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Huber, in his fundamental paper [1] and in [2], has considered the ro-
bust estimation of a location parameter and has obtained results which he
applied to some examples including the e-normal model, {F|sup: |F(x) —
®(x)| < ¢, F symmetric}, when ¢ is sufficiently small (¢ < ¢, ~ .03). In
this note we show how his methods work for the family of distributions
{F| {4 ,dF = p, F symmetric} and then use this to solve the e-normal prob-
lem when ¢ > ¢,,.

0. Introduction and summary. Let {X} be a sequence of i.i.d. random variables
with distribution function F(x — ¢). Here # is an unknown location parameter
and F is assumed to be in a convex class & of distribution functions which are
symmetric and have absolutely continuous densities f satisfying E.(f"/f)’ =
I(F) < co. Huber proved (see Theorem 2 of [1]) that if F,e & is sufficiently
regular and /(F,) < I(F) for all Fe &, the maximum likelihood estimator, 4,
of # computed as if F, is the underlying distribution is robust in the sense that
it “minimaxes” asymptotic variance (max over &, min over a wide class of
estimates). The maximum asymptotic variance of 8 is 1/I(F,).

One of Huber’s examples is the e-contaminated normal model . = {F|F =
(1 — ¢)® 4+ ¢H} where ¢ is fixed, @ is the standard normal distribution function
and H is arbitrary. The distribution F, having minimum information in & is
given in Section 6 of [1]. Since F, is sufficiently regular, the theorem mentioned
above applies to this example. For this model it has also been observed that
there is a linear function of order statistics (LFO) which is robust in the same
sense. In particular (cf. [2]) an appropriate a-trimmed mean has asymptotic
variance bounded on & by 1/I(F).

A second example is the e-normal model &, = {F|sup, |F(x) — O(x)| =< ¢}.
For small ¢ (¢ < ¢, = .03) the F, which minimizes information is given in Section 9
of [1] and again Huber’s Theorem produces a robust estimate. It is not known
for this setting if there is a LFO which is robust.

In the first section of this paper, we show how Huber’s methods work for the
family of distributions . = {F| {4, dF = p} and then use the results to solve
the e-normal problem for ¢ > ¢,. In Section 2, we show there is no robust LFO
for a family of distributions of the above type and that this applies also to the
e-normal model when ¢ is large enough. The tedium of calculations holds us
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to the observation that for ¢ > ¢, = .07, there is no robust LFO for the e-normal
model.

1. Robust estimates. It will be assumed throughout that the distributions under
consideration are symmetric and have finite information. Thus each distribution
F has an absolutely continuous density f satisfying E.(f'/f)’ < oo.

Huber has shown (Theorem 2 of [1] and [2]) that if f,/f, is absolutely con-
tinuous then I(F,) is minimized over a convex family & at F, if, and only if,

(1.1) Suf<0 for fe s where

(1.2) u, = I(Fy + 4W)
fot
Suppose now that u, is a given symmetric function and that f; is a density func-
tion satisfying (1.2). Then F, minimizes information over .2 = {F|{ u,f < 0}.
Thus, by solving (1.2) for a fixed u,, one might find robust estimates for models
specified by an integral condition of the form § %, < 0. We have done this for
the simple integral condition {4, f > p (which comes from taking u, to be a
negative constant on |x| < 4 and a positive constant on |x| > A4). Instead of
reproducing the (straight-forward) details involved in the choice of u, and the
solution of (1.2), we proceed directly to the relevant densities.
For 0 < a < =/2, let

(1.3) fu(x) = I_:Z_(_%z?)cosz ax if ¥ <1
=%cosz ace#eif [x] > 1

where f(a) = atan a. In what follows we usually suppress the dependence of
B on a. We note that f, is a density with the following properties:

re tan ax .
(14) _fa /fa - (Z‘B)W if |X| = 1

= (2f8)sgn x if |x>1,

(1.5) IF,) = 4a2i‘:L‘8,
(1.6)  IF,)+ 4(_/%)1 —u, = —% if |x <1

= (28)* + I(F,) if |x>1.
Accordingly, F, is the minimum information distribution in the class
2
1> — cos a}.
Lz -

If we now set £, ,(x) = A7'f,(x/A4)and take 7, , = {F|{%,f=1—cos’a/(14p)},
it follows that F, , is the minimum information distribution in ./, ,. Thus

(1.7) A, = {F
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PROPOSITION 1. The maximum likelihood estimate of 6 computed when the under-
lying distribution is f, , is robust in the sense described in the introduction with

j‘—d: */Zla,A'
Before proceeding we remark that 1 — cos® a/(1 4 ) increases from 0 to 1

as a goes from 0 to /2. Here is a short tabulation of this dependence together
with the minimum information numbers in the particular case 4 = 1:

1 — TOJS:Z « I(F,)
4 5 21
5 .59 39
6 67 .62
7 76 - .99
8 .88 1.6
9 1.02 2.59.

