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MARKOVIAN DECISION PROCESSES WITH COMPACT
ACTION SPACES

By NAGATA FURUKAWA

Kyushu University

We consider the problem of maximizing the expectation of the dis-
counted total reward in Markovian decision processes with arbitrary state
space and compact action space varying with the state. We get the existence
theorem for a (p, ¢)-optimal stationary policy, and the relation between the
optimality of a policy and the optimality equation. Assuming the action
space is a compact subset of n-dimensional Euclidean space, the existence
of an optimal stationary policy is established, and an algorithm is obtained
for finding the optimal policy. The last two facts are based on the Borel
implicit function lemma given in this paper.

1. Introduction. We shall be concerned with an optimization problem in a
Markovian decision process specified by S, {A(s), s€ S}, ¢, r, 8, where S is a
nonempty Borel subset of a Polish space, the set of states of some system, for
each s, A(s)isa nonempty subset of a compact metric space A4, the set of actions
feasible at state s, ¢ is a conditional probability measure on S given S x A, the
law of motion of the system, r is a bounded Baire function on S x 4, the im-
mediate reward function, and 0 < § < 1, the discount factor.

A policy « is a sequence {r, 7,, - - -}, where =, is a conditional probability
measure on A given the previous history (s, a,, - - -, a,_,, 5,), such that z,(A(s,) | 5,
a, -+, 8,) = 1foralls,a, --.,s,. AMarkov policy is a sequence {f,, fy, - -},
where each f, is Borel measurable function from $ to 4 such that f,(s) e A(s)
for all se S. A stationary policy is a Markov policy in which f, = f for some
Borel measurable function f for all n. A policy x associates each initial s with
the average of the total discounted reward over the infinite future, I(z)(s). A
policy z* is called optimal if I(z*)(s) = I(x)(s) for all policies x and all s€ S.
Our problem, then, is to find an optimal policy.

In general there may not always exist an optimal policy. Blackwell [1],
Strauch [10], and Maitra [8] have made studies of this problem in the case when
A(s) is assumed to be independent of s. Blackwell [1] has shown that in the case
of a finite action space there always exists an optimal stationary policy. Maitra
[8] has given a sufficient condition for the existence of an optimal stationary
policy in the case of a compact action space.

Special references have to be made to the work of Dubins and Savage [3],
Strauch [11] and Sudderth [12]. In our formulation, being given a policy we
can compute the transition probabilities of the states at each stage from the se-
quence of previous states. The previous papers are based on the transition
probabilities of the states, but the actions between the adjacent states are deleted
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MARKOVIAN DECISION PROCESSES 1613

from their formulation. Hence the existence of a good strategy in their sense
cannot easily be translated in terms of our formulation, where the actions are
taken into account explicitly.

In this paper we treat the case of a compact action space varying with the
state. In Section 3 we give the relation between the optimality of a policy and
the optimality equation. Assuming the action space is a compact subset of n-
dimensional Euclidean space, we give, in Section 4, a Borel implicit function
lemma and the existence theorem for an optimal stationary policy, and, in Sec-
tion 5, we establish an algorithm for finding an optimal policy, a generalization
of the policy improvement routine by Howard [4].

2. Preliminaries. In this section we develop the basic notation and definitions
to be used throughout the paper.

First we give general probabilistic notation and definitions following closely
those of [1]. By a Borel set we mean a Borel subset of some complete sepa-
rable metric space. By a probability measure on a nonempty Borel set X we
mean a probability measure defined over the Borel field of X, and the set of all
probability measures on X is denoted by P(X). For any nonempty Borel sets
X, Y, Q(Y] X) is the set of all conditional probability measures g(- | -) such that
for each x € X, ¢(+ | x) is a probability measure on Y, and for each Borel subset
B C Y, ¢g(B|.) is a real-valued Borel function on X. For any nonempty Borel
set X, M(X) denotes the set of all bounded Baire functions on X. If u, v e M(X),
u = v means u(x) = v(x) for all xe X. For any ue M(XY), where XY is the
product space of X and Y, and any g € Q(Y| X), qu denotes the element of M(X)
whose value at x, € X is given by

qu(xo) = §y u(xo, y) dq(y| x,) -

We extend the above notation in an obvious way to a finite or countable se-
quence of nonempty Borel sets. The details are omitted.

