A NOTE ON HUBER'S ROBUST ESTIMATION OF A LOCATION PARAMETER

By Jerome Sacks¹ and Donald Ylvisaker² Northwestern University and the University of California, Los Angeles

Huber, in his fundamental paper [1] and in [2], has considered the robust estimation of a location parameter and has obtained results which he applied to some examples including the ε -normal model, $\{F \mid \sup_x | F(x) - \Phi(x)| \le \varepsilon$, F symmetric}, when ε is sufficiently small ($\varepsilon \le \varepsilon_0 \sim .03$). In this note we show how his methods work for the family of distributions $\{F \mid \int_{-A}^A dF \ge p, F$ symmetric} and then use this to solve the ε -normal problem when $\varepsilon > \varepsilon_0$.

0. Introduction and summary. Let $\{X_i\}$ be a sequence of i.i.d. random variables with distribution function $F(x-\theta)$. Here θ is an unknown location parameter and F is assumed to be in a convex class $\mathscr F$ of distribution functions which are symmetric and have absolutely continuous densities f satisfying $E_F(f'|f)^2 = I(F) < \infty$. Huber proved (see Theorem 2 of [1]) that if $F_0 \in \mathscr F$ is sufficiently regular and $I(F_0) \le I(F)$ for all $F \in \mathscr F$, the maximum likelihood estimator, $\hat{\theta}$, of θ computed as if F_0 is the underlying distribution is robust in the sense that it "minimaxes" asymptotic variance (max over $\mathscr F$, min over a wide class of estimates). The maximum asymptotic variance of $\hat{\theta}$ is $1/I(F_0)$.

One of Huber's examples is the ε -contaminated normal model $\mathscr{F} = \{F | F = (1 - \varepsilon)\Phi + \varepsilon H\}$ where ε is fixed, Φ is the standard normal distribution function and H is arbitrary. The distribution F_0 having minimum information in \mathscr{F} is given in Section 6 of [1]. Since F_0 is sufficiently regular, the theorem mentioned above applies to this example. For this model it has also been observed that there is a linear function of order statistics (LFO) which is robust in the same sense. In particular (cf. [2]) an appropriate α -trimmed mean has asymptotic variance bounded on \mathscr{F} by $1/I(F_0)$.

A second example is the ε -normal model $\mathscr{F}_{\varepsilon} = \{F | \sup_x |F(x) - \Phi(x)| \le \varepsilon\}$. For small ε ($\varepsilon \le \varepsilon_0 \cong .03$) the F_0 which minimizes information is given in Section 9 of [1] and again Huber's Theorem produces a robust estimate. It is not known for this setting if there is a LFO which is robust.

In the first section of this paper, we show how Huber's methods work for the family of distributions $\mathscr{F} = \{F \mid \int_{-A}^A dF \ge p\}$ and then use the results to solve the ε -normal problem for $\varepsilon > \varepsilon_0$. In Section 2, we show there is no robust LFO for a family of distributions of the above type and that this applies also to the ε -normal model when ε is large enough. The tedium of calculations holds us

Received May 17, 1971; revised November 17, 1971.

¹ Research sponsored in part by NSF Grant No. GP-28576.

² Research sponsored in part by Air Force Grant No. AFOSR 69-1781.

to the observation that for $\varepsilon \ge \varepsilon_1 \cong .07$, there is no robust LFO for the ε -normal model.

1. Robust estimates. It will be assumed throughout that the distributions under consideration are symmetric and have finite information. Thus each distribution F has an absolutely continuous density f satisfying $E_F(f'/f)^2 < \infty$.

Huber has shown (Theorem 2 of [1] and [2]) that if f_0'/f_0 is absolutely continuous then $I(F_0)$ is minimized over a convex family \mathscr{F} at F_0 if, and only if,

(1.2)
$$u_0 = I(F_0) + 4 \frac{(f_0^{\frac{1}{2}})''}{f_0^{\frac{1}{2}}}.$$

Suppose now that u_0 is a given symmetric function and that f_0 is a density function satisfying (1.2). Then F_0 minimizes information over $\mathscr{M} = \{F \mid \S u_0 f \leq 0\}$. Thus, by solving (1.2) for a fixed u_0 , one might find robust estimates for models specified by an integral condition of the form $\S u_0 f \leq 0$. We have done this for the simple integral condition $\S^A_{-A} f \geq p$ (which comes from taking u_0 to be a negative constant on $|x| \leq A$ and a positive constant on |x| > A). Instead of reproducing the (straight-forward) details involved in the choice of u_0 and the solution of (1.2), we proceed directly to the relevant densities.

