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LOCALLY MOST POWERFUL RANK TESTS FOR THE
TWO-SAMPLE PROBLEM WITH CENSORED DATA!

By RICHARD A. JoHNsON AND K. G. MEHROTRA
University of Wisconsin

1. Introduction. Suppose that two samples of size m and =, respectively, are
placed on life test. Here the observations are the time to failure, and they are
naturally ordered. In some statistical applications it may be necessary and can
be desirable, not to observe all of the failure times but to reach a decision on
the basis of a part of a sample. ¢

Incomplete data situations arise naturally in many fields. For example, they
occur in experiments where the measuring device may fail to record very large
or very small values. In medical experiments they can occur when it is not
possible to wait until all the observations are available. Further, in life tests
with costly electronic equipment, units which have not failed can be used in
the future.

In this paper, the procedure of Rao, Savage and Sobel (1960) has been further
studied for the case when only the smallest r failure times, in the combined
sample, are observed. From this procedure, we obtain I.m.p.r. tests for both
location and scale alternatives. The results can be extended directly to include
left censoring when the first r* observations are not available or when both
first r, and last r, observations are not available.

It is also shown how to obtain the asymptotic distribution of the test statistics
from the extension of the Chernoff-Savage theorem by Pyke and Shorack (1968)
or by the method of Dupa¢ and Héjek (1969).

We use the following notation throughout. Let X,, ..., X, be a random
sample of size m from a population with cumulative distribution function (cdf)
F(x) and Y,, - - -, Y, a random sample of size n from a population with cdf G(x).
The ordered observations in the combined sample of size N = m 4 n are denoted
by W, < W, < ... < W,. Only the first r (fixed) order statistics are observed
and these are identified as coming from the first or the second population by
the vector Z = (Z,, - - -, Z,) where Z, = 1 if the ith ordered observation, W,, is
from F(x) and Z, = 0 if W, is from G(x); i = 1,2, ..., r. Let us denote the
density function (pdf) corresponding to F(x) by f(x) and that corresponding to
G(x) by g(x). Further, set,

m, = 3i.,Z;,
so that m, denotes the random number of observations from the first sample

among the r observations. Setn, = r — m,. Then Rao, Savage and Sobel (1960)
have proved that
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(1.1) Pr(Z=2)=Pr[(Z, ---,Z,)= (2, -+, 2,)]
m! n!
S my -y
X AITi= f5i(wi)g'==i(w;) dw}
X {1 — Fw)" {1 — Gw,)}" "

As a special case, when F(x) = G(x), the above probability reduces to

a2 ree=0=( 1))

In the reference above, the likelihood ratio, which is ratio of (1.1) to (1.2), is
denoted by L(Z; F, G) and in the patticular case G(x) = F(x, 0) it is written as
L(Z, ) where 0 is some parameter. In the usual manner, the locally most
powerful rank (l.m.p.r.) test for ¢ > 0, small, rejects the null hypothesis
F(x) = G(x) for those Z = z for which L'(z, 0) is large. L'(z,0) denotes the
derivative of L(z, #) at § = 0.

In the following, we obtain some explicit results by specializing ¢ to either a
location or a scale parameter.

: S—oo<wl<--~<w,<oo

2. Expectation of the hazard rate at the r-th ordered observation. Let W, < -- - <
W, be an ordered sample from a population which has continuous cdf F(x) and
pdf f(x). Let E, denote the expectation when the underlying cdf is F(x). First,
we prove two lemmas which relate the hazard rate h(x) = f(x)/{1 — F(x)} and
xh(x) to the scores of the unobserved variables W,,,, - - -, W,. Let us denote

E(— ['(W)If(W))) by ay(j, f) and Ex(— 1 — W, f'(W))[f(W})) by ai()> f)-
LEmMA 2.1. If f(x) is absolutely continuous and {= | f'(x)| dx < co, then
— = —r ﬂL = Y j r .
W = nmnw) = N = 0| S = T r<N
ProoF. Denote the density of the jth ordered observation in a sample of size
N by g, v(x). Explicitly,
0550 = cuF @ (1 — FE)'— —oo < x < oo
where ¢;, = N!/{(j — 1)! (N — j)!}. Let J(j, N)denote E,[ fiW,)[{1 — F(W))}];
j=1,2,...,N —1. Then, forj< N — 1,
I N) = §2a [fw) {1 — Fw;)}1g;,5(w;) dw;
= ¢ {20 f)FR)f{1 — F(x)}"—7 7 dx .
Using integration by parts, J(j, N) can be written as
J(J, N) = el FP@)ff1 — Fx)} 7 %]
— €y 2 F(x)-[(J — DE)f ({1 — F}
— (N — j = DF= @) )l — Fp—i-
+ FRf'(afl — Fx)}=7"] dx.
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The first term in the above equation is zero because lim f{x) is zero as x — + oo
[see Hajek and Sidak (1967) pages 19-20]; F(x) -0 as x— —oco and 1 — F(x) -0
as x — oo. Now we rearrange the second term, and get

