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CONVERGENCE IN DISTRIBUTION, CONVERGENCE IN
PROBABILITY AND ALMOST SURE CONVERGENCE
OF DISCRETE MARTINGALES!

By DavID GILAT?
Columbia University

Examples are provided of Markovian martingales that: (i) converge in
distribution but fail to converge in probability; (ii) converge in probability
but fail to converge almost surely. This stands in sharp contrast to the
behavior of series with indepsndent increments, and settles, in the negative,
a question raised by Loéve in 1964. Subsequently, it is proved that a dis-
crete, real-valued Markov-chain with stationary transition probabilities,
which is at the same time a martingale, converges almost surely if it con-
verges in distribution, provided the limiting measure has a mean. This fact
does not extend to non-discrete processes.

1. Statement of problem and motivation. Consider the elementary implications:
(a) Almost sure convergence implies convergence in probability; (b) Convergence in
probability implies convergence in distribution.

In this paper we address ourselves to an aspect of the following general ques-
tion: For what classes of processes can the elementary implications be reversed?
The problem is, obviously, motivated by the classical case due to P. Lévy (1937)
who established the reversibility of the elementary implications (a) and (b) for
partial sums of sequences of independent random variables.

In view of the multitude of results, originally proved for sums of independent
random variables, and subsequently generalized to martingales, to assume that
X., X;, --- form a sequence of martingale-differences, seems to be a natural
departure from independence. Some of the essential similarities, as well as
differences, between sums of independent random variables and martingales
already emerge in the study of two random variables. For example (see Gilat
(1971)), if X and Y are random variables with the same (marginal) distribution
and if the joint distribution of (X, Y) makes X and ¥ — X independent, then
X = Y with probability 1. Likewise, if X and Y satisfy the martingale relation
E(Y|X) = Xa.s., and X and Y have a common distribution, then X = Ya.s.,
provided X has a mean (possibly an infinite one). In view of this result, one
may be tempted to state a continuity theorem, to the effect that if (X, Y) satis-
fies the martingale-relation and X and Y have ‘“close” (marginal) distributions,
then X and Y are “close” in probability. Unfortunately, this is far from the
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truth. In fact, for any ¢ > 0 (no matter how large) and 0 < ¢ < %, there is a
probability measure P on the plane, such that the coordinate mappings X and
Y satisfy the martingale relation, and such that |P[Xe B] — P[Y e B]| < ¢ for
all Borel sets B, but nevertheless P[|X — Y| >a] = 1. For example, take
P[X = a] = ¥ = P[X = —a] and define the conditional distribution of Y given
X by:

P[Y: ia[X: i—a]:l—e:l—P[Y: ile: +a],

where b is determined by the martingale relation:
E[Y| X=a]l=(l —¢)(—a)+ecb=a.

This example uses the idea of balancing a highly probable small step by a big
step in the opposite direction, so that the average displacement is zero. Apply-
ing this idea repeatedly (with a proper sequence of ¢’s), one can easily construct
martingale-processes that converge in probability but fail to converge almost
surely, as well as martingales that converge in distribution but not in probability.
Since the construction is straightforward, it will be omitted. However, processes
so constructed will inevitably have unbounded increments. It is now natural to
inquire whether the elementary implications are reversible for martingales with
uniformly bounded increments.

2. A partial negative answer. We do not know whether there exist martingales
with uniformly bounded increments that converge in distribution but do not
converge in probability. The example on page 22 of Gilat (1970), designed to
illustrate such a martingale, turns out to be erroneous. We now proceed to
construct a martingale with uniformly bounded increments, that converges in
probability but fails to converge almost surely.

Let T = {t, ¢, ---} be a strictly increasing sequence of positive integers.
We shall refer to members of T as crucial times. Let d be point-mass at 0, and
for k = 1let y, stand for the three-point distribution y,(0) = 1 — 1/k, y(—1) =
12k = y,(1). Let X, have y, as its distribution, and for each n > 1 define the

conditional distribution ¢,,, = 6,,,(X;, ---, X,) of X, ,, given X, - .-, X, by:
0n+1271 if Xl+"'+Xn$0
=0 if x,+..-4+X%X,=0, neT
=7 if X\ +...4+X,=0, n=teT.

