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BOUNDS FOR STOPPED PARTIAL SUMS!

By HowaARrRD M. TAYLOR

Cornell University

Upper bounds are derived for the expected value of a stopped random
sum under each of four sets of assumptions concerning the summands, plus
under an additional set describing a related and similar problem. Too
complex to abstract, these assumptions in part, typically limit the first two
moments of the summands.

The bounds have an interpretation in a stock market timing problem
in which the random sum represents the sequence of daily prices of a stock
and the positive part of the sum reflects a potential profit a holder of an
option in the stock could realize were he to exercise.* In only one case are
the summands required to be independent and identically distributed, and
thus we obtain bounds on the expected profit that do not require the con-
troversial random walk model for stock prices. Of course, the bounds are
of interest for other reasons as well. For example, as a related result we
show that if (S») is a random walk for which the summands (X,) have a
negative mean, then E[Sr*]<co for all stopping times T if and only if
E[(X11)?] < co.

For the most part, techniques familiar to readers of Dubins and Savage
(How to Gamble if You Must, McGraw-Hill 1965) are used.

1. Introduction and summary. Our purpose is to derive upper bounds on the
expected value of the positive part of a stopped random sum, and this we do
under each of four sets of assumptions about the summands, plus under an
additional set describing a related and similar problem. In the course of it all,
we develop some new and extend some known techniques for verifying and
evaluating bounds on expectations in stochastic processes.

To be specific, let X}, X,, - - - be jointly distributed real-valued random vari-
ables on some probability space (Q, .97, P) having an associated expectation
operator E. Let S, = X, +..-+ X, forn > 1, S, = 0, and let T be a stopping
time relative to (S,). Let 4 be a fixed nonnegative constant.

For random variables X and Y, use the suggestive notation P, (or, where
typographically convenient, P(X)) for the probability distribution of X, and
Py (or P(X|Y)) for the conditional distribution of X given Y. Use E, and
E,, for the corresponding expectations. Write Var [X] for E, [(X — E,[X])].
For any set M of probability distributions, call (X,) an M-sequence if the
distributions P(X;) and P(X, | X;, ---, X,_,) are always in M.

Let

(1.1) f(x, 2, M) = sup E[e~*T(x + S,)*]
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734 HOWARD M. TAYLOR

where the supremum is over all M-sequences (X,) and stopping times T.
Finally, abbreviate f(x, 0, M) to f(x, M) and f{0, M) to fiM).

This paper derives bounds for f(x, 2, M) under a variety of M’s. Part of our
interest in these bounds derives from their interpretation in a stock market
timing problem formulated by Samuelson (1965) and Taylor (1967). The
random variables X;, X,, - -- represent the daily changes in the price of some
stock, and e~*7 §,* is the discounted return to the holder of a call option in the
stock were he to exercise the option (profitably) on day 7. This interpretation
spurred our interest in finding bounds under a variety of assumptions, including
in particular, assumptions that do not require the X,’s to be independent and
identically distributed, (which is theg controversial “random walk hypothesis”
for stock prices), and under the multiplicative assumptions of Result (v). It is
probably true that a fairly robust index for evaluating such options can be built
around the a in Var[X] + 2«aE,[X] < 2a*2, an expression that appears in
almost all our formulations.

Of course, as indicated by Ester Samuel (1967), there are other, less
pecuniary, reasons for pursuing such bounds, and there is at least one additional
reason for burdening ourselves with the factor e-?. We have {y e=2*+")(x +
S;)di = (x + Sp)/(a + T) so that, using Fubini’s Theorem for nonnegative
functions,

E[(x + Sp)f(a + T)] < § e f(x, 2, M) d2

whenever (X,) is an M-sequence. Thus our bounds may be used in problems
involving the stopping of forms related to S,/r. While it is doubtful that such
bounds are tight, the procedure may sometimes show an expected averaged
reward to be finite, often a crucial and difficult part in showing the existence

of optimal stopping times.

In addition to these specific bounds, however, we hope that an important
contribution of the paper will be to spur interest in the use of the gambling
theory (inequalities for stochastic processes) of Dubins and Savage (1965) to
obtain bounds in applied probability models.

To state our results more precisely, for a positive number «, set

(1.2) [fu(%) = aerl*! for x<a
=X for x> a.

Our results include:
(i) Let M, be the set of distributions P for which E,[e*!*] < e*. Then
(1.3) f(x, A, M,) < f(x) forall x.

Equality holds in (1.3) for all x if 2 = 0 or if (1 — x/a)/2 is an integer (Proposi-
tions 1 and 3).

