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A THRESHOLD FOR LOG-CONCAVITY FOR PROBABILITY
GENERATING FUNCTIONS AND ASSOCIATED
MOMENT INEQUALITIES

By J. KEILSON
University of Rochester

Let {pa}oV be a discrete distribution on 0 < n < N and let g(u) =
2o pnur beits pgf. Then for0 < ¢ < oo gu(u) = g(u + 1)/g(1 + 1) = 2 pu(un
is a family of pgf’s indexed by ¢. It is shown that there is a unique value
t* such that {pa(f)}o¥ is log-concave (PF;) for all t = ¢* and is not log-
concave for 0 < 7 < t*. Asa consequence one finds the infinite set of moment
inequalities {pry/r}Vr = {pr4ny/(r + DI}r+1r =1,2,3, ... etc. where
#1-] is the rth factorial moment of {px}e¥ when the lattice distribution is
log-concave. The known set of inequalities for the continuous analogue is
shown to follow from the discrete inequalities.

0. Introduction and summary. A set of nonnegative masses {p,}=., on the lattice
of integers is PF, [5], and “log-concave” or “strongly unimodal” [8] if p,* =
Pas1Pn_ and there are no gaps in the domain of positive support. Such strongly
unimodal sequences play an important role in probability theory [8]. Let P(z) =
S1¥_, p.2* be the generating function for a set of nonnegative masses on the
lattice interval [0, N], with p, > 0. Then P,(z) = P(z + t) = }¥ p,(t)z* is such
a generating function for all + > 0. It will be seen that the semi-infinite interval
[0, co) has precisely one value r*, such that {p,(¢)};" is log-concave for = r*,
and is not log-concave for r < r*. As one direct consequence, we provide new
proofs of two important sets of inequalities, perhaps deserving of more attention
than they have received. The first states that if { p,},> is a log-concave probability
distribution, then

(0.1) {—(—lj—%}l/(r‘kl) é {ll_['r-]}l/r r = 1’ 29 cee
r + 1)! rl

Here p,; = Y5 puk(k — 1) - - - (k — r 4 1)} is the factorial moment of order r
[9]. In particular, one has that for all log-concave probability lattice distribu-
tions with nonnegative support,

(0.2) pe S 2p° +

where p, and g, are the ordinary first and second moments.
The inequality (0.2) has the continuous analogue

(0.3) py = 2

where ¢, = {7 x*f(x) dx and f(x) is any probability density function with purely
positive support such that log f(x) is a concave function on its interval of support.
Such probability density functions are also “strongly unimodal” and of interest
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to probability theory [4], [7]. Equation (0.3) is a special case of the analogue
of (0.1) for such density functions, which takes the form

(0.4) {_F‘m_
(k + 1)
The inequalities (0.1) are implicit in Theorem 2 of [6] by Karlin, Proschan
and Barlow. The inequalities (0.4) for continuous time have been given explic-
itly in [6], and in Barlow, Marshall and Proschan [2] under weaker conditions.
The Polya frequency sequences of order two and Pdlya frequency functions
of order two that have nonnegative support and total mass one are equivalent
to the log-concave sequences and log-concave density functions above. They
are described at length by Karlin [5] in his book on total positivity. The proper-
ties of PF, sequences needed for this paper are presented in a simple self-contained
form in [8] oriented towards probability theory and unimodality.

}1/(k+1) < {—#—k}l/k; k=12, .
— (k!

1. Real polynomials and log-concavity. It is widely known that if P(z) = > ¥ p, z*

is a polynomial of degree N with real coefficients having all real zeros, then (cf.
[1] Section 2.22), with the convention p_, = py,, = 0,
(11) Pk2gpk+1pk—1’ OékéN
The inequalities of (1.1) permit one to speak of the coefficients p, as being “log-
concave” when the coefficients are positive in that the sequence {log p,},” has
nonpositive second differences. The log-concavity is always latent for polyno-
mials with real coefficients, whether or not the zeros are real, in the sense of the
following definition and theorem.

DEFINITION. A polynomial P(z) = 3¢ p, z* for which p, = 0, p,, > 0, will be
said to be of type &, if its coefficients { p,}i’ are a log-concave sequence (cf. [8]),

i.e. if the coefficients satisfy (1.1) and the set {k: p, > 0} is connected. All such
polynomials will be said to be of type .7

THEOREM 1. Let Py(z) = ¥ po,2¥ be a polynomial of degree N with p,, > 0 and
all coefficients p,, real. Let the sequence {p.(1)}," be defined for all t = 0 by

(1.2) P(z) = Pz + 1) = X7 pu(1)2*,
so that .
PA1) = T ()P -
Then the set of nonnegative numbers t has some smallest finite value t* such that
Py(z + t*) is of type . Moreover, Py(z + t) is of type F, for all t = t*.