J(J,N) = —(J — 1)J(j, N) + (cjzy/cjﬂ,zv)(N —Jj—=1JG+ 1,N)
+ (in/Ciirn) §20 (= F1X)[f(X)}911,5(%) dx .

Since, (¢;y/¢;41,5) = J/(N — j), the above equation simplifies to the following
recurrence formula,

2.1 (N =G N)y=(N—=j—=1DJ(G+ 1L N) +a(j+ L. f)
which holds for any j=1,2, .-, N 1.
Applying (2.1) successively for j=r,r+ 1, ..., N —1 we get the desired result.

The following lemma gives a similar result for xk(x), x = W,, which appears
below in the test statistic for a scale shift.

Lemma 2.2. If f is absolutely continuous and §>., |xf"(x)| dx < oo, then

|74 .
N — NE I = N = nE(W, L ) = Biantg). 1<
Proor. The proof is similar to that of Lemma 2.1 and integration by parts
yields the same formula.

3. Locally most powerful rank tests: censored case. The results of the previous
section yield the test statistics for the .m.p.r. tests. Consider first the location
parameter model.

THEOREM 3.1. If §= | f'(¥)| dx < oo, then the test with critical region

(B1) 87 =g D (1 = Zay(i, f) + (n = n){(N — N7 Diaan( )} 2 &

is the l.m.p.r. test for testing G(x) = F(x) against the alternative G(x) = F(x — 0),
6 > 0, on the basis of the r smallest observations.

PrOOF. As mentioned in Rao, Savage and Sobel (1960), l.m.p.r. test is of the
form L'(z, 0) = k. In order to evaluate L'(z, 0), it suffices to substitute G(x) =
F(x — 6) in(1.1) and differentiate it with respect to ¢ because (1.2) is independent
of . Moreover, the differentiation can be performed under the integral sign
in the expression for L(z, §) when G(x) = F(x — 0) since (=, |f'(x)|dx < oo.
We obtain

L(2,0) = [NY(N — D18+ §wcupencoreal TTics fORIL — FOv)}¥" d]
% |:Z'r — - Zi)f,(wi) +(n—n,) Sw.) i|

Q) {1 — Fw,)}
R LAY o

Using Lemma 2.1 and writing
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£ - L0 = atip)

in the above expression, we obtain

L'(z,0) = B (1 — z)ay(i, f) + (n — m)[(N — 17" X ay(is f)]

and the theorem is proved.
A similar result holds for the scale parameter case.

THEOREM 3.2. If §=, |xf'(x)| dx < oo, then the test with critical region

(3-2) Sivr =der =1 (1 - Zi)auv(l’ f) + (n - n,)[(N - r)_1 ;Y:r+) alN(J’ f)] = k

is the l.m.p.r. test for testing G(x) = F(x) against the alternative G(x) = F(x/0),
6 > 1, on the basis of the r smallest observations.

The proof is similar to that of Theorem 3.1. and therefore is omitted.

It is interesting to note how the hazard rate (W) (W, h(W,)) in the scale
model appears in the I.m.p.r. test for the censored case. A heuristic interpreta-
tion is that information contained in the functions { f"(W,)/f(W,)}'si=r+1,- - -,
N, and which are unknown in the censored case, is represented through A(W,) =
f(W)H{1 — F(W,)}, at least as far as expectation. This interpretation is also
supported by Lemmas 2.1 and 2.2. The relationship between the expected
hazard rate at the rth largest observation and a,(i, f)’s i=r + 1, ---, N, has
not been obtained previously. In Section 5, we compare our method of obtain-
ing the statistics with other methods leading to the same answer.

From Lemmas 2.1 and 2.2, we note that the .m.p.r. test for censored data
averages the weights for the censored portion. This is exactly what is shown
in [5] for the asymptotically most powerful test.