When we speak of the carrier of a probability measure, we use the following
notation. For any nonempty Borel sets X, Y, and for any set-valued function
F(.) defined on X, whose value at each x € X'is a Borel subset of Y, Q({F(x)}| X)
consists of all elements of Q(Y'| X) satisfying that ¢(F(x)|x) = 1 for each x e X.
In general, for any nonempty Borel sets X, X, - - -, X,,,, and for any function
F(-) defined on X,, whose value at each x, € X, is a Borel subset of X, g¢
QUF(x )} Xy, X, - -+ X,)iff ge O(X, ;1| X, X, - -+ X,) and for each x;e X; (i =
1,2, -+, n), g(F(x,)| X Xy - -+, x,) = 1.

We now define an optimization problem for Markov decision processes. Our
optimization problem is specified by S, {A(s); s € S}, ¢, r, B, where S is a nonempty
Borel set, the set of states of a system, for each s¢ S, 4(s) is a nonempty Borel
subset of some compact metric space A, the set of actions feasible to us at state
s, g is an element of Q(S|SA), the law of motion of the system, r is an element
of M(SA), the immediate reward function, and 0 < 8 < 1, the discount factor. A
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policy n is a sequence{r,,r,, - - -}, whereeachr, € Q({A(s)}| H,)and H, = SASA. . .
S(2n — 1 factors). Here, Q({A(s)}| H,) is an ambiguous notation, and precisely
speaking Q({A(s)} | H,) means Q({A(x,,_,)}| X, X, - - - X,,_,) with letting X,;_, = §
and X, = Afori=1,2,...,n. A policy = is Markov, if for each n, there is a
Borel measurable function f, from S into 4 such that f,(s) € A(s) for all s and
(e[S @y, -+, 8,) = 0(f,(s,)), and then a Markov policy is denoted by {f,,
S <+ -}. A Borel measurable function f from S into A4 such that f(s) e A(s) for
all s € § define a policy: when in state s, take action f(s) independently both of
the time and the previous history. Such policies will be called stationary, and
will be denoted by f=.

An expected discounted total reward from a policy = = {,, r,, - - -} is given by
](77.') = err[Z:zo—l ﬁn_lr(sn’ an)] ’
where e, = m,gm,q - - - . For any pe P(S), and ¢ > 0, a policy z* will be called

(p, e)-optimal if p{l(z*) = I(x) — ¢} = 1 for all policies =. A policy z* will be
called e-optimal if I(z*) = I(x) — ¢ for all policies . A policy n* will be called
optimal if I(z*) = I(x) for all policies =.

3. (p, ¢)-optimal stationary policy and optimality equation. We shall prepare the
lemmas concerning the selector in a Polish space, which are fundamental to the
existence of a (p, ¢)-optimal stationary policy.

Let X be a nonempty Borel set, <Z(X) the Borel field on X, Y a compact metric
space, and let 2" denote the family of all nonempty closed subsets of Y following
the notation in [5]. We denote the Hausdorff metric in 27 by 4. Itis, then, well
known that the metric space (2%, k) is compact. Let ©#(2") denote the Borel field
on 2" generated by the Hausdorff metric 4. A function F(+): X — 2¥ will be called
measurable relative to 2(X) and <2(2V), if for every B e <£(2"), F~(B) € <Z(X),
and then we will write simply F(.) € <8(X)/<Z(2).

LemMA 3.1. Suppose F(+) e S8(X)|<Z(2Y), then

{(x, y); xe X, ye F(x)} e &2(X) X £8(Y).

Proor. It is apparent that

{(x,y); xe X, ye F(} = {(x, y); (3, F(x)) = 0, x € X}

where p denotes the distance between a ‘point and a set in Y.

Let us define g(x, y) = p(y, F(x)). Then, since p(p, A) is continuous in (p, 4) €
Y x 2" by Theorem 2 in Section 42—V of [6], it can be readily seen from Theo-
rem 2 in Section 31—VI of [5] that g is 2Z(X) x £8(Y)-measurable. Thus
{(x,y); xe X, ye F(x)} = ¢g7'(0) N XY which belongs to <5(X) x <#(Y). This
completes the proof.

The following proposition is direct from Theorem 2 of [2].

ProposiTION 3.1. For any qe Q({F(x)}| X) and any set T e Z5(X) x .4(Y)

such that
g, |x) >0 forall xeX
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and
I, c F(x) forall xeX,

where T, denotes the x-section of ', there is a <&(X)-measurable function f whose
graph is a subset of T', i.e., (x, f(x)) e ' for all xe X.