For $0 < \alpha < \pi/2$, let

(1.3)
$$f_{\alpha}(x) = \frac{\beta(\alpha)}{1 + \beta(\alpha)} \cos^{2} \alpha x \quad \text{if} \quad |x| \leq 1$$
$$= \frac{\beta(\alpha)}{1 + \beta(\alpha)} \cos^{2} \alpha e^{2\beta} e^{-2\beta|x|} \quad \text{if} \quad |x| > 1$$

where $\beta(\alpha) = \alpha \tan \alpha$. In what follows we usually suppress the dependence of β on α . We note that f_{α} is a density with the following properties:

(1.4)
$$-f_{\alpha}'/f_{\alpha} = (2\beta) \frac{\tan \alpha x}{\tan \alpha} \quad \text{if} \quad |x| \leq 1$$
$$= (2\beta) \operatorname{sgn} x \quad \text{if} \quad |x| > 1,$$
$$I(F_{\alpha}) = 4\alpha^{2} \frac{\beta}{1+\beta},$$

(1.6)
$$I(F_{\alpha}) + 4 \frac{(f_{\alpha}^{\frac{1}{2}})''}{f_{\alpha}^{\frac{1}{2}}} = u_{\alpha} = -\frac{I(F_{\alpha})}{\beta} \quad \text{if} \quad |x| \leq 1$$
$$= (2\beta)^{2} + I(F_{\alpha}) \quad \text{if} \quad |x| > 1.$$

Accordingly, F_{α} is the minimum information distribution in the class

(1.7)
$$\mathcal{M}_{\alpha} = \left\{ F \middle| \int_{-1}^{1} f \geq 1 - \frac{\cos^{2} \alpha}{1 + \beta} \right\}.$$

If we now set $f_{\alpha,A}(x) = A^{-1}f_{\alpha}(x/A)$ and take $\mathcal{M}_{\alpha,A} = \{F \mid \int_{-A}^{A} f \ge 1 - \cos^2 \alpha/(1+\beta)\}$, it follows that $F_{\alpha,A}$ is the minimum information distribution in $\mathcal{M}_{\alpha,A}$. Thus

PROPOSITION 1. The maximum likelihood estimate of θ computed when the underlying distribution is $f_{\alpha,A}$ is robust in the sense described in the introduction with $\mathcal{F} = \mathcal{M}_{\alpha,A}$.

Before proceeding we remark that $1 - \cos^2 \alpha/(1 + \beta)$ increases from 0 to 1 as α goes from 0 to $\pi/2$. Here is a short tabulation of this dependence together with the minimum information numbers in the particular case A = 1:

$1 - \frac{\cos^2 \alpha}{1 + \beta}$	α	$I(F_{\alpha})$
.4	.5	.21
.5	.59	.39
.6	.67	.62
.7	.76	• .99
.8	.88	1.6
.9	1.02	2.59.

We turn now to the ε -normal example and show

PROPOSITION 2. If Φ is the standard normal distribution and $\mathscr{F}_{\varepsilon} = \{F \mid \sup_{x} | F(x) - \Phi(x)| \leq \varepsilon\}$ then there is a G_{ε} in $\mathscr{F}_{\varepsilon}$ which minimizes information. The maximum likelihood estimate of θ when G_{ε} is the underlying distribution is robust in the sense described in the introduction with $\mathscr{F} = \mathscr{F}_{\varepsilon}$. For $\varepsilon > \varepsilon_0$ (\sim .03) the density of G_{ε} is $f_{\alpha_{\varepsilon},A_{\varepsilon}}(f_{\alpha,A}$ is defined following (1.7)) where α_{ε} , A_{ε} satisfy (1.8), (1.9), (1.10) below. For $\varepsilon < \varepsilon_0$, G_{ε} is given by Huber in Section 9 of [1].