Finally, we remark that the assumptions § |xf’(x)| dx < oo in Theorem 3.1
and Theorem 3.2, respectively, are the usual conditions for obtaining I.m.p.r.
tests. They imply that the scores sum to zero and also control the tails of f(x).
(See Hajek and Sidak (1967) I 2.4 and 1I 4.3.)

4. Invariance considerations and unbiasedness. In this section, we consider the
more general problem of testing H,: F = G against the alternative K:Y is
stochastically larger than X. The problem is invariant under the class of con-
tinuous and strictly increasing transformations with the maximal invariant
consisting of the complete set of ranks. However, in terms of the observable

quantities (W,, W,, ---, W,)and Z = (Z,, - - -, Z,), it is clear that Z is the ob-
servable maximal invariant. Further, consider the representation (fy(V,), - -,
foVa)s [iVmir)s == +5 fi(Vmin)) of the sample (X, ---, X,,, ¥, ---, ¥,) where

the V, are 1ndependent uniform random variables and f,(v) = f,(v). Any set of
v’s for which [W, < w,, i < r] also satisfies the same inequalities for order
statistics based on f(V;) i < m + n. Therefore

4.1) P,(Wiswy, -, W, sw)zP (W, sw, -, W, <w,)
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with strict inequality for some (w,, - - -, w,) .

Note that the l.m.p.r. tests derived above were obtained by finding the dis-
tribution of the observable maximal invariant Z under local alternatives. The
test statistics depend on Z through m, = 3} (1 — Z;) and 37 (1 — Z))a,(i, f)-

The next result on the unbiasedness of the rank tests is slightly more general
than the I.m.p.r. tests for scale or location alternatives considered above since
in those cases the scores are ordered.

THEOREM 4.1. If the scores satisfy ay(1) < --- < ay(N), then the test which
rejects Hy: F = G when

Zi(l = Zyay(i) + (n = n)I[(N — N7 Eiaay(@)] = k
is unbiased against alternatives where Y is stochastically larger than X.

Proor. Consider the whole, though unobservable, sample X, - -, X,,, ¥;,- -+,
Y,. The result follows an application of Lemma 2, page 187, Lehmann (1959).

5. Comparison with other methods. The statistics S¥ and S¥ defined by (3.1)
and (3.2) respectively, have been considered by Lochner (1968). He gives the
following justification. A nonparametric test corresponding to the uncensored
case is based on the statistic

-1 Sy = Ll (1 = Z)ay(i)

where the a,(i)’s are some weights associated with ranks i, i=1,2, ..., N. In
the censored situation the actual observations W,,,, --., W, are unknown;
however, the associated weights ay(i), i=r 41, -.-, N, are known and can
be used to obtain the nonparametric statistics. Even then we do not know
Z. .1 -+ Zy. To circumvent this problem, Lochner (1968) suggested that the
Z,i=r+1,...,N, be replaced by their conditional expected values under
H,: F = G. Specifically, (1 — Z;) is replaced by

J— n - nr

E[(1 —2Z)|z, ---, 2z, .
(1= 2Z)|2 -0 2] =T

Therefore, one obtains the statistic S¥ and S¥ in the location and scale case.
Clearly, one cannot deduce any optimal property from this development. The
special case of S¥, when the weights a,,(i, f) correspond to the exponential
distribution, has also been considered by Basu (1968). He justifies its use by a
statement that the performance of Savage’s test is very good for the uncensored
case.

It should be pointed out that the test statistic S, proposed by Basu (1968)
differs only by an additive constant from the test statistic in Corollary 3.4 of
Rao-Savage-Sobel (1960). Hence the claim about the two tests being comparable
made by Basu at the end of his Section 6, based on Table VI, holds exactly for
all sample sizes.

The asymptotic versions of the l.m.p.r. test statistics have been obtained by
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Gastwirth (1965). It is inherent in his condition (b) on page 1245 that, as-
ymptotically, censoring at the rth largest observation is the same as truncating
at the pth percentile, p = lim r/N. By maximizing the limiting Pitman efficiency,
Gastwirth obtains the asymptotic version of the weight function for the censored
case from that of the asymptotically most powerful rank test based on the com-
plete sample.