LEMMA 3.2. Assume F(+) e <#(X)]|Z(2Y). Then for any q € Q({F(x)}| X), any
ue M(Z), where Z denotes the set {(x, y); x € X, y € F(x)}, and any ¢ > 0, (i) there
is a B (X)-measurable f,, whose graph is a subset of Z, satisfying

flu 2 ‘I” ’ ana’
(ii) there is a ZZ(X)-measurable f,, whose graph is a subset of Z, satisfying

q({y € F(xo); u(xs y) = u(Xo5 f5(%,)) + €}| X)) = 1 foral x,eX.

Proor.

(i) Let D be the set {(x, y) € Z; u(x, y) = qu(x)}. Since Ze (X)) x <A(Y)
by Lemma 3.1, then it follows that D € =8(X) X £4(Y) for any u e M(Z). Itis
easily verified that ¢(D,|x) > 0 for all x € X, where D, denotes the x-section of
D. Thus (i) follows directly from Proposition 3.1.

(i) Let u(y) = sup,.,, u(x, y), where Z, stand for the y-section of Z.

It can be easily shown that u(y) is universally measurable by using Kuratowski’s
theorem that analytic sets are universally measurable (cf. [5]). Hence, for each
x € X, there is a measurable function uy(+),, such that uy(y),, = u(y)a.e. (g(+ | x))-
Let

y(x) = supfrational r; g({y; uy(y)(x) > r}|x) > 0},

then

(3.1) g({y;u(y) > v(x)}|x) =0 forall xe X.
It is apparent that for each real 2,

(3-2) {x1v(x) > 2} = Ursafx gy u(y) > r}]x) > 0},

where the union is taken over rational number r’s. Since the right side of (3.2)
is a measurable set, v(x) is measurable.
Let for ¢ > 0,
D(e) = {(x, 1) & Z; u(x, y) > u(x) — ¢}
and

P'(e) = {(x» ) € Z5 g({y™; u(x, y*) = u(x, y) + ¢}[x) = 1}.
If (x5, y5) € D(¢), by virtue of the definition of D(¢) and (3.1) it follows that

g({ys u(xes y) = u(xg yo) + €} x) + 1,

which implies (x,, y,) € ['(¢), i.e., D(¢) < I'(¢). Thus, in order to prove (ii) of
this lemma, it is sufficient to show the existence of a measurable function f whose
graph is a subset of D(¢). This, however, can be established by appealing to
Proposition 3.1.
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AssuMPTION (I). For each se S, A(s) € 2%, where 2* denotes the family of all
nonempty closed subsets of a compact metric space 4, and A(+) € ZZ(S)/Z(24).

THEOREM 3.1. Let Assumption (1) be satisfied. Then for any p ¢ P(S) and any
¢ > 0, there is a (p, ¢)-optimal Markov policy.

Proor. By virtue of Lemma 3.2 (ii), the proof follows in the same way as in
the Corollary to Theorem 2 of [1], and the details are omitted.

DEeFINITION 3.1. With any Borel function f from S into A such that f(s) € A(s)
for all se S, we associate the operator L,, mapping M(S) into M(S), defined by

L. = fq(r + Bu) .
In particular, with any a € A(s) associate the operator L, defined by

Lu(s) = (s [r(s, a) + Bu(t)] dq(t]s, a) .
It is apparent that L, is monotone, and is a contraction operator with con-
traction coefficient j.

DEFINITION 3.2. We say that a u € M(S) satisfies the optimality equation, if for
each se S,
U(S) = SUP,e 40 Loti(s) -
We can prove the following theorem in the same way as in Theorem 6 of [1].
THEOREM 3.2. Let Assumption (I) be satisfied.

(a) Forany pe P(S) and any ¢ > 0, there is a (p, ¢)-optimal stationary policy.

(b) Forany e = 0, if there is an c-optimal policy, there is an ¢[(1 — B)-optimal
stationary policy.

(c) A policy m is optimal if and only if its return I(z) satisfies the optimality
equation.

4. Existence of an optimal stationary policy. In this section we shall give a
sufficient condition for the existence of an optimal stationary policy. In the
preceding sections we assumed the action space to be an arbitrary compact
metric space, but henceforth we will restrict it to be a compact subset of R*
(Assumption (I*)), while the state space S remains to be an arbitrary Borel set.
The proofs of Lemmas 4.1 and 4.3 follow the line similar to those of Theorems
I and 2 in [9].