The process X,, X,, - - - so defined is clearly uniformly bounded (|X,| < 1) and
satisfies £(X, ;! X}, - -+, X,) = Oforalln > 1. Its partial sums {S, = X, + ...+
X,, n = 1} therefore form a martingale with uniformly bounded increments.
{S,} behaves like ordinary coin-tossing except that when being at 0 between
crucial times, it stays there until the next crucial time, while from zero at the
kth crucial time it proceeds according to y,. Since 3}y, {—1, 1} = 3] 1/k = oo,
it is easy to see that {S,} diverges almost surely, regardless of the sequence T
used in the construction. It remains to show that P[S, = 0] will converge to 1
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as n— co, for a suitably chosen sequence T of crucial times. To this end,
consider the ordinary coin-tossing process {Z,, n = 1}, i.e., Z, is the excess of
heads over tails in n independent tosses of a fair coin. For each positive integer
a and for each number ¢, 0 < g < 1, let j(a, ¢) be the smallest positive integer j
for which

Pla+ Z,=0 forsome 1< n <]
=P[—a+Z,=0 forsome 1 <n<jl>gq;

J(a, q) is well defined since {Z,, n > 1} is recurrent; it is easily seen to be increas-
ing in a, non-decreasing in ¢, and to converge to co when either ¢ — oo or ¢ — 1.
We now proceed to construct a sequence T of crucial times suitable for our
purpose. Let {g,, n = 1} be any increasing sequence of positive numbers con-

verging to 1. Let j, = 1, j, = j(1, ¢,) and in general et
Jerr = JUo + =+ Ji> Qi) for k=1,2,....

Lett, =j,+ -+ +j,_; (k= 1)and take T = {t,, t,, - - -}. .

Note that j, = j(t,, q,) = t,,, — t,. Since the ¢’s tend to 1, the j,’s are un-
bounded, so that T is a legitimate sequence of crucial times. Let {S,,n > 1} be
defined as before, with this T serving as the set of crucial times. Observe that
the #,’s were constructed in such a way that the probability of getting back to
zero, from any position s reachable by time #,_, (0 < |s] < ¢,_,), in (¢, — t,_))
or fewer steps, is at least g,. In particular we have:

(1 P[S,, =0[S,,_, =s]1=q,

forall s with 0 < |s| < ¢, and k£ > 1.
Also, by the definition of {S,},
(2) P[S,, =0]S
Let a, = P[S,, = 0], k = 1. Then: a, = 0 and using (1) and (2) we get for
k> 1:
(3) a = alc—IP[Stk = 0|Stk_1 = 0] + 2lis0 P[Stk_l = S]P[St,c = OISzk_l
= a, (1 = 1/(k = 1)) + (I — a,_,)g, =2 min(l — 1/(k — 1), ¢,)— 1

=0]=1—-1/(k—1) for k> 1.

t—1

_—_S]

as k— oo.

We have thus proved that P[S, = 0] tends to 1 as » tends to co through T. If
neg T, then t, < n < t,,, for some unique k = k(n), and then:

P[S, = 0] = a, P[S, = 0|S, = 0] + (I — a,)P[S, = 0]S,, + 0]
> a,P[S, = 0|S, =0]= gl — 1/k)— 1 as n— oo

because k = k(n) tends to co with » and by (3) «, — 1. Thus §, — 0 in prob-
ability.

3. Fair Markov-chains. The example of Section 2 as well as the examples
alluded to at the end of Section 1, are all Markov processes with a discrete
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state space. None of them however has stationary transition probabilities. In
this section we show that a discrete real-valued Markovian martingale with
stationary transition probabilities, cannot have a limiting distribution with a
mean (possibly infinite) unless it converges almost surely. To state our theorem
formally, let I be a discrete set of real numbers (i.e., a set with no real limit
points), and let M be a Markov matrix on I x I (i.e., M(x,y) =0 and
Diyer M(x,y) =1 for all x, yeI). Call M subfair if 3, ., yM(x, y) < x for all
x € I; call it superfair if the reverse inequalities are satisfied; M is said to be fair
if it is both subfair and superfair. Let « be a probability measure (p.m.) on /I,
ie., a = {a(x): xel}, with a(x) = 0 and >;,., «(x) = 1. « together with a

Markov matrix M gives rise to an I-valued Markov chain {S,, S;, .- -} in the
usual way, i.e., the formula
P{So = Xps Sl =Xt Sn = xn} = a(xo) Hle M(xi—l’ xv;)

determines a consistent system of finite dimensional joint distributions; aM™
(usual matrix product) is then the (marginal) distribution of S,. It seems natural
to denote such a process by (a, M). Say that (a, M) is fair if M is, and similarly
for sub- and superfair. (Except perhaps for the condition of integrability, which
is usually incorporated into the definition of a martingale, a fair (@, M) is a
martingale, and likewise sub- and superfair (a, M)’s correspond to semi-
martingales.)