(ii) As an illustrative application of (i), let M, be the set of normal distributions
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having a mean — 1 and a variance a* that together satisfy

(1.4) —2ap + 0 < 2a%1.
Then
(1.5) S(x, A, My) < fo(x) forall x.

Again, equality holds in (1.5) for all x if 2 =0 or if (1 — x/a)/2 is an integer
(Propositions 2 and 3).
For comparison with Result (iii), note that when 12 = 0, (1.4) reduces to

2ap = o’
If M contains exactly one distribution P, then (X,) is an M-sequence if and
only if Xi, X;, - - - are independent and identically distributed with the common

distribution P,.

(ili) Let m = P, be a fixed probability distribution for which —2aE,[X] =
Var [X]. Let M,, be the set whose only element is m. Then
(1.6) fM,) < a.

On the lower side,
sup,, f(x, M,,) = max {x, «/2}

(Lemma 3).

(iv) Let f be a nonnegative constant and let M, ;, be the set of distributions P,
for which ‘

(1.7) Var [X] 4+ 2aE,[X] < 2a%8 .
Then
(1.8) Sl M, ) < 78 + max (712, 5},

for all x, where y = ae™*/(1 — e~*). Of particular interest are 8 = 2, which com-
pares with (1.4) in (ii) and 8 = O which compares with (iii). Writing M,, for M, ,

(1.9) f(x, 4, M,) = max {7/2, x}

(1.10) f(x,M,) = ©

and, in fact,

(1.11) sup E[(x + S;)*; T < n] = max {x, na/2}

(Propositions 5, 6, and 7).

The difference between Results (iii) and (iv), that is, that the requirement of
independence would bound an otherwise infinite expected reward, surprised us.
This was especially unexpected since the bound in (ii) is achieved (in the limit)
by independent, identically distributed summands.

(v) Let § > 1 be fixed and let M, be the set of distributions P, for which X is
nonnegative and E,[X’] < e*. Suppose X, X,, --- is an M;-sequence, w = 0,
Wo=1land W,,, = W, X X,,, forn =0, 1, --.. Then for all stopping times
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T, E[e*"(w X W, — 1)*] < f(w) where

Jow) = [w(6 — D)6 — 1) for w <6/ — 1),
=w—1 for w>60/0 —1)

(Proposition 4).

In addition to these results, we point out that if X}, X;, --- are independent
and identically distributed and E[(X,*)*] = oo, then there exists a stopping time
T for which E[S,*] = oo, thus completing a theorem begun by Ester Samuel
(1967) (Our Theorem 1).

For the most part, our approach is to note that any function f that (a)
exceeds a “terminal reward” function r and (b) is expectation decreasing in the
sense that f(S,) = e E[f(S,1)| Xy, - -+, X,], will also exceed the expected
reward E[e~*"r(x 4 S,)] for any stopping time T. Several formulations of this
theorem have appeared in the literature; we were motivated by (Blackwell;
1954, 1964) and by (Dubins and Freedman; 1965). Our version (Lemma 1) is
restricted to nonnegative r but allows the possibility T = co. We include a finite
horizon formulation, used in obtaining (1.11).

2. The basic approach. With one exception, in this paper we will consider
only additive processes; that is, processes of the form §, = X, +---+ X,.
Nevertheless, it is possible and appears potentially useful to establish the basic
approach in a more general setting. To this end, let Z, Z,, . .- be real-valued
random variables on the probability space (2, .97, P). For each real z let M(z)
be a set of probability distributions and call (Z,) an M-sequence starting at z if
(@) Z, = z and (b) given Z,, - - -, Z,, the conditional distribution of Z,, is in
M(Z,). Thus, if (X,) is an M-sequence and we set M(x) = {P,, ,: Py € M}, then
(x + S,) is an M-sequence starting at x. Or, if we set M(w) = {P, ;: Py € M},
and W,=w, W, = wX, --- X, for n = 1, then (W,) is an M-sequence starting
at w.

Relative to (Z,), a stopping time T is a random variable taking values in
{0, 1, - -+, oo} for which the event {T' = n} is in the g-algebra generated by Z,,
Z, -, Z, (Ifina particular context, we fail to define a stopping time on part
of the sample space, then understand its value to be infinite on that part.) Letr
be a nonnegative Baire function, called the terminal reward, and let A be a non-
negative constant. Adopt the convention that E[e~*" /(Z,)] = §,<. € *"(Z;)dP
(which means that a reward of zero is associated with never stopping). Lemma
1 modifies (22) in Dubins and Freedman (1965) to allow extended integer-valued
stopping times provided the terminal reward is nonnegative, and to explicitly
include discounting. A result appropriate for bounded stopping times is also
included.