Let X™ denote the family of all compact subsets of R™, and <2(X™) the Borel
field on X™ generated by the Hausdorff metric .

LeMMA 4.1. Let A be a compact subset of R*. Suppose u(s, a) satisfies that

(1) u(s, a) is a bounded function from SA 10 R™,
(ii) u(s, a) is Borel measurable in s for each fixed ac A,
(iii) (s, a) is continuous in a for each fixed s¢ S.
Then U(s) = {x; x = u(s, a), ac A} is a function from S to X™ such that U(+) e
B(S)] A (X™).
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AssumpTION (I*). For each se S, A(s) € 24, and A(.) e Z#(S)/<Z(2*), where
A is a compact subset of R

LeEMMA 4.2. Let Assumption (1*) be satisfied. Let u(s, a) be as in Lemma 4.1.
Then U(s) = {x; x = u(s, a), ae A(s)} is a function from S to X™ such that U(+) e
B(S)|H(X™).

Proor. By virtue of Assumption (I*) there is a sequence {A"(s)} of 24-valued
ZZ(S)-simple functions such that h(A(s), A"(s)) — 0 as n — co for each se S,
which implies that

4.1) h(U(s), U*(s)) -0  as n— oo for each se§,

where U"(s) = {x; x = u(s, a), ae A™(s)}. Let I, denote the characteristic func-
tion of a set E, and let us define a set K multiplied by 0 or 1 as follows: K x
1 = Kand K x 0 = empty set. Then A"(s) is written as

AYs) = D Kl (5)

where K,; €2, S,; e .<£(S). By putting S,,, K,; into S, 4 of Lemma 4.1, re-
spectively, we have U"(.) e <#(S)/<#(X™). Hence it is clear from (4.1) that
U(+) e H(S)]Z(X™).

Now we shall give the definition of the lexicographic maximum of a set, fol-
lowing [9].

DeriniTION 4.1. Let G be any compact subset of n-dimensional real Euclidean
space R", and (x, X,, - - -, x,) an orthonormal basis of R*. We define a sequence

{G,, z,.-...s;} Of subsets of G inductively as follows:
G, ={xxeG, (x]x) = max,..(x ]y},
Gzl,zz,-u,zi = {X; xe le,a:z,m,xi_l’ (Xi | X) = maxyeazl,,?...,xi_l(xi |}’)}
for i=2,...,n,
where (- | -) means the inner product in R*. Then ¢(G) = G, . ..., reduces to

a single point in R* which will be called the lexicographic maximum of G.

LeMMA 4.3. Let A be a compact subset of R*. Suppose G(s) is a function from
S to X" such that G(s) C A for all se S and G(+) € ZZ(S)]ZZ(X™). Then the func-
tion e(G(s)) = G 2,(8) 1 S — R" is Borel measurable in s.

oy g

Proor. By induction, in order to prove the lemma it is enough to show that
G, (s) is Borel measurable in s. For the sake of simplicity we put x = x,. From
the assumption there is a sequence {G™(s)} of X"-valued <Z(S)-simple functions
such that

(4.2) {G™(5)} — G(5) for all seS.

We let G™(s) = Yt K,IS,(s), where K, e X", S,.e€ZZ(S), SN S,; = &,
(i #j), 2 S, = S. Foreach m and any se S, letting /,(s) be the number
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such that 1 <i,(s) < k(m) and s€S,,; (), without loss of generality we may
assume that {S,,; ,} is decreasing in m for each s. Let

Fm(s) = Utesmim(s)Gz(Z)
for se Sand m =1, 2, - .., then it is clear that F™(s), m = 1,2, ..., isan X"
valued <Z(S)-simple function, and that {F™(s)} is decreasing in m for each s.
Putting F(s) = lim,,_,, F™(s), we have
(4.3) ) G, (s) C F(s) for seS.

Since we may assume that the convergence in (4.2) is uniform from the hy-
potheses stated in the lemma, for any ¢ > O there is a number M such that for
1€S,; and form = M,

(4.4) h(G(s), G(1)) = h(G(s), G™(1)) + K(G™(1), G(1))

= h(G(s), G™(s)) + K(G™(1), G(r))

<e.
Hence it follows that r(p, G(s)) < ¢ for pe G (1), te S,
r(p, G(s)) < ¢ for pe F(s).
Since ¢ is arbitrary, it holds that
4.5) F(s) c G(s) for all seS.
,and m = M,

i0 M = M, therefore

We get now from (4.4) that for e S

M gy (5
Imax, g (X]2) — max, g4, (x]2)|] = A(G(s), G(1)) < e,
which implies that for y e F™(s) and m = M,

[(x|y) — max, g (x|2)] <e.
Since ¢ is arbitrary, the latter implies that
(4.6) [(x|y) — max, .4, (x|2)| =0 for ye F(s) and seS.