PROOF. We wish to find $G_{\varepsilon} \in \mathscr{F}_{\varepsilon}$ which minimizes I(F). Let $p(A) = \Phi(A) - \Phi(-A) - 2\varepsilon$. Then if $F \in \mathscr{F}_{\varepsilon}$, $F(A) - F(-A) \ge p(A)$, i.e., $F \in \mathscr{M}_{\alpha,A}$ if α is now chosen so that $\Phi(A) - \Phi(-A) - 2\varepsilon = 1 - \cos^2 \alpha/(1+\beta)$ or

(1.8)
$$\Phi(A) = \varepsilon + 1 - \frac{1}{2} \cos^2 \alpha / (1 + \beta).$$

If we can find, for given ε , α_{ε} , A_{ε} to satisfy (1.8) and such that $G_{\varepsilon} = F_{\alpha_{\varepsilon}, A_{\varepsilon}} \in \mathscr{F}_{\varepsilon}$ we would be finished. It is enough to find α , A to satisfy (1.8) and, in addition, to satisfy $f_{\alpha,A} \leq \varphi$ on [0, A], $f_{\alpha,A} \geq \varphi$ on $[A, \infty)$ ($\varphi = \Phi'$). This implies that $f_{\alpha,A}(A) = \varphi(A)$ or

(1.9)
$$A\varphi(A) = \cos^2 \alpha \frac{\beta(\alpha)}{1 + \beta(\alpha)}.$$

Now $f_{\alpha,A} \leq \varphi$ on [0, A] if $x \geq 2\alpha/A \tan{(\alpha x/A)}$ on [0, A] which, from convexity of tan, is equivalent to

$$(1.10) A^2 \ge 2\beta(\alpha) .$$

It is easy to verify that (1.10) implies $f_{\alpha,A} \ge \varphi$ on $[A, \infty)$.

Our problem then is to find, a pair α , A which satisfies (1.8), (1.9), (1.10). To do so it is convenient to go backwards and for given α find $A(\alpha)$, $\varepsilon(\alpha)$ which satisfies (1.8), (1.9), (1.10) and then observe that ε is a decreasing function of α .

We will be able to carry out this argument for $\alpha \leq \alpha_0$ (α_0 is defined later in the proof) which will give the result for $\epsilon \geq \epsilon(\alpha_0) = \epsilon_0$.

The first step is to note that, if we let $g(\alpha)$ equal the right-hand side of (1.9),

It follows from (1.11) and the fact that $A\phi(A)$ decreases to 0 on [1, ∞) that

(1.12) for each $\alpha \in (0, \pi/2)$ there is an $A(\alpha) > 1$ which satisfies (1.9).

The solution A on [0, 1] is useless to us and we ignore it.

To establish (1.11) we note that

$$g'(\alpha) = -2\sin\alpha\cos\alpha\frac{\beta}{1+\beta} + \frac{(\tan\alpha(1+\beta)+\alpha)\cos^2\alpha}{(1+\beta)^2} \le 0$$

if, and only if, $(2\beta^2 + \beta - 1)\tan \alpha \ge \alpha$. On $[\pi/4, \pi/2]\tan \alpha \ge 1$, $\beta(\alpha) \ge \alpha$ and, consequently, $(2\beta^2 + \beta - 1)\tan \alpha \ge 2\alpha^2 + \alpha - 1 \ge \alpha + \pi^2/8 - 1 \ge \alpha$ if $\alpha \ge \pi/4$. Thus g is decreasing on $[\pi/4, \pi/2]$ and $g(\pi/4) = \frac{1}{2}\pi/(4 + \pi) < \phi(1)$.

On $[0, 2^{\frac{1}{2}}/2]$, $\tan \alpha \le 1$ so that $\beta(\alpha) \le \alpha$ and then $(2\beta^2 + \beta - 1) \tan \alpha \le \alpha$. Thus g is increasing on $[0, 2^{\frac{1}{2}}/2]$ and it is easy to calculate that $g(2^{\frac{1}{2}}/2) < \phi(1)$.

On
$$[2^{\frac{1}{2}}/2, .74]$$
, $g(\alpha) \leq \cos^2(.70).74 \tan(.74)/(1 + .74 \tan(.74)) \sim .237 < \phi(1)$.
On $[.74, \pi/4]$, $g(\alpha) \leq \cos^2(.74)\pi/(4 + \pi) < \phi(1)$.

