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WEAK LAWS OF LARGE NUMBERS
IN NORMED LINEAR SPACES!

By ROBERT LEE TAYLOR?
Florida State University

In this paper weak laws of large numbers are proved for random
elements (function-valued random variables) in separable normed linear
spaces. One result states that for identically distributed random elements
{V»} such that the Pettis integral EV; exists and E || F1]] < oo

|lnt 3% _y Vi — EVi1]| >0 in probability
if and only if
[t 3%_; f(Ve) — Ef(V1)] — 0 in probability

for each continuous linear functional f. The condition of identically dis-
tributed random elements {¥,} can not be relaxed by just assuming a
bound on the moments of {||Vx||}, but a weak law of large numbers is
obtained for random elements which need not be identically distributed.
Both of these weak laws can also be obtained by assuming only that the
space has a Schauder basis such that the weak law of large numbers holds

in each coordinate. An application of these results yields a uniform weak
law of large numbers for separable Wiener processes on [0, 1].

1. Summary. In this paper weak laws of large numbers for random variables
are extended to random elements in normed linear spaces (random variables
taking values in normed linear spaces). Theorem 1 states that a sequence of
identically distributed random elements in a separable normed linear space
satisfying the weak law of large numbers in the weak linear topology also
satisfies the weak law of large numbers in the norm topology. Theorem 2
shows that the result also holds if there exists a Schauder basis such that the
weak law of large numbers holds in each coordinate.

An example is given which shows that the condition of identically distributed
random elements {V,} can not be relaxed in either Theorem 1 or Theorem 2 by
just assuming bounds on the moments of {||V,||}. However, Theorem 3 and
Theorem 4 give weak laws of large numbers for random elements which need
not be identically distributed by imposing other structure conditions. Using
Theorem 3 a uniform weak law of large numbers is obtained for separable
Wiener processes on [0, 1] whose parameters are Cesaro bounded and whose
increments are uncorrelated.

2. Preliminaries. Unless otherwise specified X will be a real normed linear
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space with elements, x’s, and norm || [|. The topological dual of X will be
denoted by X*, and R will denote the real line. The o-field generated by the
open subsets of X will be denoted by B. Let (W, F, P)bea probability space and
let V be a function from W into X. If V-(B) c F, then V is called a random
element in X [with respect to (W, F, P)].

An expected value for a random element is defined by a Pettis integral (Pettis
(1938)). A random element V in X is said to have expected value EV if there
exists an element EV e X such that E[f(V)] = f(EV) for each fe X* where
E[f(V)] denotes the usual expected value of the random variable f(V). A
sequence of random elements {V,} is said to converge to the random element V'

(a) in probability in the norm topology if for each e > 0
lim, P[||V, — V|| >e]=0 or
(b) with probability 1 in the norm topology if
P[lim, ||V, — V]| =0]=1.
Finally, {V,} is said to converge to V in probability in the weak linear topology
of X if for each e > 0
lim, P[|f(V,) — f(V)| > €] = 0
for each fe X*.
A sequence {b,} C X is a Schauder basis (Wilansky (1964) page 86) for X if
for each x ¢ X there exists a unique sequence of scalars {¢,} such that
x = lim, X r_, t.b,.

A Schauder basis {,} is a monotone basis if

DIRULAIRS =R

is a monotone increasing sequence for each sequence of scalars {z,}.
When X has a Schauder basis {b,}, a sequence of linear functionals {f,} can
be defined by letting f,(x) = ¢, where x ¢ X and

x = lim, >7_, ¢,b, .
Also, a sequence of linear operators {U,} on X can be defined by letting

U,(x) = e fu(x)b, for each xc X .
The linear functionals {f,} are called the coordinate functionals (for the basis
{b,}), and the linear operators {U,} are called the partial sum operators.

Lemma (Wilansky (1964) and Marti (1969)): (a) If {b,} is a monotone basis for
the normed linear space X, then ||U,|| < 1 for each n. (b) If {b,} is a Schauder
basis for the Banach space X, then there exists an m > 0 such that ||U,|| < m for
each n.

The preceding lemma also provides for the continuity of each coordinate
functional £, since ||U,|| < m for each n implies ||f,|| < 2m/||b,|| for each n.
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3. Weak laws of large numbers for identically distributed random elements.

THEOREM 1. Let X be a separable normed linear space and let {V,} be a sequence
of identically distributed random elements in X such that E||V,|| < oo and EV, exists.
For each f € X* the weak law of large numbers holds for the sequence {f(V,)} if and

only if
ntyn_  V,— EV, in probability.
The proof of Theorem 1 will follow the proof of Theorem 2.
THEOREM 2. Let X be a Banach space which has a Schauder basis {b,} and let
{V.} be a sequence of identically distributed random elements in X such that

E||V||| < co. For each coordinate functional f, the weak law of large numbers holds
for the random variables {f (V,): n = 1} if and only if .
ntyr_ V,— EV, in probability.