One special case of S,”, when the underlying distribution F(x) is normal, was
considered by Rao-Savage Sobel (1960). However, they failed to express the
last term, which we write as E, f(W,)/{1 — F(W,)}, in a suitable form and only
remarked that this function should be tabulated. Since E,f(W,)/{1 — F(W,)}
was not recognized as the average of the last (N — r) weights, the distribution
of the L.m.p.r. test could not be studied (see Corollary 3.3 and Section 4 of
Rao-Savage-Sobel (1960)). The particular case of S}, with Savage scores was
obtained by Rao-Savage-Sobel (1960) using the Lehmann alternative.

Thus, as mentioned earlier, the statistics obtained here as having the property
of being locally most powerful rank test have been studied by Basu (1968) and
Lochner (1968). By proving that these tests are l.m.p.r. tests, we have further
justified the use of these statistics.

Finally, from an asymptotic point of view, Doksum (1967), has obtained some
optimality results for the Savage and Savage-Gastwirth tests.

6. Asymptotic distribution. In this section, we use the notation L,; to denote
the score for the ith ordered observation. The asymptotic distribution under
local alternatives is given below. The null case follows as a special case. It is
known from Gastwirth (1965) that asymptotic null distribution is normal if the
score functions are generated from the limit weight function. The l.m.p.r. test
statistic may be expressed as

m — m
mTy = 31, Z;Ly; + N z o Ly

which has the alternative representation

6.1) mTy = YV, Z, Ly,
where
(6.2) Ly, = Ly, i=1,2, ., r;
:NL_rz;.LmLNj i=r4+1,...,N.
Define
L,(u) =Ly, for (i— 1)/N<u<IilN.

If the limit L(u) = lim,_. Ly(4) exists, then, clearly, lim, . Ly(u) = L,(»)
where
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6.3) L) = L(x) 0<u<p
= 1 §? L(u) du p<u<l
I—p
and
6.4) Ly(u) = Ly, for (i— 1))N<ugilN.

Note that the asymptotically most power test employs the limiting score L,
from the l.m.p.r. test. As previously defined, p = lim,_. 5. However, for
convenience, we will assume that

r=pN, if pN is an integer
=[pN]+1; otherwise.

It was observed earlier that when L, is an exponential score, the statistic T, is
the generalized Savage statistic considered by Rao-Savage-Sobel (1960) and Basu
(1968). To obtain the asymptotic distribution of the generalized Savage-statistic
under local alternatives Basu (1968) appealed to Chernoff and Savage (1958).

The conditions for the Chernoff and Savage theorem are stated below with a
slightly stronger sufficient condition as (6.5ii) (see their Theorem 2).

(6.5) CONDITIONS.

(i) lim,_, Jy(u) = J(u) exists for 0 < u < 1,J(u) is not a constant and
[J(w)| < k[u(l — uw)]"#** some 6 < 0 andsome k.

(i) N* §} [Jy() — J@)| du = o(1)

(iii) lim,_, N=¥J, (1) =0

(@iv) Ia;i‘ < k(A — w)]i4 fori=1,2;0 < 0 and some k.
u’b

The condition (6.5) (iv) was relaxed by Govindarajulu, LeCam and Raghav-
achari (1965). They proved the theorem without any condition on J''(u) and
only assumed that J(u) is absolutely continuous. Since the limiting weight func-
tion L (u) usually has a jump discontinuity at the point p, the conditions of this
extended version of the Chernoff-Savage Theorem are not satisfied. The reference
by Basu (1958), page 1594, does not provide a proof.

Recently, Pyke and Shorack (1968) (see Proposition 5.1, Corollary 5.1 and
the discussion on page 769) proved the Chernoff and Savage theorem with con-
dition (6.5iv) replaced by (6.6) defined below:

J(u) is a nonconstant function of bounded variation on (¢, 1 — ¢) for all ¢ > 0
with

(6.6) VS @) < Ku(l — w73, U+ a
where J = J, + J, and J, is a saltus function taking only a finite number of
jumps and J, has a continuous derivative J.’ on the intervals (0, a,), - - -, (0, a,).

Thus, as remarked by Pyke and Shorack, the statement of the Chernoff and
Savage Theorem holds even if J(u) fails to satisfy condition (iv) at a finite
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number of points. This would cover L.m.p.r. tests which are of the form (6.3).