(1.11) is now established. The next step is to discover those α 's for which the solution $A(\alpha)$ in (1.12) satisfies (1.10). (1.9) and (1.10) are equivalent to (1.9) and

$$(1.13) (1+\beta)(\pi\beta)^{\frac{1}{2}} \exp(\beta)/\cos^2\alpha \leq 1.$$

Let H be the logarithm of the left-hand side of (1.13) and note that $H(0) = -\infty$. Let Q = H'. We will show that $Q \ge 0$ and this implies that (1.13) is satisfied on an interval $[0, \alpha_0]$ where α_0 is the α for which there is equality in (1.13).

Now

$$Q(\alpha) = \tan \alpha \frac{2\beta^2 + \beta + 1}{2\beta} + \frac{2\beta^2 + \beta + 1}{\beta(1+\beta)} - 2 \tan \alpha.$$

If $\beta \leq \frac{1}{2}$ or $\beta \geq 1$ we have $(2\beta^2 + \beta + 1) \geq 4\beta$ which implies $Q(\alpha) \geq 0$. In any case $(2\beta^2 + \beta + 1)/2\beta \geq \frac{1}{2} + 2^{\frac{1}{2}}$ so that, if $\frac{1}{2} \leq \beta \leq 1$,

$$Q(\alpha) \ge (2^{\frac{1}{2}} - 1.5) \tan \alpha + \alpha \inf_{\frac{1}{2} < \beta < 1} \frac{2\beta^2 + \beta + 1}{2\beta(1 + \beta)}$$
$$= (2^{\frac{1}{2}} - 1.5) \tan \alpha + \alpha$$

or, since $\beta \geq \frac{1}{2}$ implies $\alpha \geq \frac{1}{2}$,

$$\alpha Q(\alpha) \ge \alpha^2 + (2^{\frac{1}{2}} - 1.5)\beta \ge 2^{\frac{1}{2}} - 1.25 > 0$$
.

Thus $Q(\alpha) \ge 0$ for all α .

We next show that $\varepsilon(\alpha)$, defined by (1.8) where $A = A(\alpha)$ satisfies (1.9), is a decreasing function on $[0, \alpha_0]$. This comes from differentiating (1.8) and obtaining

$$(1.14) \qquad \varepsilon' = A'\phi(A) + \frac{1}{1+\beta} \left(\frac{\beta'}{2(1+\beta)} \cos^2 \alpha - \cos \alpha \sin \alpha \right).$$

Differentiating (1.9) we get

$$(1.15) A'\phi(A) = \frac{1}{1-A^2} \frac{\beta}{1+\beta} \cos^2 \alpha \left(-2 \tan \alpha + \frac{\beta'}{\beta(1+\beta)}\right).$$

(1.14) and (1.15) imply that $\varepsilon' \leq 0$ if, and only if,

$$(1.16) \qquad \frac{\beta'}{2(1+\beta)} - \tan \alpha - \frac{\beta}{A^2 - 1} \left(\frac{\beta'}{\beta(1+\beta)} - 2 \tan \alpha \right) \leq 0.$$

Since $\beta' = \alpha + (1 + \beta) \tan \alpha$ and $\alpha - (1 + \beta) \tan \alpha \le \alpha - \tan \alpha \le 0$ we obtain from (1.16) that $\varepsilon' \le 0$ if and only if

(1.17)
$$A^{2} \geq \frac{(4\beta^{2} + 3\beta - 1)\tan\alpha - 3\alpha}{(3+3\beta)\tan\alpha - \alpha}.$$

Since we are on $[0, \alpha_0]$ we need only show, in view of (1.10), that the right-hand side of (1.12) is no greater than 2β which is easy to do if we use $\tan \alpha \ge \alpha$.

Let $\varepsilon_0 = \varepsilon(\alpha_0)$. Then since $\varepsilon(0) = \frac{1}{2}$ ((1.8) and (1.9)) for any $0 \le \varepsilon \le \varepsilon_0$ there is an $\alpha_{\varepsilon} \in [0, \alpha_0]$ such that $\varepsilon = \varepsilon(\alpha_{\varepsilon})$ and by then taking A_{ε} to satisfy (1.9) for $\alpha = \alpha_{\varepsilon}$ we will have found G_{ε} .