LemMA 1. Let (Z,) be an M-sequence starting at z, let r be a nonnegative
terminal reward, and T a stopping time. Set T(n) = min {T, n}.
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(@) If for some positive integer N, f,, - - -, fy are extended real-valued Baire
functions satisfying
2.1) fozr for n=0,...,N
and
(2.2) fori(Z') = e § fo(s)P,(ds) whenever P,ecM(z')
then
(2.3) Fol@) Z E[e T K(Zy)] -

(b) If f is an extended real-valued Baire function satisfying
(2.4) fzr
and
(2.5) f(Z) = e *§ f(s)P,(ds) whenever P,cM(z')
then
(2.6) f2) 2 E[er(Z,)] .

Proor. For (a), we may suppose f,(z) < oo, since otherwise the desired
conclusion is immediate.

Since (Z,) is an M-sequence starting at z, (2.2) implies that (e ** f_.(Z,))o<r<n
is a nonnegative supermartingale, closed on the right. A martingale systems
theorem (Doob, 1953) followed by (2.1) implies f(z) = E[e """ fy_1(Zr)] =
E[e """ r(Z, y,)] Which completes the proof of (a).

For (b) we may again suppose f(z) < co. Use (a), note that r = 0, and then
use monotone convergence to verify that

f(2) = E[e """ H(Zy )] Z Sren €7 H(Z) dP 1 E[e " H(Z,)]

as N increases indefinitely, which completes the proof of (b). [J

Lemma 1 provides a means of verifying that a given function is an upper
bound on expected rewards. To show that a given bound is a /east upper bound,
we need a procedure for evaluating the expected reward in a specified process
under a specified stopping rule. From Blackwell’s (1965), (1967) theory of
dynamic programming and from results in Markov stopping rule problems
(Dynkin, 1963; Taylor, 1968b) we anticipate that, under quite general condi-
tions, when bounds formed in the manner of Lemma 1 are approached, they
will be approached by a Markov process (Z,), stopped upon first hitting a
specified set. Thus we motivate Lemma 2, which, in this Markov case, ap-
proximately evaluates an expected return.

First, unfortunately, some notation. Let K be a (possibly sub-) Markov
transition kernel, so that K(x, B) is a Baire function in x for each linear Borel
set B, and a (possibly defective) probability measure on the Borel sets B for each
fixed x. For any linear Borel set 4, let /, be its indicator function and /,,, the
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indicator function of the complement of 4. Let J, (respectively, J,) be the
kernel corresponding to multiplication by 7, (respectively, 1,.); i.e., for a non-
negative Baire function f, J,f(x) = f(x) X I,(x) where, of course, J,f(x) =
§ J.(x, dy)f(y). Let K, (respectively, K, ) be the kernel J, K (respectively, J,, K).
Then K ,(x, dy) = K(x, dy) or 0, according as x € 4 or x ¢ 4, respectively.

LEMMA 2. Let Z,, Z,, - - - be a Markov process with stationary transition kernel
K. Let r = 0 be a terminal reward.

(a) Let ¢ be a nonnegative constant, N be a positive integer, f,, - - -, fy be non-
negative Baire functions, and I'(0), - - -, I'(N) be Borel sets. Suppose
(2.8) o= Jror+e
and
2.9) fo £ ot + Koy faos +¢ for n=1,---,N.

Let T be the first k, if any, for which Z,e (N — k). Then E[r(Z;)|Z, = z] =
fu(@) = (N + 1.

(b) Let ¢ be a nonnegative constant, f a nonnegative Baire function and I' a Borel
set. Suppose

(2.10) Jof < Jpr
and
(2.11) Jof < Koo f + Jre.

If Jy. f is bounded and K., is a contraction in the space B of bounded Baire functions
that vanish on I, then

f(2) £ E[NZ,)| Z, = 2] + ¢[(1 = B)
where T is the first n, if any, for which Z, e I and p < 1 is the modulus of K., in B.
Proor. In part (a), for any Borel set B

P[T=0 and Z,eB|Z,=z]=Jry (2 B),

P[T=1 and Z,eB|Z,=z] = KrwyJrw-n(% B) >
and in general,

P[T=n and Z,eB|Zy=z] = Koy -+ Kooyt Trinom (2 B) -

Thus

(2.12) E[NZ,)|Zy = *] =Jrn " + Kooy oo + -0
+ KF(N)'KF(N—l)' te KF(l)’JF(O)r .