We turn now to the e-normal example and show

PropPosITION 2. If @ is the standard normal distribution and . = {F | sup, |F(x)—
O(x)| < ¢} then there is a G, in F, which minimizes information. The maximum
likelihood estimate of 6 when G, is the underlying distribution is robust in the sense
described in the introduction with 7 = # .. For e > ¢,(~.03) the density of G,
i8 fo.. 4, (fu, is defined following (1.7)) where a,, A, satisfy (1.8), (1.9), (1.10) below.
For ¢ < ¢, G, is given by Huber in Section 9 of [1].

Proor. We wish to find G, € &, which minimizes I(F). Let p(4) = ®(4) —
O(—A) — 2¢. Then if Fe &, F(A) — F(—A) = p(A), i.e., Fe . #Z, , if a is
now chosen so that ®(4) — O(—A4) — 2¢ = 1 — cos*a/(1 + B) or

(1.8) D(d) =+ 1 — Lcosta)(l + B).

If we can find, for given ¢, ,, 4, to satisfy (1.8) and such that G, = F, , €
we would be finished. It is enough to find @, 4 to satisfy (1.8) and, in addition,
to satisfy f, , < ¢ on [0, 4], f, , = ¢ on [A4, ) (¢ = @’). This implies that
Fea(4) = (4) or
(1.9) Ap(A) = costa_ PO

( T+ A@)
Now f, , < ¢ on [0, A] if x = 2a/A tan (ax/A) on [0, 4] which, from convexity
of tan, is equivalent to

(1.10) A > 2B() .

It is easy to verify that (1.10) implies f, , = ¢ on [4, o).

Our problem then is to find, a pair a, 4 which satisfies (1.8), (1.9), (1.10).
To do so it is convenient to go backwards and for given a find A(«a), ¢(a) which
satisfies (1.8), (1.9), (1.10) and then observe that ¢ is a decreasing function of a.
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We will be able to carry out this argument for a < «, («, is defined later in the
proof) which will give the result for ¢ > ¢(a,) = ¢,.
The first step is to note that, if we let g(a) equal the right-hand side of (1.9),

(1.11) SUPgcq<xp 9(@) < sup, Ag(A4) = ¢(1) = .24197 .
It follows from (1.11) and the fact that A¢(A4) decreases to 0 on [1, co) that
(1.12) for each «a € (0, 7/2) thereisan A(a) > 1 which satisfies (1.9).

The solution 4 on [0, 1] is useless to us and we ignore it.
To establish (1.11) we note that

IA

0

g'(@¢) = —2sinacosa P + (tan a(l + j) + a) cos’a
L+ 5 I+ 5y

if, and only if, (28 + § — 1)tana = «. On|[z/4, z/2]tana = 1, f(a) = «a and,
consequently, (28 + f — I)tana = 2 + a — 1 2 a + 7’8 — 1 2 aif @ = 7/4.
Thus g is decreasing on [z/4, /2] and g(z/4) = iz /(4 + =) < $(1).

On [0, 2¢/2], tan & < | so that S(a@) £ « and then (28> + 8 — l)tana < a.
Thus g is increasing on [0, 2¢/2] and it is easy to calculate that g(2¢/2) < ¢(1).

On [2/2,.74], g(a) < cos?(.70).74 tan (.74)/(1 + .74 tan (.74)) ~ .237 < ¢(1).

On [.74, 7/4], g(a) < cost (.74)z/(4 + ) < $(1).
(1.11) is now established. The next step is to discover those a’s for which the
solution A(a) in (1.12) satisfies (1.10). (1.9) and (1.10) are equivalent to (1.9)
and

(1.13) (1 + H)(B) exp (B)fcosa < 1.

Let H be the logarithm of the left-hand side of (1.13) and note that H(0) = — oco.

Let Q = H'. We will show that 0 > 0 and this implies that (1.13) is satisfied

on an interval [0, a,] where «, is the @ for which there is equality in (1.13).
Now

2B B 28 Bt ]
O(a) = tan a + — 2tana.
28 B(1 + B)
If < jorf=1wehave(25* + g 4 1) = 48 which implies Q(a) = 0. In any
case (28° 4+ B+ 1)/28 = § + 2tso that, if } < B < 1,

O(@) = (2! — 1.5 tana + a ianﬁQ%

=2t—1.5)tana + «
or, since 8 = 1 implies a = 1,
aQ(a) Zz a* + (2t — 1.5) =2} — 1.25 > 0.