It will be convenient to use operator notation for integrals, i.e., uf denotes
the integral of the function f w.r.t. the measure y. Thus for example,

(@M")f = Yoer [f1%) Dyer a()M"(y, %)] -
Recall the definition of weak convergence of measures: {@,} converges weakly
to « (Notation: @, —, a)iff @, f — af as n — oo for every bounded function f
on I (since I is discrete, every f on [ is continuous). It is well known and easy
to verify that if &, and « are p.m.’s on / then «,, —, « iff a,(x) — a(x) uniformly
inxel

THEOREM. Let (a, M) be a fair Markov chain with state space 1. If (a«, M)
converges in distribution (i.e., the sequence (aM™) of marginals converges weakly to
a p.m. A), then (a, M) converges almost surely, provided the limiting distribution 2
has a mean (not necessarily finite). (Note that no moment conditions are imposed on
the initial distribution «.)

REMARK 1. The proviso that 2 has a mean is essential for the validity of the
theorem, as can be seen from the following example:

Let I = {0} U {+2", n = 1}; let ®(0) = L and a(2") = 27"/3 = a(—2") forn =
1,2, .... Note that a« does not have a mean. Let M(0,2) =1 = M(0, —2)
and for each nonzero x in /let M(x, 0) = £ = M(x, 2x). Itis then easy to check
that the process («, M) is fair, that aM = «a, and therefore («, M) has the limit-
ing distribution 2 = a@. Nevertheless (a, M) does not converge almost surely
(and even not in probability).
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Proor oF THE THEOREM. We present the proof in the form of three lemmas.
LemMA 1. Under the conditions of the theorem, 2 is invariant for M, i.e., AM = A.

Proor. It suffices to prove
4) (AM)f = 2f for all bounded fon 1.

It is a matter of routine to check

) (aM™)f = 31 (aM™)(2)(M(z, +)f)

for every bounded function fon /.

(Recall that for each z, M(z, ) is a p.m. on I.) Let g be the function z —
M(z, -)f, then g is bounded, so from (5) we get
(6) (aM™)f = (aM™)g .
By weak convergence, the left-hand side of (6) converges to Af whereas its right-
hand side tends to 1g, which is easily seen to equal (AM)f. This establishes (4)
and hence the lemma.

ReMARK 2. Had I not been discrete, the boundedness of g would not have
implied (aM™)g — Ag, because g is not continuous unless the Markov operator

M(z, +) varies continuously with z, a condition which is automatically satisfied
in the discrete case. Indeed Lemma | is false in the non-discrete case, as is clear

from the following example.

ExampLE. Take S = {0,1,4,%, ...} as the state space and define M by
MO,1) =1, M(1/n, 1/(n + 1)) = 1 forn = 1. Let a be point-mass at 0. Then:
aM"™—, a (in a trivial deterministic way), but « is not M-invariant. The
trouble here is that M(s, +) is not continuous at s = 0 with respect to the usual

topology on S.
LEMMA 2. Under the conditions of the theorem, every point x in the support of 2
(i.e.. such that A(x) > 0) is an absorbing state of the process, i.e., M(x, x) = 1.

Proor. By fairness of M and by the preceding lemma, the process (4, M) is
a stationary generalized semi-martingale (if the mean of 2 is finite, it is in fact a
stationary martingale). The lemma now follows from Corollary 2 of Gilat (1971).

LemMA 3. For every initial distribution o, the process (a, M) eventually gets to
the support of 2, with probability 1.
Proor. Let S be the support of 2. Suppose that
Prob {(a, M) never getsto S} =¢> 0. Then
I — g = Prob{(a, M) isin S at time n} = (aM")(S) — A(S) = 1.
This is a contradiction which establishes the lemma and thereby concludes the
proof of the theorem.

REMARK 3. Lemma 3 is false when the state space is not discrete, as can be
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seen from the example succeeding Remark 2. We use discreteness in our proof
of the lemma to conclude (aM™)(S) — A(S) from aM™ —, 2, while in general
we could conclude only lim sup (@ M™)(S) < A(S) (because the support S of a
measure is, by definition, a closed set). This would not lead to any contradic-
tion in the argument. Since in the discrete case S is also open (as is every set)
we are lucky to also have the dual relation lim inf (a M™)(S) = A(S).

REMARK 4. The theorem, with essentially the same proof, remains valid if in
its statement “fair” is replaced by “superfair” (“subfair”), provided we specify
that the positive (negative) part of 2 has a finite mean.

REMARK 5. Although, as indicated in Remarks 2 and 3, the proof presented
above hinges heavily on the discreteness of the process, I have originally con-
jectured that the theorem remains valid for general real-valued fair Markov
chains. It was recently pointed out to me by Burgess Davis that this is not the
case, even when the Markov operator M(x, +) varies continuously in x.
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