a column vector by its
deviation vector (deviations from the mean). The new dn in the orthogonal
complement to the 2-orbit is then

dn = Pdia~' J,(KY,)J(A71: Y)W(Y)d[Y,] ,
and the corresponding volume element is
jdn| = |(--)(P dia= J(( ¥:))J (27 s Y)W(X)| |d[ Y]] -
The probability for the identified orbit is then

k(Dy, ([ 1)) [J7HA71 2 Y)| [T JiK X)) v,
([ X3]:Dy) [(--)'(P dia~" J,(KX;3)J (27 V) W(Xy))| 7

where dv, measures Euclidean invariant volume along (transit) the A-orbit and
orthogonal to the orbit and 2-orbit. The resulting transit likelihood is

Lo RIDIKD, YY) UG DITLIKYY)
T[] : Dy (- (P dia= J{Y )T - )WY )

11. Examples; the power-transformed regression model. Consider the regression
model of Section 1 as generalized with the power transformations of Section 8:

C={I:f(:)du:2eh}, C={(Y=2U:BecR,oecR" ich)

n=(y) v=() 2=(g0)
yxl “I ﬁl g
and [(y: 2) = 27'y = y*(2 # 0) is the power transformation.!

The orthogonal likelihood L, for 1 is

k(Dx, X)Zn—r—l H yil—l
5"~ 7X(y,) |D; dia (p2~*)Dy/| ¢’

where

L =Rt

1 As a reasonable approximation assume that the regression variation-response model is ap-
plicable on the positive axis.
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which for the normal case becomes

1%—1‘—1 Hyil—l

L =Rt .
1 s*=7-\(y,) |D, dia (y;**)D,'|-*

Now consider the application of the power transformation group on R*:
Qy=yt=et,  (-ly=y.
The transformation (y» = (—1In y) carries e into y,
(—lny)e=e™ =y;
and the change in length under a transformation is

dAy _ _ -1
dy 7 '
Hence
J(=Iny) = [lny| - ™= = |Iny| - yle,

dy
dn(y) = e ;
ylny|
the constant e corresponds to a change in reference point and can accordingly
be omitted.

The invariant likelihood for 2 is then

L* = R+ k(D;, 2) T17 yi* [In y*| ,
s"7T7Uy,) |1D; dia™* (pif [In y ) Dy

which for the normal case becomes

L* = R* 11z yi* [In y:| .
s""7U(y,) |D; dia”® (p [In p D’

The transit likelihood for 2 is

Lt =R K(D,, 2) I3 yi* [1n y /|
s""7Y(y,) |(--)' (P dia~! y* |In p,A| D,)|~*

which for the normal case becomes

L =R+ Iz yi ln pi
Sn—r—l(yl) |(_ _)’(P dia_lyiz |1n yill D/II)I_i

As a final example consider the “other side” of the Example 1 in Section 6.
Consider the model with normal variation and the expression transformations
(4) which relocate,

C = {2n) " exp{—$Zuldu}, C,={y = (You: s R*, 1e R},

where (1)y =y + 41; thus 1 is the location parameter for the given response.
For notation, see Section 5 with r = 0.
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The orthogonal likelihood is the invariant likelihood:

A
L =L* =Rt n
' ' s"7Ny,) [dy 4y
1 1
+_ T R+
S - )
= + 1 >
) n(}—, — 2)2)&»—1)/2
< + (n—1s}

this is not the likelihood functioq associated with the ordinary z-test for
location.
The transit likelihood is
A
t — R+ n
‘ SNy, |d;' Pdy|
1
5" Y2 Iy — FL)/s(y)I™!
R ILCEY) Sl
F@Hrgm—1) (n— 1)s,?

and this is the likelihood function associated with the ordinary ¢-test.

— +

12. Transit likelihood within a variation-response model. The determination of
likelihood has been examined under progressive increases in the complexity of
the statistical model. The most developed determination is the transit likeli-
hood of Section 10. Now consider this transit likelihood within a variation-
response model—for the case where the variation-response model plus expres-
sion transformations is in fact a larger variation-response model.

For this consider

C,={pw)dU}, C,={Y=120U:0€eG, ¢ H}

where G, H are transformation groups and where semi direct product K = HG
is a transformation group. And in particular consider the information available
concerning A within this variation-response model and how it compares with
the transit likelihood treating H as expression transformations applied to the
variation-response model involving G.

Let Y be the observed response value. For simplicity of notation take the
reference point at Y and consider coordinates for the concealed variation in
terms of group elements from K, H, G: U= kY = ghY where k in K is factored
as gh with g in G and A in H. The equation Y = A0U then becomes i = 20gh
which factorsas A = 4~*and g = 6-1.

Now consider the distribution p(U) dU on and near the orbit KY. Let dO
be volume orthogonal to KY at Y and let p* be the corresponding density for
orbit KU. Let dp,(h) be the left invariant differential on the group H and p(h)
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be the conditional density for orbit Gh within K. Let dy,(g) be the left invariant
differential on the group G and p(g : k) be the conditional density along the
orbit Gh. The distribution of U is then

p*dOp(h) dp,(h)p(g : h) dps(9) -
The variable & contains the information concerning 4; in fact, h = 2~'. The

identified distribution for h is p(h)du,(h). The corresponding distribution
describing 2 is
P dpy(27 .
The likelihood function for A from the distribution p(h) duy,(h) is obtained

from the transformation A. Let w = Ah; then the distribution of W is
P(A* W) dpy(w) which at @ = i gives the direct likelihood
R* p(27) .

Now consider the transit likelihood function. For this suppose that H
operates exactly transitively on individual coordinates of U, or on pairs, or on
triplets, - - .. Let Euclidean coordinates be given at the identity in H. And let
dU be the standardized invariant differential vector induced by H applied com-
ponentwise to the Euclidean differential at the identity. Length and angle based
on dU are then invariant under H. But points on an orbit HU (or KU) remain
on that orbit under H. It follows that orthogonality to KU is preserved under
H; that dO measures volume orthogonal to KY not just at Y but at all points
along HY; that dp,(h) which is H-invariant is just a multiple ¢ of the corres-
ponding Euclidean differential. It follows that the probability element underly-
ing transit likelihood is

P*dO p(ii) dpey(37i)
and the corresponding transit likelihood is
R* p(277) .
Thus the reflected density function for 2 (include an arbitrary multiplying

constant), the direct likelihood function for 4, and the transit likelihood func-
tion for 2 are identical.
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