A THRESHOLD FOR LOG-CONCAVITY FOR PROBABILITY GENERATING FUNCTIONS AND ASSOCIATED MOMENT INEQUALITIES

By J. Keilson

University of Rochester

Let $\{p_n\}_0^N$ be a discrete distribution on $0 \le n \le N$ and let $g(u) = \sum_0^\infty p_n u^n$ be its pgf. Then for $0 \le t < \infty$ $g_t(u) = g(u+t)/g(1+t) = \sum_0^N p_n(t)u^n$ is a family of pgf's indexed by t. It is shown that there is a unique value t^* such that $\{p_n(t)\}_0^N$ is log-concave (PF_2) for all $t \ge t^*$ and is not log-concave for $0 < t < t^*$. As a consequence one finds the infinite set of moment inequalities $\{\mu_{[r]}/r!\}^{1/r} \ge \{\mu_{[r+1]}/(r+1)!\}^{1/r+1} \ r=1,2,3,\cdots$ etc. where $\mu_{[r]}$ is the rth factorial moment of $\{p_n\}_0^N$ when the lattice distribution is log-concave. The known set of inequalities for the continuous analogue is shown to follow from the discrete inequalities.

0. Introduction and summary. A set of nonnegative masses $\{p_n\}_{-\infty}^{\infty}$ on the lattice of integers is PF_2 [5], and "log-concave" or "strongly unimodal" [8] if $p_n^2 \ge p_{n+1}p_{n-1}$ and there are no gaps in the domain of positive support. Such strongly unimodal sequences play an important role in probability theory [8]. Let $P(z) = \sum_{k=0}^{N} p_k z^k$ be the generating function for a set of nonnegative masses on the lattice interval [0, N], with $p_N > 0$. Then $P_t(z) = P(z+t) = \sum_{0}^{N} p_k(t)z^k$ is such a generating function for all $t \ge 0$. It will be seen that the semi-infinite interval $[0, \infty)$ has precisely one value t^* , such that $\{p_k(t)\}_0^N$ is log-concave for $t \ge t^*$, and is not log-concave for $t < t^*$. As one direct consequence, we provide new proofs of two important sets of inequalities, perhaps deserving of more attention than they have received. The first states that if $\{p_n\}_0^{\infty}$ is a log-concave probability distribution, then

(0.1)
$$\left\{\frac{\mu_{[r+1]}}{(r+1)!}\right\}^{1/(r+1)} \leq \left\{\frac{\mu_{[r]}}{r!}\right\}^{1/r} \qquad r=1,2,\cdots.$$

Here $\mu_{[r]} = \sum_{0}^{\infty} p_{k}\{k(k-1)\cdots(k-r+1)\}$ is the factorial moment of order r [9]. In particular, one has that for all log-concave probability lattice distributions with nonnegative support,

$$\mu_2 \le 2\mu_1^2 + \mu_1$$

where μ_1 and μ_2 are the ordinary first and second moments.

The inequality (0.2) has the continuous analogue

$$\mu_2 \le 2\mu_1^2$$

where $\mu_k = \int_0^\infty x^k f(x) \, dx$ and f(x) is any probability density function with purely positive support such that $\log f(x)$ is a concave function on its interval of support. Such probability density functions are also "strongly unimodal" and of interest

Received September 1971; revised January 18, 1972.

to probability theory [4], [7]. Equation (0.3) is a special case of the analogue of (0.1) for such density functions, which takes the form

(0.4)
$$\left\{\frac{\mu_{k+1}}{(k+1)!}\right\}^{1/(k+1)} \leq \left\{\frac{\mu_k}{k!}\right\}^{1/k}; \qquad k=1,2,\cdots.$$

The inequalities (0.1) are implicit in Theorem 2 of [6] by Karlin, Proschan and Barlow. The inequalities (0.4) for continuous time have been given explicitly in [6], and in Barlow, Marshall and Proschan [2] under weaker conditions.

The Pólya frequency sequences of order two and Pólya frequency functions of order two that have nonnegative support and total mass one are equivalent to the log-concave sequences and log-concave density functions above. They are described at length by Karlin [5] in his book on total positivity. The properties of PF_2 sequences needed for this paper are presented in a simple self-contained form in [8] oriented towards probability theory and unimodality.