We are given that f, < J;r 4 ¢ and using (2.9) it is easy to induct that

(2.13) So EIrmr + Kooy Irm-nr + -+
+ KF(n)'KF(n—l)’ tee KF(I)’JF(O)r + (n + l)e .
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Now compare the right-hand side in (2.12) with that in (2.13) to complete the
proof of (a).
Part (b) is similar. First, E[(Z,)|Z, = +] = Hpr where

Hp = Jr + Xpe (Kp)"Je
Next J..f added to both sides of (2.11) will give

F<If+Kef + Jne

which iterated, in the second term on the right, n times becomes

(2.14) [ = Zieo Ke)nf + (Ke)™ ' f + Lo (Kr)'rve

< 2 (Ko )M f + B fI] + (1 — B )e/(1 — B) .
Let n increase indefinitely.
Then

(2.15) FEHf+ (1= B).

Finally, from (2.10) H.f = H\.J.f < H.J.r = Hr. Together with (2.15) we
have the desired result, f < Hpr + ¢/(1 — B). 0

3. The exponential case. We proceed to the proof of Results (i), (ii) and (v).
Throughout, « is fixed, strictly positive, and 4 is fixed and nonnegative. Con-
tinue the definition

x) = ae*«! for x< «
o

=X for x> a.

PROPOSITION 1. Let M, be the set of distributions P, for which E,[e*/"] < €,
and suppose (X,) is an M,-sequence. Then

E[e™(x + §;)*] = ful%)
for all x and all stopping times T.

Proor. We apply part (b) of Lemma 1 with r(x) = x*. We need to show (a)
fa(%) = x* for all x and (b) f,(x) = e * E[f.(x + X)] whenever E,[e*/*] < '

Clearly f, is nonnegative. Also, f,(x) — x is decreasing in x, vanishes for
x = « and hence is nonnegative. Taken together, we have shown (a).

Set v(a, x) = a X exp (x/a — 1). Then v(a, x + y) = f,(x + y) foralla = a
and all x, y. We consider two cases, the first, where x < @. Then f,(x) =
v(a, X) = e *v(a, X)Ey[e¥!?] = e Ey[v(a, x + X)] = e "Ey[ f.(x + X)]. The
second case is x = a@. Then 0 < x! < a~* and, by convexity of E,[e’*] in 0,
we have E,[e¥*] < e'. Thus, f(x) = x = v(x, X) = e *v(x, x)Ey[e*/"] =
e E [v(x, x + X)] = e *Ey[f.(x + X)]. Lemma 1 now implies the desired
conclusion. [J

Allow us very quickly to compute, for purposes of later comparison, a bound
on the expectation of M, = sup, (x + S,)* when (X,) is an M,-sequence. Then,
as may be found in Section 8.7 of (Dubins and Savage, 1965), for y = x*, we
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have P[M, = y] < e-*~2/%, which with E[M,] = {7 P[M, > y]dy yields
(3.1) E[M,] < ae*'® for x<0
a4 x for x>0.
As defined in Proposition 1, f,(x) exceeds f(x, 4, M,), the supremum of
E[e~*"(x + S,)*] over all stopping times T and M,-sequences (X,). Before

examining in which cases this supremum equals f,(x), thus completing the proof
of Result (i), we will consider the normal process in (ii).

PROPOSITION 2. Let My, be the set of normal distributions that have a mean of
—  and a variance of o* together satisfying

3.2) g — 2ap < 2a%4.

If (X,) is an M -sequence then E[e~*"(x + S,)*] < f.(x) for all x and stopping times
T.

Proor. The formula for the moment generating function of a normally
distributed random variable shows that (3.2) implies E,[e*/*] < e* whenever
P, is in M,,. The result is then immediate from Proposition 1. []

Where the a’s are the same, M, c M,, and f(x, 2, M) < f(x, 4, M,). This
was the gist of Proposition 2. Thus, to examine under what circumstances our
bounds are approached, it may be sufficient to consider only the normally
distributed case.

ProrosiTioN 3. If 2=0, for all x, f(x,My) = f(x). If 2>0, then
f(x, 2, My,) = f.(x) whenever x = « or (1 — x/)/4 is an integer.