When $\varepsilon = \varepsilon_0$, equality holds in (1.10) and the solution G_{ε_0} is the same as Huber's solution (see Section 9 of [1]) when his a = b. Since Huber has obtained the solution when $\varepsilon < \varepsilon_0$ the above argument gives the solution when $\varepsilon > \varepsilon_0$.

Here is a tabulation of some values of ε , α , A and I:

ε	α	\boldsymbol{A}	I
.25	.507	1.655	.08
.20	.58	1.511	.16
.15	.625	1.436	.23
.10	.693	1.354	.38
.065	.75	1.320	.53
.05	.779	1.322	.6
.031	.83	1.35	.72

 $\alpha_0 \sim .83$, $\epsilon_0 \sim .03$.

2. Non-robust estimates. In the present section we will show that there is no linear function of order statistics (LFO) which is robust for the family

(2.1)
$$\mathcal{M}_{\alpha} = \left\{ F \middle| \mathfrak{J}_{-1}^{1} f \geq 1 - \frac{\cos^{2} \alpha}{1+\beta}, f > 0 \right\}.$$

(Note that (2.1) differs from (1.7) by virtue of a positivity requirement—this allows us to avoid some dull details.) The same result is then carried over to the ε -normal model for ε sufficiently large.

The distribution F_{α} given by (1.3) minimizes information over \mathcal{M}_{α} . When

 F_{α} is the underlying distribution the "best LFO" for estimating the location parameter (see [2]) is determined by the weight function

$$(2.2) w(t) = -(\log f_{\alpha})'' F_{\alpha}^{-1}(t) / I(F_{\alpha}) = \frac{1+\beta}{2\beta} \sec^{2}(\alpha F_{\alpha}^{-1}(t))$$

$$if F_{\alpha}(-1) \leq t \leq F_{\alpha}(1)$$

$$= 0 otherwise.$$

This estimate has asymptotic variance $1/I(F_{\alpha})$ at F_{α} . We will show that the asymptotic variance takes values larger than $1/I(F_{\alpha})$ on \mathcal{M}_{α} .

Suppose $F \in \mathcal{M}_{\alpha}$ is the underlying distribution. Then the asymptotic variance of $1/n \sum_{i=1}^{n} w(i/(n+1))X_{(i)}$ is given by

$$(2.3) V(F) = \int_{F_{\alpha}(-1)}^{F_{\alpha}(1)} \int_{F_{\alpha}(-1)}^{F_{\alpha}(1)} B(s, t) \frac{w(s)w(t)}{f(F^{-1}(s))f(F^{-1}(t))} ds dt$$

where $B(s, t) = \min(s, t) - st$. Changing variables in (2.3), we get

$$V(F) = \frac{1}{4} \int_{-1}^{1} \int_{-1}^{1} B(F_{\alpha}(x), F_{\alpha}(y)) \frac{1}{f(F^{-1}(F_{\alpha}(x)))} \frac{1}{f(F^{-1}(F_{\alpha}(y)))} dx dy.$$

For $|x| \le 1$, we have $F_{\alpha}(x) = \frac{1}{2} + L(x)$ where (from (1.3))

$$L(x) = \frac{\beta}{2(1+\beta)} \left[x + \frac{\sin 2\alpha x}{2\alpha} \right]$$

is an odd function. Let g be an even function and set $G(x) = \int_0^x g(v) dv$, $\lambda_g(x) = \int_{-1}^x L(v)g(v) dv$. Using this we can write, after some manipulation,

(2.4)
$$\rho(g) = \int_{-1}^{1} \int_{-1}^{1} B(F_{\alpha}(x), F_{\alpha}(y)) g(x) g(y) dx dy = G^{2}(1) + 4 \int_{0}^{1} G(x) \lambda_{\alpha}(x) dx.$$

If $g_0(x) = 1$ on (z_0, z_1) with $0 < z_0 < z_1 < 1$, is symmetric, and is 0 where it is not 1, then (2.4) and some calculation yields