1. Real polynomials and log-concavity. It is widely known that if $P(z) = \sum_{0}^{N} p_{k} z^{k}$ is a polynomial of degree N with real coefficients having all real zeros, then (cf. [1] Section 2.22), with the convention $p_{-1} = p_{N+1} = 0$,

$$(1.1) p_k^2 \ge p_{k+1} p_{k-1}, 0 \le k \le N.$$

The inequalities of (1.1) permit one to speak of the coefficients p_k as being "log-concave" when the coefficients are positive in that the sequence $\{\log p_k\}_0^N$ has nonpositive second differences. The log-concavity is always latent for polynomials with real coefficients, whether or not the zeros are real, in the sense of the following definition and theorem.

DEFINITION. A polynomial $P(z) = \sum_{0}^{N} p_{k} z^{k}$ for which $p_{k} \ge 0$, $p_{N} > 0$, will be said to be of type \mathscr{P}_{N} if its coefficients $\{p_{k}\}_{0}^{N}$ are a log-concave sequence (cf. [8]), i.e. if the coefficients satisfy (1.1) and the set $\{k : p_{k} > 0\}$ is connected. All such polynomials will be said to be of type \mathscr{P} .

THEOREM 1. Let $P_0(z) = \sum_{k=0}^{N} p_{0k} z^k$ be a polynomial of degree N with $p_{0N} > 0$ and all coefficients p_{0k} real. Let the sequence $\{p_r(t)\}_{0}^N$ be defined for all $t \ge 0$ by

(1.2)
$$P_t(z) = P_0(z + t) = \sum_{k=0}^{N} p_k(t)z^k,$$

so that

$$p_r(t) = \sum_{k=0}^{N} {k \choose r} t^{k-r} p_{0k}.$$

Then the set of nonnegative numbers t has some smallest finite value t^* such that $P_0(z + t^*)$ is of type \mathcal{P}_N . Moreover, $P_0(z + t)$ is of type \mathcal{P}_N for all $t \ge t^*$.

The proof of the theorem is based on the following lemma of some interest in its own right. (cf. Chapter 8, Section 7 of [5].)

LEMMA. Let $P_0(z)$ be defined as in Theorem 1. Then there exists an $A \ge 0$ such that

(1.3)
$$P_0(z+t) = p_{0N} \prod_i \{z + \alpha_i(t)\} \prod_i \{z^2 + \beta_i(t)z + \gamma_i(t)\}$$
where for all $t \ge A$,

$$\alpha_i(t) \geq 0$$
; $\beta_i(t) \geq 0$; $\gamma_i(t) \geq 0$; $\beta_i^2(t) \geq \gamma_i(t)$.

As proof we note that we may write

$$(1.4) P_0(z) = p_{0N} \prod_i (z - r_i) \prod_j \{ (z - w_j)(z - \bar{w}_j) \}$$

where the r_i are real zeros of $P_0(z)$ and the w_j and \bar{w}_j are complex zeros taken in conjugate pairs. Hence

$$(1.5) P_0(z+t) = p_{0N} \prod_i \{z + (t-r_i)\} \prod_i \{(z+\zeta_i)(z+\zeta_i)\}$$

where for $w_j = x_j + iy_j$, $\bar{\zeta}_j = (t - x_j) + iy_j$. When $A_1 = \max_{i,j} \{r_i, x_j\}$ and $t \ge A_1$, coefficients in the monomial and quadratic factors of $P_0(z + t)$ will all be nonnegative, so that $P_0(z + t)$ will be a polynomial in z with nonnegative coefficients. Consider the quadratic term

(1.6)
$$Q_{j}(z) = z^{2} + (\zeta_{j} + \bar{\zeta}_{j})z + |\zeta_{j}|^{2}$$

$$= z^{2} + 2(t - x_{j})z + (t - x_{j})^{2} + y_{j}^{2}$$

$$= z^{2} + c_{1j}z + c_{0j}.$$

We note that

$$(1.7) c_{1j}^2/c_{0j} = 4[1 + y_j^2(t - x_j)^{-2}]^{-1} \ge 1$$

when $y_j^2/(t-x_j)^2 \le 3$. It follows that each quadratic factor will be a polynomial of type \mathscr{P} whenever