The proof of the theorem is based on the following lemma of some interest in
its own right. (cf. Chapter 8, Section 7 of [5].)

LEMMA. Let Py(z) be defined as in Theorem 1. Then there exists an A = 0 such
that
(1.3) Pz + 1) = pov [1i{z + @} IL: {2* + Bu(0)z + 1:(1)}
where for all t = A,
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ai(t) = 0; Bi(t) = 0; 7:(6) = 0 B (1) = ri(1) -

As proof we note that we may write

(1.4) Py(2) = poy 1 (z — 1) I1; {(z — w;)(z—W;)}

where the r; are real zeros of Py(z) and the w; and w;
in conjugate pairs. Hence

(1.5 Pz 40 =p [L:fz + (¢ = r)} L {(z + §)(z + &)

where for w; = x; + iy;, {; = (t — x;) + iy;. When 4, = max, ; {r;, x;} and
t = A,, coefficients in the monomial and quadratic factors of Py(z + r) will all
be nonnegative, so that Py(z + ¢) will be a polynomial in z with nonnegative
coefficients. Consider the quadratic term

Q,(2) =22+ (& + &)z + |G
(1.6) - )t (- ) 4y

=224 ;7 + ¢ -

are complex zeros taken

We note that
(1.7) clifo; = A1 + y¥r — x)7 2 1
when y;*/(r — x;)* < 3. Itfollows that each quadratic factor will be a polynomial
of type &’ whenever
(1.8) max; {y;*/(t — x;)’} = 3
i.e., whenever
(1.9) 1= Ay = max; {x; + [y;|/(3)}} .
The validity of the lemma then follows for 4 = max (4,, 4;). [I

It is known [5], [8] that the product of polynomials of type &7 is itself a poly-
nomial of type .. It then follows from Theorem 2 that Py(z + ¢) is such a
polynomial in z for all + > 4. A polynomial of type .2” need not have factors
of type & (To verify this the reader need only examine the case P(z) =
(22 + az + 1)* to find that P(z) is in the set &, when a* > %£. The factor z* 4

az + 1 is not of type .7 unless a* > 1.) To prove Theorem 1, we must show
that if P(z) is of type &, then Py(z + r) will also be for all ¢+ > 0.

Proor oF THEOREM 1. Let Py(z) = X ¥ p,. z* be of type &, with p,, > 0;
Ay, = P2 — PesrPior = 0,0 < k < N. We note that, for p,(¢) defined by (1.2),
we have for all 1 = 0 p,(f) = p,y, and A,(¢) = p},. Further,

(1.10) P(z) = Pz + 1) = 20 pulz + 0 = 27 27 pu(P)z7t*="
= 20 pA0)7" .
Hence,

(1.11) pAt) = 2 W) po = Por + (r + 1)P0r+1t + .-
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and

(1.12) P(1) = i (k — n(})tr="py, .

We see that for 0 < r < N — 1, p,’() is positive for ¢ > 0, so that p.(t) is posi-
tive and monotonic increasing for 1 > 0. We note in particular that p,’(0) =
(r + 1)po 41 Clearly P(z + ¢) = Pz 4 ¢ + ¢). It follows that!

(1.13) P = (k + Dpya(t) 0<k<N.

From simple algebra we then have

(1.14) 200 = 120 — prasDpeci()

= (k + 2} pu(t)Pra(t) — Pi+(DPe(D)}

and this may be rewritten as

(1.15) Pe(DA(t) = (k + 20 pea(DAL(1) + Pea(DAii(2)} -

Equation (1.15) may be written in vector matrix form as
(1.16) %A(r) — A(NA(r) .

When p,(0) > 0, for 0 < k < N, then p,(r) > 0 for all + > 0 and the matrix A(r)
has finite nonnegative components for all r > 0. If further A(0) has nonnegative
components (one always has A (0) = p2, > 0), (1.16) will have a unique solution
A(7) and all of its components will be nonnegative as required for the log-con-
cavity stipulated. We note from (1.11) that the vector p(?) is a continuous func-
tion of the vector p(0), and hence that A(z) is a continuous function of the vector
p(0). If some components of p(0) are zero, we may consider a sequence of
vectors p‘(0) with all positive components converging to p(0). By the above
reasoning A‘“(r) will be nonnegative and its limit A(r) will be nonnegative.

We have established that the set .7~ of nonnegative values ¢ for which Py(z + 1)
is of type &, is connected and unbounded. To complete the proof of the theorem
we must show that the set .7 is closed on the left. The case t* = 0 is trivial.
Let #, be positive and let P(z + ¢, + ¢) be of type & for all ¢ > 0. Consider
a sequence of positive ¢; converging to zero. It is known [5], [8] that convergent
log-concave sequences have log-concave limits. This implies that Pz + 1)) is
of type &, and .7 is closed on the left. []

2. A set of moment inequalities for log-concave lattice distributions. Many of the
basic lattice distributions of importance to statistics and probability are log-
concave sequences with connected support and A, = p,* — Pni1Pn_1 = 0 for all
n. A discussion of this prevalence and its underlying origins may be found in [8].