(2.5)
$$\rho(g_0) = (z_1 - z_0)^2 + \frac{2\beta}{1+\beta} \left[\frac{z_1^3 - z_0^3}{6} - \frac{z_1 - z_0}{2} - \frac{(\sin 2\alpha z_1 - \sin 2\alpha z_0)}{8\alpha^3} + \frac{(z_1 - z_0)\cos 2\alpha}{4\alpha^2} \right].$$

Let f be a density such that $f(x) = f_{\alpha}(x)$, x > 1, f is symmetric, $I(F) < \infty$, f(x) = a on (c_0, c_1) where $0 < c_0 < c_1 < 1$, and $F \in \mathcal{M}_{\alpha}$. Let $g_f(x) = 1/f(F^{-1}(F_{\alpha}(x)))$ and note that $g_f(x) = 1/a$ if $F(c_0) < F_{\alpha}(x) < F(c_1)$. Put $z_0 = F_{\alpha}^{-1}(F(c_0))$, $z_1 = F_{\alpha}^{-1}(F(c_1))$ and get, from the middle term of (2.4),

(2.6)
$$4V(F) = \rho(g_f) \ge 1/a^2 \rho(g_0).$$

Also,

$$a(c_1 - c_0) = F(c_1) - F(c_0) = F_{\alpha}(z_1) - F_{\alpha}(z_0)$$

$$= \frac{\beta}{2(1+\beta)} (z_1 - z_0) - \frac{1}{2\alpha} (\sin 2\alpha z_1 - \sin 2\alpha z_0) .$$

Some more calculation produces, as $a \rightarrow 0$,

(2.7)
$$(z_1 - z_0) = \frac{(1+\beta)}{\beta \cos^2 \alpha} (c_1 - c_0) a [1+o(1)].$$

Using this in (2.5) and then using (2.6), we have

$$(2.8) V(F)I(F_{\alpha}) \ge \frac{\alpha^2}{\cos^4 \alpha} (c_1 - c_0)^2 \left[\frac{1+\beta}{\beta} + 1 - \frac{\sin 2\alpha}{2\alpha} \right] \cdot [1+o(1)]$$

where o(1) goes to 0 as $a \to 0$. We remind the reader that F depends on a as well as c_0 , c_1 . It is clear that if we can show that

(2.9)
$$\frac{\alpha^2}{\cos^4 \alpha} \left[\frac{1+\beta}{\beta} + 1 - \frac{\sin 2\alpha}{2\alpha} \right] > 1$$

then there exists a, c_0 , c_1 such that $V(F)I(F_\alpha) > 1$. For $0 < \alpha < \pi/2$, $\sin 2\alpha < 2\alpha$, $\cos^4 \alpha < 1$ and (2.9) would therefore be satisfied if $\alpha + \alpha^2 \tan \alpha > \tan \alpha$ which is obviously true for $\alpha \ge 1$ and is easy to check if $\alpha < 1$ by using $\sin \alpha > \alpha$ and $\cos \alpha > 1 - \alpha^2$. We have then shown that for each α there is an $F \in \mathcal{M}_\alpha$ with $V(F)I(F_\alpha) > 1$. A robust estimate for \mathcal{M}_α (as in Section 1, for example) has asymptotic variance under $F \le 1/I(F_\alpha)$ for all $F \in \mathcal{M}_\alpha$. Hence there is no LFO which is robust for \mathcal{M}_α .

We are also interested in $\mathscr{M}_{\alpha,A} = \{F \mid \int_{-A}^A f \geq 1 - \cos^2 \alpha/(1+\beta), f > 0\}$. The examples obtained above carry over to $\mathscr{M}_{\alpha,A}$ as follows: If $F \in \mathscr{M}_{\alpha}(=\mathscr{M}_{\alpha,1})$ has density f then $f_A(x) = A^{-1}f(x/A)$ defines a distribution $F_A \in \mathscr{M}_{\alpha,A}$. It is easy to verify that $I(F_{\alpha,A}) = A^{-2}4\alpha^2\beta/(1+\beta)$ and by noting that $Af_A(F_A^{-1}(u)) = f(F^{-1}(u))$ we can obtain, for $F \in \mathscr{M}_{\alpha}$,