Thus Q(a) = 0 for all a.
We next show that ¢(«), defined by (1.8) where 4 = A(«) satisfies (1.9), is a de-
creasing function on [0, a,]. This comes from differentiating (1.8) and obtaining
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r=A' 1 F o — a sin a
(1.14) e _A¢(A)+1+,8<2(1+,8) cos cos a sin >

Differentiating (1.9) we get

(1.15)  A'g(4) = 1__1._12%#052 a(—2tana + F(T%—ﬁ)>

(1.14) and (1.15) imply that ¢’ < 0 if, and only if,

(1.16) P tana— P < F —2tana>§0.
2(1 + 8) A* — 1\B(1 + B)

Since ' = a 4 (1 + f)tanaand a — (1 + B)tana < a — tana < 0 we obtain

from (1.16) that ¢’ < 0 if and only if

g (48438 — l)tana — 3a

(1.17) = (3 +3p)tana — «

Since we are on [0, a,] we need only show, in view of (1.10), that the right-hand
side of (1.12) is no greater than 28 which is easy to do if we use tana = a.

Let ¢, = ¢(,). Then since ¢(0) = % ((1.8) and (1.9)) for any 0 < ¢ < ¢, there
is an a, € [0, @ ] such that ¢ = ¢(a,) and by then taking 4, to satisfy (1.9) for
a = a, we will have found G..

When ¢ = ¢,, equality holds in (1.10) and the solution G, is the same as
Huber’s solution (see Section 9 of [1]) when hisa = b. Since Huber has obtained
the solution when ¢ < ¢, the above argument gives the solution when ¢ > ¢,.

Here is a tabulation of some values of ¢, a, 4 and I:

3 a A 1
.25 .507 1.655 .08
.20 .58 1.511 .16
.15 .625 1.436 .23
.10 .693 1.354 .38
.065 .75 1.320 .53
.05 779 1.322 .6
.031 .83 1.35 72

a, ~ .83, ¢, ~ .03.

2. Non-robust estimates. In the present section we will show that there is no
linear function of order statistics (LFO) which is robust for the family

2
2.1 //a:{F|1_ > 1o Soste o}.
@1 » e
(Note that (2.1) differs from (1.7) by virtue of a positivity requirement—this
allows us to avoid some dull details.) The same result is then carried over to
the e-normal model for ¢ sufficiently large.
The distribution F, given by (1.3) minimizes information over _~,. When
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F, is the underlying distribution the “best LFO” for estimating the location
parameter (see [2]) is determined by the weight function

22)  w(t) = —(log £.)'F, (B)/I(F,) = 1

;‘ﬁ B sect (aF, (1))

il F(—1)< 1< Fl)
=0 otherwise .
This estimate has asymptotic variance 1/I(F,) at F,. We will show that the

asymptotic variance takes values larger than 1/I(F,) on _Z,.
Suppose Fe . 7, is the underlying distribution. Then the asymptotic variance

of I/n 311 w(ij(n + 1))X,;, is given by
23 VOE) = 220 (e Bls, )0
( ) ( ) SFa(—l) Fa(—1) (s )f(F—l(S))f(F_l(t))
where B(s, t) = min (s, t) — st. Changing variables in (2.3), we get

1 1 dx
JIEE(x)) fIF(Fu(2))

For |x| < 1, we have F,(x) = } + L(x) where (from (1.3))
Lix) — 8 [ sin 2ax]
=501l "
is an odd function. Let g be an even function and set G(x) = {§ g(v) dv, 2,(x) =
2, L(v)g(v) dv. Using this we can write, after some manipulation,
(2.4) o(9) = V21§ BFW(x), Fu(¥))9(x)9(y) dx dy
= G¥(1) + 4§ G(x)2,(x) dx .

If g(x) = 1 on (z,, z;) with 0 < z, < z, < 1, is symmetric, and is 0 where it is
not 1, then (2.4) and some calculation yields

V(F) = §20 §L1 B(Fo(%), Fu(p)) dy.

2 =z z,—z

(2.5) mm=@—w+zﬁ[

14+ 8 6 2
__ (sin 2az, — sin 2az,) 4 (z, — z,) cos 2a:l '
8a® 4a?