ProOF oF THEOREM 2. The “if” part is obvious since convergence in the norm
topology implies convergence in the weak linear topology of X. The “only if”
part is proved below.

The Pettis integral EV, exists since E||V;|]| < oo and X is complete and

separable. Moreover, EV; can be assumed to be 0 (otherwise, consider Z, =
V,— EV)). Lete > 0andd > 0 be given. In order that

nt >t V,— 0 in probability
there must exist a positive integer N(e, d) such that
3.1 Plln e Vil > el < d for each n = N(e, d) .

Let m > 0 be the basis constant such that ||UJ| < m for all . Hence,
[10,]| £m + 1 for each ¢t where Q, is the linear operator on X defined by

0,(x) = x — U(»).

For each n and each ¢
(3.2) nt e V=m0, U(V) + 17t 2l OV -
For each fixed ¢
(3.3) Pll|n™" 23 Qu(Vi)ll > €/2] = P[n7" 203-, ||QU V)l > e/2]

<2 s B0l
en

2
= 2 E|loV)ll-
But E||Q(V))|| — 0as t— oo since ||Q,(V})|| > 0 pointwise and ||Q,(V)|| =
(m + 1) ||V3]|- Thus, choose ¢ so that
(3-4) Pll|n=t T @Vl > /2] < d[2.
By construction
U (x) = X, fi(x)b; for each xe X
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where {f,, ---,f,} are the coordinate functionals for the basis elements
{b,, ---,b}. Thus,
P~ i UV > e/2] = Pll| Zica fu(r™ Ziiiea Vi)bill > e/2]

S PIEiafi(n™ Zia VllIbil] > e/2]

< D PlInt 2o SVl > ef2t][bi|]] -
But,
(3.5) Pl S, fu(Vi)] > ef2t b1 — 0 as 1 — oo
for each i since the weak law of large numbers holds for each sequence {f(V,):
n > 1} and E[f(V,)] = 0. Hence, there exists a positive integer N(e, d) such
that
(3.6) Pl i fu(Vo)l > ef2t||bi||] < dj2 for each n = N(e, d) .
Using (3.4) and (3.6)

Pl i Vill > el < P[|In7" 2o ULVl > ¢/2]
+ P[lIn7t i @Vl > €/2] < Xy PlIr™" Xiea fu(Va)l
> e/2t||bi]|]] + d2 < d
for each n = N(e, d). This verifies (3.1), and hence
n ' 3n_ V,— 0 in probability. 0

REMARK. The same proof also proves the result for any separable normed
linear space which has a Schauder basis such that {||U, ||} is a bounded sequence,
but the existence of EV, must be assumed for an incomplete space.

Theorem 1 is now proved for all separable normed linear spaces by embedding
each space isomorphically in the Banach space C[0, 1]. Theorem 2 can then be
applied since C[0, 1] is a Banach space which has a Schauder basis.

Proor oF THEOREM 1. Let X be the completion of X. Since X is isometric
to a subspace of C[0, 1] (Marti (1969) page 67), there exists a 1-1, bicontinuous,
linear function 4 from X into C[0, 1].

It is not hard to verify that {#(V,)} is a sequence of identically distributed
random elements in C[0, 1] with E||AV;|| < co. Let g e C[0, 1]*, then

nt Y g(hV,) = nt Yro h*g(V,) — E[h*g(V,)] = E[g(hV})] in probability

where #* is the adjoint function of C[0, 1]* into X*. Thus, for each g € C[0, 1]*
the weak law of large numbers holds for the sequence {g(kV,)}. By Theorem 1

h(n* 32_, V) = n* 2ii_, hV, — ERV, in probability,
but ErV, = hEV, (Pettis (1938)). Since k is 1-1, bicontinuous and linear,
ntyn_ V,— EV, in probability. 0

The condition of identically distributed random elements {V,} is used only in
obtaining inequality (3.4). Inequality (3.4) shows that the remainders {QV,} of
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the truncated random elements are uniformly small in probability. When other
conditions imply inequality (3.4), the random elements need not be identically
distributed. One such extension is Theorem 3. However, the assumption of
identically distributed random elements {¥,} can not be relaxed by just imposing
bounds on the moments of {||V,]|}. The following example also shows that
Theorems 3 and 4 (see Section 4) and Mourier’s (1953) strong law of large
numbers for identically distributed, independent random elements can not be
similarly weakened.

ExaMPLE (Beck (1963), page 32). Let X =1, = {xe R™: ||x|]| = X |x,| < oo}
and let ™ denote the element having 1 for its nth term and 0 elsewhere. Let
{4,) be an independent sequence of random variables defined by 4, = +1 each
with probability %, and define ¥, = 4,u™. Clearly, {V,} is an independent
sequence of random elements with ||V,|| = | for each n. Hence, the strong law
of large numbers holds for each sequence {f(V,)} where f e X*. But,

In* Zia Vill = [l (1, £1, -0, 21,0, )] = 1
for each n. Hence,
ntyr  V,»0=EWV,.