$$(1.8) \max_{i} \{ y_i^2 / (t - x_i)^2 \} \le 3$$

i.e., whenever

$$(1.9) t \ge A_2 = \max_j \{x_j + |y_j|/(3)^{\frac{1}{2}}\}.$$

The validity of the lemma then follows for $A = \max(A_1, A_2)$. \square

It is known [5], [8] that the product of polynomials of type \mathscr{P} is itself a polynomial of type \mathscr{P} . It then follows from Theorem 2 that $P_0(z+t)$ is such a polynomial in z for all $t \ge A$. A polynomial of type \mathscr{P} need not have factors of type \mathscr{P} . (To verify this the reader need only examine the case $P(z) = (z^2 + \alpha z + 1)^2$ to find that P(z) is in the set \mathscr{P}_4 when $\alpha^2 \ge \frac{2}{3}$. The factor $z^2 + \alpha z + 1$ is not of type \mathscr{P} unless $\alpha^2 \ge 1$.) To prove Theorem 1, we must show that if $P_0(z)$ is of type \mathscr{P}_N then $P_0(z+t)$ will also be for all $t \ge 0$.

PROOF OF THEOREM 1. Let $P_0(z) = \sum_0^N p_{0k} z^k$ be of type \mathscr{P}_N with $p_{0N} > 0$; $\Delta_{0k} = p_k^2 - p_{k+1} p_{k-1} \ge 0$, $0 \le k \le N$. We note that, for $p_k(t)$ defined by (1.2), we have for all $t \ge 0$ $p_N(t) = p_{0N}$, and $\Delta_N(t) = p_{0N}^2$. Further,

(1.10)
$$P_{t}(z) = P_{0}(z+t) = \sum_{0}^{N} p_{0k}(z+t)^{k} = \sum_{0}^{N} \sum_{0}^{N} p_{0k}(r^{k}) z^{r} t^{k-r}$$
$$= \sum_{0}^{N} p_{r}(t) z^{r}.$$

Hence,

$$(1.11) p_r(t) = \sum_{k=0}^{N} {k \choose r} t^{k-r} p_{0k} = p_{0r} + (r+1) p_{0r+1} t + \cdots$$

and

$$(1.12) p_r'(t) = \sum_{k=0}^{N} (k-r) {k \choose r} t^{k-r-1} p_{0k}.$$

We see that for $0 \le r \le N-1$, $p_r'(t)$ is positive for $t \ge 0$, so that $p_r(t)$ is positive and monotonic increasing for t > 0. We note in particular that $p_r'(0) = (r+1)p_{0,r+1}$. Clearly $P_t(z+\varepsilon) = P_0(z+t+\varepsilon)$. It follows that

$$(1.13) p_{k}'(t) = (k+1)p_{k+1}(t), 0 \le k \le N.$$

From simple algebra we then have

(1.14)
$$\frac{d}{dt}\Delta_k(t) = \frac{d}{dt} \{ p_k^2(t) - p_{k+1}(t)p_{k-1}(t) \}$$

$$= (k+2) \{ p_k(t)p_{k+1}(t) - p_{k+2}(t)p_{k-1}(t) \},$$

and this may be rewritten as

$$(1.15) p_k(t)\Delta_k'(t) = (k+2)\{p_{k+1}(t)\Delta_k(t) + p_{k-1}(t)\Delta_{k+1}(t)\}.$$

Equation (1.15) may be written in vector matrix form as

(1.16)
$$\frac{d}{dt} \Delta(t) = \Delta(t) A(t) .$$

When $p_k(0) > 0$, for $0 \le k \le N$, then $p_k(t) > 0$ for all $t \ge 0$ and the matrix $\mathbf{A}(t)$ has finite nonnegative components for all $t \ge 0$. If further $\mathbf{\Delta}(0)$ has nonnegative components (one always has $\mathbf{\Delta}_N(0) = p_{0N}^2 > 0$), (1.16) will have a unique solution $\mathbf{\Delta}(t)$ and all of its components will be nonnegative as required for the log-concavity stipulated. We note from (1.11) that the vector $\mathbf{p}(t)$ is a continuous function of the vector $\mathbf{p}(0)$, and hence that $\mathbf{\Delta}(t)$ is a continuous function of the vector $\mathbf{p}(0)$. If some components of $\mathbf{p}(0)$ are zero, we may consider a sequence of vectors $\mathbf{p}^{(\alpha)}(0)$ with all positive components converging to $\mathbf{p}(0)$. By the above reasoning $\mathbf{\Delta}^{(\alpha)}(t)$ will be nonnegative and its limit $\mathbf{\Delta}(t)$ will be nonnegative.