ProoF. For x = a, easily f,(x) = x < sup E[e"*"(x + S;)*]. Thus, we
consider only x < « and first suppose 2 > 0. The distribution that assigns all
mass to a4 is considered to be in M,,, and under this distribution, x + S, =
x + nal. The first n for which x + S, = a is T = (I — x/a)/2 and then
e—n'(x + ST)+ = a X e*le-1 :fa(x)‘

Now suppose 2 =0, and let X,, X,, --- be independent and identically
distributed normal random variables with means —x and variances ¢* subject
to

(3.3) gt = 2ap .
For any y = x let T, be the first n, if any, for which x + §, > y. Wald (1947,
Appendix 2.5) has shown that as ¢ — 0,

(3.4) PIT, < o] = =217 x (1 — O(g]o))

where the remainder term is uniform in x,y. Set T'=T,. From (3.4)
E[(x + S;)T] = ae*/*=V x (1 — O(p/s)) which converges to f,(x) as ¢ —»0
along (3.3). [

In this normally distributed case, subject to ¢* < 2ay, the bound (3.1) on
the expectation of M, = sup, (x + S,)* remains. Since (3.4) holds uniformly,
this bound is also approached.
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The multiplicative random walk, of the form W, ., = W, x X,,, with (X,)
a sequence of independent and identically distributed positive random variables,
is generally considered a better model for stock prices than are the additive
processes we have considered so far. The multiplicative model is more com-
patible with the exponential growth curves that, in the long run, are typically
observed, and it avoids the possibility of negative prices, a distinct unpleasant-
ness in the additive formulation. The appropriate discounted reward in the
multiplicative model is given by Samuelson (1965) as e=*”(w x W, — 1)*. Thus
we are lead to:

PROPOSITION 4. Let0 > 1 and 2 = O:be fixed, let My(w) be the set of distributions
P, x for which X is a nonnegative random variable such that E,[X’] < e*. Suppose
(w x W,) is an M;-sequence starting at w > 0. Then E[e*"(w x W, — 1)*] <
f(w) where

Sfw) =[wl = D/FY[@ — 1)  for 0<w=6/0—1)
=w—1 for wz=0/6 —1).

Proor. We apply part (b) of Lemma [ with r(x) = (x — 1)*. We need to
show (a) f(w) = (w — 1)* for allw = 0 and (b) f(w) = e ? E[ f(w X X)] whenever
Ey[X’] £ €' Clearly f is nonnegative. Also f(w) — (w — 1) is decreasing in
w = 0, vanishes for w = 6/(6 — 1) and hence is nonnegative. Taken together,
we have shown (a). ‘

Define v(a, w) = (a — 1)(w/a)*'*=V fora> 1, w 2 0. Then v(a, w) = f(w) for all
a=0[(0 — 1). Suppose first that w < /(¢ — 1). Then f(w) = v(0/(0 — 1), w) =
e v(0/(6 — 1), wE,[X] = e E,[v(0/(6 — 1), w X X)] = e *E,[f(w x X)]. If
w = 0[(60—1)then flw) =w—1=v(w,w) Z e " E;[v(w,w X X)] = e E,[ f(w X X)].
Thus (b) holds for all w, which completes the proof. []

A special case, parallel to that in Proposition 2, again may be considered.
The results are: Let ae(0,1) and 2 = 0 be fixed, and let M, be the set of
distributions P, for which In X has a Gauss distribution with a mean of —p
and a variance of ¢* that together satisfy —2ap + ¢? < 2a°2. If (X,) is an
M, -sequence and W, = X, x --- x X, (W, = 1) then.

E[e’"(wW, — 1)*] < a(l — a)t-@layll« for 0<w< 1)1 — @)
<w-—1 for w=>1/1— a).

Again, as in Proposition 3, Wald’s result may be used to show that these
bounds are approached when 2 = 0.

4. The independent and identically distributed case. Proposition 2 bounded
E[S;*] for a fairly general class of Gaussian processes (S,), and Proposition 3
showed that this bound was approached by independent and identically distri-
buted summands. This raises the question of bounding E[S,*] in terms of the
common mean and variance of independent and identically distributed, but not
necessarily Gaussian, summands.
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Throughout this section, 2 = 0 and X, X, X;, - - - are independent, identically
distributed random variables having the common distribution P,, mean E,[X] =
—p¢ < 0, and variance Var [X] = ¢®. Let M = sup,S,*.