Alternatively, consider the case of scores given by Ly; = E — [ f'(X;,)[f(X:)]
or L, = E[— | — X,,,f(X.;,))/f(X;,)] when the weights L,(u) and L(u), for the
uncensored case, satisfy the Chernoff-Savage conditions. Then, the censored
versions, L,” and L, clearly satisfy all the conditions except possibly (6.5ii).
However

N §3 Ly (4) — Ly(u)| du
< N* (2 |Ly"(u) — L,(w)| du + N* —P . St Lys — § L(w) |-

Since [Nt ¥, Ly, — N* §} Ly(u) du| < N* §}, |Ly(u) — L(u)|du, the assumption
(6.5ii) implies that the r.h.s. converges to zero. Thus, if the conditions hold
for the original scores, they also hold for the curtailed tests considered above.
According to Pyke and Shorack (1968), Theorem 5.1 and Proposition 5.1, the
satistics are asymptotically normal with mean ., given above and variance given
by their Equation (4.4). They impose a weak regularity condition on the under-
lying distributions Fand G by requiring that a function K,=F[(4,F+(1—4)G)7']
be differentiable. Summarizing the special case of Theorem 5.1 [10]

THEOREM 6.1. Let m/N = 4, + O(N~*) and r be defined as above. If the scores
for the uncensored case satisfy the Conditions (6.5) and the underlying distributions
are such that F[(A,F + (1 — 2,)G)™"] is differentiable on (0, 1), then the statistics T
of (6.1) satisfy

g[w] — 470, 1)
0o -
where py = § L,[(m/N)F + (n/N)G]dF and o* is given by (4.4) of [10].

A similar result may be obtained from Dupa¢ and Hajek (1969), Theorem 5.
If the uncensored scores satisfy §i[L,(¥) — L(u)]’ du — 0, then

§6 [Ly"(u) — Ly(w)]* du < §3[Ly(u) — L))" du

1 i],[(}l\,—_p) YV, Ly — §5 L(w) du:r

where the r.h.s converges to zero by assumption since
a7 Zr+l Ni — s; LN(u) du - S:) L(u) du

when L, converges to L mean square.

In the particular case of contiguous regression alternatives, Theorem 2.4,
Chapter 6, of Hajek and Siddk (1967) establishes asymptotic normality for a
wide range of approximate scores. Thus, under the scale and location alter-
natives considered in the earlier sections asymptotically, it is possible to use the
limit weight function as in Gastwirth (1965) or any other of a wide choice of
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approximative scores. Certainly, for large samples, it will usually be more con-
venient to score with the limit weight function since tables of scores will be

unavailable.

(1
[2]
3]
(4]
[5]
[6]
[7]
(8]
9

[10]
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REFERENCES

Basu, A. P. (1968). On a generalized Savage statistic with applications to life testing.
Ann. Math. Statist. 39 1591-1604.

CHERNOFF, H. and Savace, 1. R. (1958). Asymptotic normality and efficiency of certain
non-parametric test statistics. Ann. Math. Statist. 29 972-994.

DoxksuM, K. (1957). Asymptotically optimal statistics in some models with increasing
failure rate averages. Ann. Math. Statist. 38 1731-1739.

DurA¢, V. and HAEK, J. (1969). Asymptotic normality of simple linear rank statistics
under alternatives II. Ann. Math. Statist. 40 1992-2017.

GASTWIRTH, J. L. (1965). Asymptotically most powerful rank tests for the two sample
problem with censored data. Ann. Math. Statist. 36 1243-1246.

GOVINDARAJULU, Z., LECAM, L., and RAGHAVACHARI, M. (1969). Generalizations of
theorems of Chernoff and Savage on asymptotic normality of non-parametric test sta-
tistics. Proc. Fifth Berkeley Symp. Math. Statist. Prob. Univ. of California, 609-638.

HAjEek, J. and SVIDAK, Z. (1967). Theory of Rank Tests. Academic Press, New York.

LEHMANN, E. (1959). Testing Statistical Hypotheses. Wiley, New York.

LOCHNER, R. H. (1968). On some two sample problems in life testing. Ph. D. Dissertation,
University of Wisconsin, Madison.

PyYkE, R. SHORACK, G. R. (1968). Weak convergence of a two-sample empirical process
and a new approach to Chernoff and Savage theorems. Ann. Math. Statist. 39 549-
567.

Rao, U. V. R,, Savacg, L. R., and SoBeL, M. (1960). Contributions to the theory of rank
order statistics: The two sample censored case. Ann. Math. Statist. 31 415-426.