$$(2.10) V(F_A)I(F_{\alpha,A}) = V(F)I(F_{\alpha}).$$

Our previous examples can now be used for $\mathcal{M}_{\alpha,A}$ by the obvious transformation. Let

$$(2.11) \mathscr{F}_{\varepsilon} = \{F|\sup_{x} |F(x) - \Phi(x)| \le \varepsilon, f > 0\}$$

where $\Phi=$ standard normal distribution. In Section 1 we found a robust estimate for this model when $\varepsilon \gtrsim .03$ by use of the families $\mathscr{M}_{\alpha,A}$. For given ε we found α_{ε} , A_{ε} such that $F_{\alpha_{\varepsilon},A_{\varepsilon}} \in \mathscr{F}_{\varepsilon} \subset \mathscr{M}_{\alpha_{\varepsilon},A_{\varepsilon}}$ so that $I(F_{\alpha_{\varepsilon},A_{\varepsilon}})$ is the minimum information over $\mathscr{M}_{\alpha_{\varepsilon},A_{\varepsilon}}$ and therefore, over $\mathscr{F}_{\varepsilon}$. Note that $\sup_{z} |F_{\alpha_{\varepsilon},A_{\varepsilon}}(x) - \Phi(x)| \le \varepsilon$ is equivalent to saying $\sup_{z} |F_{\alpha_{\varepsilon}}(x) - \Phi^{A_{\varepsilon}}(x)| \le \varepsilon$ where $\Phi^{A_{\varepsilon}} = \text{normal distribution with mean 0 and standard deviation <math>1/A_{\varepsilon}$. Let F be a distribution function depending on a, c_0 , c_1 which led to (2.8) when $\alpha = \alpha_{\varepsilon}$. We would like to show that we can choose a, c_0 , c_1 so that the right side of (2.8) is >1, and, in addition, that such a choice gives an F satisfying $\sup_{z} |F(x) - \Phi^{A_{\varepsilon}}(x)| \le \varepsilon$. If we can do so we will have shown that there is no LFO which is robust for $\mathscr{F}_{\varepsilon}$. We are able to do this for $\varepsilon \gtrsim .07$ and surmise that there are examples for $.07 \gtrsim \varepsilon \gtrsim .03$, but we have been hindered in finding them by the tedium of the calculations. Here are the pertinent numbers when $\varepsilon = .1$: from the table

at the end of Section 1, we have $\alpha_{\epsilon} = .69$, $A_{\epsilon} = 1.35$. c_1 will be taken almost = 1 and a will be taken close to 0 so c_0 will have to satisfy

$$(2.12) \qquad \frac{(.69)^2}{\cos^4(.69)} \left[\frac{1 + .69 \tan .69}{.69 \tan .69} + 1 - \frac{\sin 1.38}{1.38} \right] (1 - c_0)^2 > 1$$

in order for $V(F)I(F_{\alpha}) > 1$. This means $c_0 < .506$. To choose a, c_0, c_1 so that $\sup_x |F(x) - \Phi^{1.35}(x)| \le .1$ let us find γ_0 so that $\Phi^{1.35}(1) - \Phi^{1.35}(\gamma_0) = .2$, i.e., $\gamma_0 = .415$. From the definition of f following (2.5), $F = F_{\alpha}$ on $(1, \infty)$ and from (1.8), we know that $(F_{\alpha_{\varepsilon}} - \Phi^{A_{\varepsilon}})(1) = -\varepsilon$. Thus, if we take $c_0 > \gamma_0$, c_1 close to 1, and a close to 0, we can get F to be within ε of $\Phi^{A_{\varepsilon}}$. For $\varepsilon = .1$ this means $c_0 > .415$. Since (2.12) is satisfied for $c_0 < .506$, we can use (2.10) and conclude that there is an $F_{1.35} \in \mathcal{F}_{.1}$ with $V(F_{1.35})I(F_{.69,1.35}) > 1$ which means that no LFO is robust for $\mathcal{F}_{.1}$.

REFERENCES

- [1] Huber, Peter J. (1964). Robust estimation of a location parameter, Ann. Math. Statist. 35 73-101.
- [2] HUBER, PETER J. (1969). Théorie de l'inférence statistique robuste. Les Presses de l'Université de Montréal.