For k > 0, Kiefer and Wolfowitz (1956) have shown that

(4.1) E,[(X*)¥*] < oo if and only if E[M*] < oo .
Hence, for k = 1, E,[(X*)’] < oo implies E[S,*] < oo for all stopping times 7.
If for some positive 0, E,[(X*+)*~%] = oo, then Ester Samuel (1967) has shown
there exists a (randomized) stopping time T for which E[S,*] = co. We can
draw a slightly stronger conclusion under the weaker hypothesis that E[(X*)?]
= oo. Let N be the first n, if any, for, which S, > 0. Unpublished work of
Darling, Erd6s and Kakutani shows E[M] < oo if and only if E[S,] < . To
obtain this result begin with Theorem 2, page 576 of Feller (1966) which states
for summands having a negative mean and for 2 > 0,

(4.2) log E[e=*"] = 37 n ' E[(e~*5» — 1)*].

Then use Lemma 1, page 569 of Feller (1966) to see that for |s| < 1 and 2 = 0,
(4.3) E[s¥e V] =1 — exp{— X s"n E[e*»"; S, > 0]}

which shows

(4.4) S 1 P[S, > 0] = —log P[N = c0] < oo,

and

(4.5) E[eV; N < o] =1 —exp{— 2y ntE[e S, > 0]}.

Hence, the derivative with respect to 1 of — Y n'E[e~*$»*; S, > 0] is finite at
4= 0 if and only if both expectations E[M]and E[S, ; N < co] are finite, which
completes the proof.

If we add the Darling, Erdos and Kakutani result to the necessary and suffici-
ent conditions (4.1) the following strengthening of a theorem in Samuel (1967)
results.

THEOREM 1. Let X, X,, X,, - - - be independent and identically distributed random
variables having finite means E,[X] < 0. Let S,=0 and S, =S,_, + X, for
n=1. Then E[S,*] < oo for all stopping times T if and only if E[(X*)’] < oo.

Theorem 1 allows stopping times that never stop, whereas the theorem
referred to in Samuel (1967) allows only stopping times that are finite almost
surely. Clearly, Theorem 1 implies that if E[(X*)’] < oo, then E[S,*] < co for
all stopping times T that are almost surely finite. It is not hard to show that if
E[(X*)*] = oo, then there is a stopping time T that is finite almost surely and
has infinite expected reward, provided one allows randomization (which is not
allowed under our stopping time definition in Section 2). For suppose T* is a
positive integer-valued random variable, independent of the (X,) process, and
set T = min {N, T%}, where N is the first n, if any, for which §, > 0. Then

E[ST+] = Z;o P[T# > n] X SN=n Szv ar,



BOUNDS FOR STOPPED PARTIAL SUMS 743

and it is an elementary exercise in analysis to show that the tail probabilities
P[T* > n] may be chosen so that the sum remains infinite whenever
E[S,; N< oo]= 37 Vy=nSydP = co. We do not know if there exists a finite
and non-randomized stopping time with infinite expected reward whenever
E[(X*)"] = oo.

Incidentally, that E,[(X*)’] = oo entails E[S,*] = co seems to have inter-
esting economic implications. Of those that believe that sequences of stock
prices form a random walk, where price changes are statistically independent
of previous price history, there is a sub-school of thought, associated with the
work of Mandelbrot (1963), that holds that daily stock price changes have a
stable distribution with characteristic exponent less than two. In particular,
the variance of the daily price changes is believed to be infinite, and, by our
result, a perpetual option in such a stock (and there are such things) would have
infinite (nondiscounted) value.

Since Var [X] < co implies E[S,*] < oo, it is natural for Ester Samuel (1967)
to raise the question of bounding E[S,*] in terms of x = —E,[X] and ¢* =
Var [X]. N.U. Prabhu showed me Kingman’s (1962) result, E[M] < a when-
ever ¢ < 2ap. However there is a slight lacuna in Kingman’s proof which
seems to require E[M?] < co. In turn, from (4.1), this requires E[(X,*)’] < co,
which is not assumed by Kingman. The problem can be circumvented by
truncating to X,° = min {X,, c} for ¢ > 0. Then, using the obvious definitions,
E[{(X°)*}’] < co so that Kingman’s analysis does apply, a® > E[M*] 1 E[M] as ¢
increases indefinitely, by monotone convergence, while —1{Var [X°]/E,[X°]} —
0’/2p < « by dominated convergence. However, we cannot discover a proof
that avoids truncation.

Thus E[S,*] < E[M] < «a which gives Result (iii).