It is interesting to note that while the weak law of large numbers in the weak
topology is sufficient to give the weak law of large numbers in the strong
topology, it will not give the strong law of large numbers in the strong topology.
Beck and Warren (1968) constructed random elements {¥,} in the separable
Banach space c,, the space of null convergent sequences, which are

(a) identically distributed,

(b) uniformly bounded, that is, ||V,|| < 1 for each n, and such that

(€) {f(V,)} satisfy the weak law of large numbers for each f'e X* but which
do not satisfy the strong law of large numbers in the norm topology. Hence,
convergence with probability 1 is not always possible in either Theorem 1 or
Theorem 2.

4. Extensions of Theorem 1 and Theorem 2. In this section weak laws of large
numbers (Theorems 3 and 4) are proved for a class of random elements which
need not be identically distributed. Only the proof of Theorem 4 is given since
the extension to all separable normed linear spaces follows from the proof of
Theorem 1.

THEOREM 3. Let X be a separable normed linear space and let {V,} be a sequence
of identically distributed random elements in X such that E||V||* < co. Also let
{A,} be a sequence of random variables such that

nt N B4 =T for each n

where T' is a positive constant and let E(A,V,) = E(A,V,) for each n. For each
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S € X* the weak law of large numbers holds for the sequence {f(A,V,)} if and only if
nt Yy AV, — E(A, V) in probability.

THEOREM 4. Let X be a normed linear space which has a Schauder basis {b,)}

such that ||U, || < m for each n where m is a positive constant. Let {V,} be a sequence

of identically distributed random elements in X such that E||V,||* < co. Let {4,} be
a sequence of random variables such that

4.1) ntyr EA4HT for each n
where ' is a positive constant and let E(A,V,) = E(A,V,) for each n. For each
coordinate functional f, the weak law of large numbers holds for the sequence
{fi(4,V,): n= 1} if and only if
nt e AV, — E(A V) in probability.
Proof. Again, it is sufficient to prove the “only if” part.

First, ||Q,|| <m + 1 for each n where Q, is the linear operator on X defined
by Q0,(x) = x — U,(x). From (4.1) it follows that

(4.2) Y [EAH< T +1 for each ».

Finally, let e > 0 and d > 0 be given.
For each n and each ¢

(4.3) nt 3 AV =0 R AUV, + ot D 4,04V -
For each fixed ¢

4
(4.4)  Pll|n i, A, 0Vl > e/4] < " 2i-1 El|4, 0.Vl

4
en

< — Zia [EA)FENCV )T

4T + 1 3
< * D Ejomy-
Again, t can be chosen so that for all n
(4.3) Pl Liar 4 QY| > €/4] < d)2 and
(4.6) IQUE(A4, M))I| < e/4

since both E||Q(V))||* — 0 and ||Q,(E(4,V}))|| — 0 as t — oo.
For the ¢ chosen in (4.5) and (4.6) and for all n

(4.7) Plljn=! 2k A Vi — E(4, V)] > e]
= Pllln™ Lia U4 Vi) — ULE(A V)| > e/2]
+ P[l|n7" Xk Q4 Vi) — Q(E(A4 V)| > e/2]
< P[l|n™ 2k Ui Vie — E(A V)| > ef2] + d)2.

Thus, truncation to a finite-dimensional subspace is accomplished, and the
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remainder of the proof follows from the proof of Theorem 2 since the weak law
of large numbers holds for each sequence {f,(4,V,): n = 1} where f, is a co-
ordinate functional. []

Theorems 3 and 4 generalize Theorems 1 and 2 by assuming the stronger
condition E||V,||* < oo. The following example for Wiener processes illustrates
these results.

Let {Z,} be a sequence of separable Wiener processes on [0, 1] which satisfies
the condition
(4.8) Covariance [Z,(f) — Z,(s), Z,(t) — Z,(s)] = O
for all 5, te[0, 1] and m = n. Also let the parameters {s,? = E[Z,(1)*]} satisfy
the inequality
(4.9) o=l
where I' is a positive constant. With probability 1 {Z,} can be regarded as a
sequence of random elements in C[0, 1] with E||Z,||* < o and EZ, = 0 for
each n. Moreover, each random element Z, can be expressed as Z, = 4, V,
where A4, is the constant random variable ¢, and V, is a random element in
C[0, 1]. The random elements {¥,} which are Wiener processes are identically
distributed since E[V,(1)’] =1 for each n. Condition (4.8) implies that the weak
law of large numbers holds for each sequence {f(Z,)} where f ¢ C[0, 1]*. Thus,
by Theorem 3

Pll|n™* ks Zil| > e] = P[sup, [n7! X3, Zu(1)] > €] -0

for each e > 0, or the Wiener processes {Z,} satisfy a weak law of large numbers
which is uniform for ¢¢ [0, 1].

.

for each n
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