We have established that the set \mathscr{T} of nonnegative values t for which $P_0(z+t)$ is of type \mathscr{P}_N is connected and unbounded. To complete the proof of the theorem we must show that the set \mathscr{T} is closed on the left. The case $t^*=0$ is trivial. Let t_1 be positive and let $P_0(z+t_1+\varepsilon)$ be of type \mathscr{P}_N for all $\varepsilon>0$. Consider a sequence of positive ε_j converging to zero. It is known [5], [8] that convergent log-concave sequences have log-concave limits. This implies that $P_0(z+t_1)$ is of type \mathscr{P}_N and \mathscr{T} is closed on the left. \square

2. A set of moment inequalities for log-concave lattice distributions. Many of the basic lattice distributions of importance to statistics and probability are log-concave sequences with connected support and $\Delta_n = p_n^2 - p_{n+1}p_{n-1} \ge 0$ for all n. A discussion of this prevalence and its underlying origins may be found in [8].

¹ This may also be seen from $P_t(z) = P_0(z+t)$ so that $\partial/\partial t P_t(z) = \partial/\partial z P_t(z)$. Hence $\sum p_k'(t)z^k = \sum kp_k(t)z^{k-1} = \sum (k+1)p_{k+1}(t)z^k$.

1706 J. KEILSON

The important moment inequalities of Karlin, Proschan and Barlow (Theorem 2 of [6]) may be obtained from Theorem 1.

THEOREM 2. Let $\{p_n\}_0^{\infty}$ be a log-concave probability distribution on the lattice of nonnegative integers, and let $\mu_{[r]} = \sum_{n=0}^{\infty} p_n \{n(n-1)\cdots(n-r+1)\}$ be its rth factorial moment [9]. Then the sequence $\{\mu_{[r]}/r!\}_1^{\infty}$ is also log-concave. Moreover,

$$(2.1) \frac{\mu_{[1]}}{1!} \ge \left\{\frac{\mu_{[2]}}{2!}\right\}^{\frac{1}{2}} \cdot \cdots .$$

Equality in (2.1) holds for all r when $\{p_n\}_{0}^{\infty}$ is geometric, i.e., when $p_n = (1 - \theta)\theta^n$, $0 \le \theta < 1$.

PROOF. It is known [5], [8] that all moments of integral order $\mu_K = \sum_{-\infty}^{\infty} n^K p_n$ are finite for such lattice distributions. Consequently all factorial moments will be finite as well. Suppose now that $\{p_n\}_0^N$ is log-concave, i.e., is such a distribution with all support on $0 \le n \le N$. Then $P(z) = \sum_0^N p_n z^n$, the probability generating function for $\{p_n\}_0^N$ is a polynomial of the type described in Theorem 1 for which the value $t^* = 0$. Hence by Theorem 1, $P(z+1) = P_1(z)$ also has log-concave coefficients. But it is known that P(z+1) is the generating function for the factorial moments, i.e. one has [9]

$$(2.2) P(z+1) = \sum_{r=0}^{N} \{\mu_{[r]}/r!\}z^{r}.$$

This relationship may also be seen directly from (1.10) for t = 1. Consequently

(2.3)
$$\left\{\frac{\mu_{[r]}}{r!}\right\}^2 \ge \frac{\mu_{[r+1]}}{(r+1)!} \frac{\mu_{[r-1]}}{(r-1)!}; \qquad 1 \le r.$$

This together with $p_0(1)=1$ implies (2.1) in the classical way, for lattice distributions on $0 \le n \le N$. For a log-concave distribution $\{p_n\}_0^\infty$ one considers the sequence of distributions $\{p_n^*\}_0^N$ where $p_n^*=p_n/(p_0+p_1+\cdots+p_N)$ which converges to the given distribution. It is known [6] that log-concavity is unaffected by truncation and convergence so that (2.3) and (2.1) continue to hold.