Let f be a density such that f(x) = f,(x), x > 1, f is symmetric, /(F) < oo,
f(x) =aon (¢, ¢,) where 0 < ¢, < ¢, < 1,and Fe. Z,. Let g,(x) = 1[f(F(F,(x)))
and note that g (x) = 1/a if F(c)) < F(x) < F(¢,). Put z; = F,”(F(c,)), z, =
F,*(F(c,)) and get, from the middle term of (2.4),

(2-6) 4V(F) = po(g5) = 1/a0(9,) -
Also,
a(c, — ¢) = Fle)) — Fle,) = Fo(z)) — Fi(2))

= _‘B__(zl — z)) — 2_10(_(sin 2az, — sin 2az) .

2(1 + 8)
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Some more calculation produces, as a — 0,

(2.7) (71— 29 = %,%(Cl —ca[l + o(1)].

Using this in (2.5) and then using (2.6), we have

(e = e L1 =21 4 o)

2

2.8)  VPIF) =

[24
cos* a
where o(1) goes to 0 as a — 0. We remind the reader that F depends on a as
well as ¢, ¢;. It is clear that if we can show that

(2.9) a’ [1_4—_@ - sin Za} S 1
costal f 2a

then there exists a, c,, ¢, such that V(F)I(F,) > 1. For 0 < a < #/2, sin2a < 2a,
cos* @ < 1 and (2.9) would therefore be satisfied if « + a*tan @ > tan a which
is obviously true for &« > 1 and is easy to check if a« < 1 by using sina > «a
and cos a > 1 — a*. We have then shown that for each a there is an F e _#, with
V(F)I(F,) > 1. A robust estimate for _Z, (as in Section 1, for example) has
asymptotic variance under F < 1/I(F,) for all Fe _#,. Hence there is no LFO
which is robust for _~.

We are also interested in .7, , = {F|§2,f =1 — cos’a/(1 + B), f > O}.
The examples obtained above carry over to 7, ,asfollows: If Fe _#Z (=)
has density f then f,(x) = A7'f(x/A) defines a distribution F, € .7, ,. Itiseasy
to verify that I(F, ,) = A*4a’/(1 + ) and by noting that Af,(F, '(u)) =
f(F~'(u)) we can obtain, for Fe _/,,

(2.10) VEF, ) = VE)I(F,) .
Our previous examples can now be used for _Z, , by the obvious transformation.
Let

@.11) 7. = (F|sup, |[F(x) — O] < &, f > 0}

where @ = standard normal distribution. In Section 1 we found a robust esti-
mate for this model when ¢ x .03 by use of the families _#, ,. Forgivene we
found a,, A, such that F, , € &, C ., 4, SO that I(F, ,) is the minimum
information over ., , and therefore, over & .. Note that sup, |F, . (x) —
®(x)| < ¢ is equivalent to saying sup, |F, (x) — @*(x)| = ¢ where ®* = normal
distribution with mean 0 and standard deviation 1/4,. Let F be a distribution
function depending on a, ¢,, ¢, which led to (2.8) when a = «,. We would like
to show that we can choose 4, c,, ¢, so that the right side of (2.8) is >1, and,
in addition, that such a choice gives an F satisfying sup, |F(x) — @“(x)| < e.
If we can do so we will have shown that there is no LFO which is robust for
.. We are able to do this for ¢ = .07 and surmise that there are examples
for .07 x ¢ = .03, but we have been hindered in finding them by the tedium of
the calculations. Here are the pertinent numbers when ¢ = .1: from the table
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at the end of Section 1, we have a«, = .69, 4, = 1.35. ¢, will be taken almost
=1 and a will be taken close to 0 so ¢, will have to satisfy

69)? [1 + .69 tan .69 sinl.38}
2.12 ( g sinl38hg  ys
(212 sy 6otwmn60 3 JU 9>

in order for V(F)I(F,) > 1. This means ¢, < .506. To choose 4, ¢, ¢, so that
sup, |F(x) — ®"¥(x)| < .1 let us find y, so that ®"*(1) — ®“¥(y,) = .2, i.e.,
7, = -415. From the definition of f following (2.5), F = F, on (1, co) and from
(1.8), we know that (F, — ®*)(1) = —e. Thus, if we take ¢, > 1,, ¢, close to
1, and a close to 0, we can get F to be within ¢ of ®*. For ¢ = .1 this means
¢, > .415. Since (2.12) is satisfied for ¢, < .506, we can use (2.10) and conclude
that there is an F, ;€ % ., With V(F, ;)I(F &, 1.35) > 1 which means that no LFO
is robust for 7 ;. X
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