! This may also be seen from Py(z) = Py(z + ¢) so that 0/0tPy(z) = 3/0zPy(z). Hence Y] pi/(f)zk =
Zkp()zk=1 = 5 (k + 1)prya(n)z*.
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The important moment inequalities of Karlin, Proschan and Barlow (Theorem 2
of [6]) may be obtained from Theorem 1.

THEOREM 2. Let {p,},” be a log-concave probability distribution on the lattice of
nonnegative integers, and let p,, = Yoo pin(n — 1) --- (n — r + 1)} be its rth
factorial moment [9]. Then the sequence {y,,/r'},> is also log-concave. Moreover,

(2.1) to > {@}"‘ .

’ 1 = (2!
Equality in (2.1) holds for all r when {p,},> is geometric, i.e., when p, = (1 — 6)6",
0s0<I1.

Proor. It is known [5], [8] that all moments of integral order x, = Y=, n*p,
are finite for such lattice distributions. Consequently all factorial moments will
be finite as well. Suppose now that {p,}," is log-concave, i.e., is such a distribu-
tion with all support on 0 < n < N. Then P(z) = XV p,z", the probability
generating function for {p,};" is a polynomial of the type described in Theorem 1
for which the value t* = 0. Hence by Theorem 1, P(z + 1) = P(z) also has
log-concave coefficients. But it is known that P(z + 1) is the generating function
for the factorial moments, i.e. one has [9]

(22) Pz + 1) = X {ulrl)e -

This relationship may also be seen directly from (1.10) for r = 1. Consequently

(2.3) {&1}2 > Prren _Pr-n 1<r.
r! (r+ D! (r—=1)!
This together with py(1) = 1 implies (2.1) in the classical way, for lattice dis-
tributions on 0 < n < N. For a log-concave distribution {p,},> one considers
the sequence of distributions { p, *},¥ where p,* = p,/(p, + p, + - -+ + py) Which
converges to the given distribution. It is known [6] that log-concavity is unaf-
fected by truncation and convergence so that (2.3) and (2.1) continue to hold.
That the inequality bounds are tight may be seen for the geometric case.
Here P(z) = (1 — 6)/(1 — 6z) and

1-6 0 \*

2.4 Pzt )= _1—=0 _ N_>k

(24) C+D=1r—y—% Z°<1_0z

so that

(2.5) m:<—"_>’- 1< r
rl 1—-6/" =

and the inequalities in (2.1) become equalities. This completes the proof of
Theorem 2. []

The most important inequality for statistics is the case r = 2. One has for the
ordinary moments p, = & n"p, the following.
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CoroLLArY. If{p,},= is a log-concave distribution, then

(2.6) Pa S 2p° +

REMARK. The set of inequalities (2.1) does not characterize log-concavity. One
may have the full set of inequalities (2.1), but {p,},~ need not be log-concave.
The simplest example is provided by p, = (1 + 2)7%, p, = 0, p, = (1 + A)~* for
which P(z) = (1 4+ 22%)/(1 + 2). Then P(z + 1) = {(1 + 2) + 22z 4 22%}/(1 + 2)
and P(z)e 75 if 2 = 4.

3. Continuous distributions. The inequalities of (0.4) may be obtained from
those of (0.1) with the aid of a simple lemma, and associated limiting argument.

LEMMA. Let f(x) be log-concave with purely positive support and let F(x)=\z f(y) dy
be its cumulative distribution function. Then the lattice distribution {g,(a)},~ where

9.(a) = F(na) — F(na — a)
is log-concave for every a > 0.

Proor. Since f(x) is a log-concave function [4], and since the convolution of
two such functions is also such a function [4], then

3.1) g(a, x) = & f(x — u)du

is such a function. Moreover g(a, x) is continuous in x and its interval of posi-
tivity is connected. Consequently g(a, x + a)/g(a, x) is monotonic decreasing
in the interior of the support interval / as x increases and {g(a, na)}* = g(a,
na + a)g(a, na — a). Hence {g(a, na)},” is log-concave. The lemma follows from
the identification g,(a) = g(a, na). [

If we define g (a) to be the factorial moment of the lattice distribution with
masses g,(a), it is easy to establish that a®pu . (a) — p, = § xf(x)dx, as a —0 +,
and to infer (0.4) from (0.1) thereby. The weak convergence of F,(x) to F(x)
and the standard lemma (Feller, II, page 245) provide the desired result.
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