That the inequality bounds are tight may be seen for the geometric case. Here $P(z) = (1 - \theta)/(1 - \theta z)$ and

$$(2.4) P(z+1) = \frac{1-\theta}{1-\theta-\theta z} = \sum_{0}^{N} \left(\frac{\theta}{1-\theta}\right)^{k} z^{k}$$

so that

(2.5)
$$\frac{\mu_{[r]}}{r!} = \left(\frac{\theta}{1-\theta}\right)^r; \qquad 1 \le r$$

and the inequalities in (2.1) become equalities. This completes the proof of Theorem 2. $\ \square$

The most important inequality for statistics is the case r=2. One has for the ordinary moments $\mu_r = \sum_{n=0}^{\infty} n^r p_n$ the following.

COROLLARY. If $\{p_n\}_{0}^{\infty}$ is a log-concave distribution, then

REMARK. The set of inequalities (2.1) does not characterize log-concavity. One may have the full set of inequalities (2.1), but $\{p_n\}_0^{\infty}$ need not be log-concave. The simplest example is provided by $p_0 = (1 + \lambda)^{-1}$, $p_1 = 0$, $p_2 = \lambda(1 + \lambda)^{-1}$ for which $P(z) = (1 + \lambda z^2)/(1 + \lambda)$. Then $P(z + 1) = \{(1 + \lambda) + 2\lambda z + \lambda z^2\}/(1 + \lambda)$ and $P(z) \in \mathcal{P}_3$ if $\lambda \geq \frac{1}{3}$.

3. Continuous distributions. The inequalities of (0.4) may be obtained from those of (0.1) with the aid of a simple lemma, and associated limiting argument.

LEMMA. Let f(x) be log-concave with purely positive support and let $F(x) = \int_0^x f(y) dy$ be its cumulative distribution function. Then the lattice distribution $\{g_n(a)\}_0^\infty$ where

$$g_n(a) = F(na) - F(na - a)$$

is \log -concave for every a > 0.

PROOF. Since f(x) is a log-concave function [4], and since the convolution of two such functions is also such a function [4], then

(3.1)
$$g(a, x) = \int_0^a f(x - u) du$$

is such a function. Moreover g(a, x) is continuous in x and its interval of positivity is connected. Consequently g(a, x + a)/g(a, x) is monotonic decreasing in the interior of the support interval I as x increases and $\{g(a, na)\}^2 \ge g(a, na + a)g(a, na - a)$. Hence $\{g(a, na)\}_0^{\infty}$ is log-concave. The lemma follows from the identification $g_n(a) = g(a, na)$. \square

If we define $\mu_{[K]}(a)$ to be the factorial moment of the lattice distribution with masses $g_n(a)$, it is easy to establish that $a^K \mu_{[K]}(a) \to \mu_K = \int x f(x) \, dx$, as $a \to 0+$, and to infer (0.4) from (0.1) thereby. The weak convergence of $F_a(x)$ to F(x) and the standard lemma (Feller, II, page 245) provide the desired result.

Acknowledgment. I would like to express my appreciation for helpful discussion with W. J. Hall and A. W. Marshall.

REFERENCES

- [1] HARDY, G. H., LITTLEWOOD, J. E., and PÓLYA, G. (1934). *Inequalities*. Cambridge Univ. Press.
- [2] BARLOW, R. E., MARSHALL, A. W., and PROSCHAN, F. (1963). Properties of probability distributions with monotone hazard rate. *Ann. Math. Statist.* 34 375-389.
- [3] Feller, W. (1966). An Introduction to Probability Theory and its Applications, 2. Wiley, New York.
- [4] IBRAGIMOV, I. A. (1956). On the composition of unimodal distributions. *Theor. Probability Appl.* 1 255-260.
- [5] KARLIN, S. (1968). Total Positivity. Stanford Univ. Press.
- [6] KARLIN, S., PROSCHAN, F., and BARLOW, R. E. (1961). Moment inequalities of Pólya frequency functions. Pacific J. Math. 11 1023-1033.

1708

J. KEILSON

- [7] Keilson, J. (1971). Log-concavity and log-convexity in passage time densities of diffusion and birth-death processes. J. Appl. Probability 8 391-398.
- [8] Kellson, J. and Gerber, H. (1971). Some results for discrete unimodality. J. Amer. Statist. Assoc. 66 386-389.
- [9] KENDALL, M. G. and STUART, A. (1968). The Advanced Theory of Statistics, Distribution Theory, 1 3rd ed. Griffin, London.

DEPARTMENT OF STATISTICS AND GRADUATE SCHOOL OF MANAGEMENT UNIVERSITY OF ROCHESTER ROCHESTER, NEW YORK 14627