5. Constraints on the mean and variance only. Again, fix a positive « and a

nonnegative 2. Proposition 2 bounds E[e~*?(x 4 S,)*] whenever the conditional
distribution of each X, is normal with mean —y and variance ¢* that together
satisfy
(5.1 o — 2ap < 2a%2.
The bound is approached by independent and identically distributed summands.
In Section 4 we gave a bound on E[(S,)*] when the summands were independent
and identically distributed, subject only to (5.1). What if we no longer require
that the X,’s be normal, nor independent and identically distributed, but insist
only that the conditional means and variances satisfy (5.1)? The key to the
analysis is the Chebyshev type bound:

LeEMMA 3. (a) Let Y be a random variable with mean 6 and variance v*. Then
(3-2) EJ[Y 1[0+ (0° + )2

(b) Suppose, in addition, that
(5.3) v+ 200 < 2a°8,
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for some nonnegative 8 and positive .. Then for all y,
(5-4) El(y + ¥)*] = max{a/2, af + y} .

Proor. (a) Begin with E,[|Y|] < (E[Y?])! = (6* + +*)!. Then apply this in
the expectation of Y+ = (| Y| + Y)/2 to get (5.2).

(b) Ey[y + Y] =y + 0 so that (a) and »* < 2a*8 — 2af successively imply
E[(y + D' 1=y + 0+ (0 + 0+ »)!]/2 < v(0) where
(3-3) v0) = [y + 0) + (v + 0) + 2a°3 — 2a0)}]/2.

By (5.3), the domain of (5.5) is —oo < 6 < aB. Let us compute sup, v(f).
First, for the derivative, we have,

vr — 1 y—|—0—a’ ‘

and v'(f) < 0 if and only if 0 < ((y + 0)* + 2’8 — 2a0)} < a — (y + 6) which
reduces to y < a(l — 28)/2. Thus, for y < «(1 — 2§)/2,

sup, v(0) = lim,_,__, v(f) ,
= lim,,_, 2! v + 0’ {—1 + <1 + MY} ,

(y + 0y
— 1 |y+6’| ap— 01}
my, o D) {( + 0)2 + ( )
= limoa_wi ap—af _ aj2.
2 [y+19

Otherwise, for y > a(l — 2B)/2, we have v/(¢) > 0 and sup, v(f) = v(ap) =
(v + aB)* =y + af. Thus E[(y + ¥)*] < sup, (f) < max {a/2, y + ap}.

Note that this lemma implies that the supremum over all M,,-sequences (X,)
of E[S,*] is at least as great as the supremum of E[S,*], which is «/2.

We want to obtain two bounds on E[e~*”(x + S,)*], the first when the con-
ditional means — z and variances satisfy ¢ < 2ap + 2a’2 and the second when

0? < 2ap. The first bound, which corresponds to § = 2 in the following Propo-

sition, is comparable to the bound in the normally distributed case studied in
Section 3. The second, which corresponds to 8 = 0, we use to obtain a result
comparable to the bound in the independent and identically distributed case of
Section 4.

PROPOSITION 5. Let a and A be positive numbers, let 8 be nonnegative and let
M, , be the set of distributions Py for which Var [X] < —2aE,[X] + 2078, If
(X,) is an M, ; sequence, then
(5.7) E[e7(x + S;)*] < 1B + max {/2, %) ,
where 1 = ae *[(1 — e™?).

PROOF. Set f(x) = rf + max {r/2, x}. Clearly f(x) = x* for all x. Also
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Eff(x+ X)] = 7B + Ex[max {r/2,x + X}] = 18 + 7/2 + Exl(x — 7/2 + X)*].
By Lemma 3 and the assumptions on Py, E;[(x — 7/2 + X)*] < max {«/2, x —
7/2 + aB}. Together, E,[f(x + X)]< max{(a + 7)/2, x + af}+ yf = max{(a +
1)2 — aB, x} + (a + 7)B < max {(a + 7)/2, 5} + (@ + 7)B. Finally, e(a + 7) =
7 so that e E,[f(x + X)] < max {7/2,e7*x} + 78 < f(x). An application of
Lemma 1 completes the proof. Let M, = M, , be the set of distributions P,
for which Var [X] < —2aE,[X].

ProposITION 6. Sup E[e~*"(x 4+ S;)*] = max {y/2, x} for all x, where the
supremum is over all stopping times T and M,,-sequences (X,,)..

Proor. From (4.7), if (X,) is an:M,-sequence, then E[e *"(x + S;)*] <
max {y/2, x} for y = ae™?/(1 — e"*). We want to show that this bound is
approached. For any x,zand o’ leta = ((x — p)* + o)}, p =% + (x — p)/2a
and ¢ = 1 — p. The distribution that places probability p on +a and g on —a
has mean x — g and variance ¢2. Furthermore, as ¢ — oo and ¢* — oo along
0® = 2ap, a X p— af2 for each x. Let p(x) be a Baire function whose further
requirements will be specified in a moment. Let a(x) = ((x — p(x))* + 2ap(x))},
p(x) =1 — (x — p(x))/2a(x), and g(x) = 1 — p(x). Let K be the sub-Markov
kernel which at each x has the distribution e-*K’(x, .), where K'(x, +) assigns
probability p(x) to a(x) and g(x) to —a(x). Let ¢ > 0 be given. We may, and
these are our further requirements on p(-), specify that, for all x,

a(x)p(x) = a2 — ¢/2, a(x) = 7/2, and
PR +7) S ¢/2,
where y = ae /(1 — e ).
Set r(x) = x*, and I' = [y/2, o0). Define f(x) = max {r/2, x}. Then, using the
notation introduced prior to Lemma 2,
Jof < Jpr

and
Jo Kf = e *Jnlq /2 4 ap],

= e T lg7/2 + 2] — ¢2,

Z e Jn[3r + )] — ¢,

=Jnf—c¢.
Hence, applying Lemma 2 with the kernel K we conclude

f(x) < E[e*(Z,)* | Zy,=z] + ¢/(1 —e™?).
Since ¢ is arbitrary, we have shown that the bound is approached. []
Writing M, for M, ,, we have shown that
f(x, 2, M,) = max (7/2, x)

where y = ae /(1 — e7%). If we let 2— 0 we get f(x, M,) = co, a surprising
contrast to (1.5) and (1.6).
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It is possible in this particular case to derive explicit bounds on the truncated
stopping problem.

PROPOSITION 7. Let N be a positive integer and for any stopping time T let
T(N) = min {T, N}. Then

sup E[(X + Syy)*] = max {Na/2, x}
where the supremum is over all stopping times T and M,,-sequences (X,,).

Proor. Forn =0, 1, ---, N let f,(x) = max {na/2, x}. First we show f,(x)
bounds the expected return. Clearly f(x) = fy(x) = x* for all x. To apply
Lemma 1 we need to show f,,,(x) = E,[f.(x + X)] whenever P, eM,. But
E [ f.(x + X)] = Ey[max {na/2, x + X}] = na/2 + E,[max {0, x + X — na/2}] <
na2 + max {a/2, x — na/2} = max {(n + 1)a/2, x} = f,,:(¥), where the in-
equality derives from Lemma 3. Lemma 1 now implies f,(x) = E[(X + Syx))*]
for all stopping times 7.

To show that this bound is tight, introduce the Markov kernel K where for
any x, K(x, +) assigns probability p(x) to a(x) and 1 — p(x) to —a(x) with

a(x) = ((x — p(x))" + 2ap(x))*
and
P(x) =% — (x — p(x))/2a(x) .
For any given ¢ > 0, choose y(+) to be Baire and such that
a(x)p(x) = af2 — ¢/2, a(x) = Na
and
p)Naj2 < &2,
for all x. That this can be done was shown in Proposition 7.
Set I'(n) = [na/2, o) for n = 0, - --, N. Then using the notation of Lemma
2, with r(x) = x*, fy < JrgF
while Kf,_(x) = a(x)p(x) + [(n — D)a/2]q(x) = naj2 — e,
so that
Irmfo = Kry for + €5
while
Jl"('n)f'n é JI‘('n) r
which added gives (2.9) of Lemma 2, which then applies. Thus, for T the first
n, if any, for which Z, e (N — n) we have E[/(Z;) | Z, = z] = fy(2) — (N + D)e.
Since ¢ is arbitrary, we are through.
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Added in proof. Following Theorem 1 we ask if there exists a finite and non-
randomized stopping time with infinite expected reward whenever (*)E[(X*)’] =
oo. The referee suggests we choose a function z(x) and stop at 7= min {N, (X))},
where N is the first », if any, for which S, > 0. Using (*), we may choose «
large enough so that the expected reward is infinite, but 7' does not involve ad-
ditional randomness. The manner of choosing r parallels that given for choosing
T* in the paper.

On the same point, Larry Shepp has shown me how to choose a hitting time
to a set that is finite and has infinite expected reward. The set is a union of
intervals [a,, b] where 0 > @, > b, > a, > b,- - -. The intervals are sparse enough
to give infinite expected reward, yet dense enough to ensure stopping.