We have from (4.5), (4.6) that F(s) < G,(s) for se S, which together with
(4.3) implies F(s) = G,(s) for se S. But F(s) is Borel measurable, therefore G,(s)
is also Borel measurable. This completes the proof.

LEMMA 4.4. Let A be a compact subset of R". Let u(s, a) be as in Lemma 4.1.
And let U(s) = {x; x = u(s, a), ac A}. Then for any Borel measurable ¢: S — R™
such that ¢(s) € U(s) for all se S, it holds that G(s) = {a; ac A, u(s, a) = ¢(s)} is
a Borel measurable map from S to X", i.e. G(+) € Z5(S)[<5(X™).

Proor. This lemma can be easily verified by appealing to the proof of Theo-
rem 2—(II) of [9].

LemMA 4.5. Let Assumption (1*) be satisfied. Let u(s, a) be as in Lemma 4.1.
And let U(s) = {x; x = u(s, a), ae A(s)}. Then for any Borel measurable ¢: S —
R™ such that ¢(s)e U(s) for all s S, it holds that G(s) = {a; ae A(s), u(s, a) =
¢(s)} is a Borel measurable map from S to X", i.e. G(+) € “&(S)|<Z(X™).
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Proor. This lemma can be proved in the same way as in Lemma 4.2, by
taking a sequence of 24-valued <2(S)-simple functions which converges to A(s).

The following lemma falls under the category of selection theorems (cf. [7]),
and may be anticipated on the basis of other general theorems. The present
author, however, can locate neither such an explicit statement like this one nor
the proof in the literatures.

LEmMMA 4.6. (Borel implicit function lemma). Let Assumption (1*) be satisfied.
Let u(s, a) be as in Lemma 4.1. And let U(s) = {x; x = u(s, a), ac A(s)}. Then
for any Borel measurable ¢: S — R™ such that ¢(s)e U(s) for all se S, there is a
Borel measurable f: S — A satisfying

4.7) f(s) € A(s) forall seS
and
(4.8) &(s) = u(s, f(5)) forall se§.

ProoF. By virtue of Lemma 4.5, G(s) = {a; a € A(s), u(s, a) = ¢(s)} is a Borel
measurable map from S to X™.

Letting f(s) = e(G(s)), it is clear by Lemma 4.3 that f(s) is a Borel measurable
map satisfying (4.7) and (4.8).

THEOREM 4.1. Let Assumption (1*) be satisfied. Let u(s, a) be a bounded func-
tion from SA to R satisfying (ii), (iii) in Lemma 4.1. Then there is a Borel measur-
able function f from S to A such that

(4.9) f(s) € A(s) forall se S
and
(4.10) u(s, f(s)) = max, ., (s, a) forall se§.

Proor. Because u(s, a) € RY, it holds that max,. ., u(s, a) = e(U(s)), where
U(s) = {x; x = u(s, a), a e A(s)}.

Since U(+) € 2(S)/<Z(X™) by Lemma 4.2, it follows from Lemma 4.3 that
e(U(s)) is Borel measurable, which implies ¢(s) = max,. ,,, (s, a) is Borel mea-
surable. It is apparent that ¢(s) € U(s) for all se S. Thus by virtue of Lemma
4.6 there is a Borel measurable function f satisfying (4.9) and (4.10), which
completes the proof.

Now we put the following assumptions.

AssuMpPTION (II). r(s, a) is continuous in a € A4 for each fixed se S.

AssumpTION (IIT). For each fixed s € Sand for any w e M(S), {sw(+)dq(-
is continuous in a € 4.

s, a)

DEerINITION 4.2. The contraction operator T; M(S) — M(S) is given by
Tw(s) = max, ., [§s{r(s, @) + Bw(n} dq(t| 5, @)]

We close this section with the following theorem concerning the existence of
an optimal stationary policy.
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THEOREM 4.2. Let Assumptions (1*), (II), (III) be satisfied. Then there exists
an optimal stationary policy.

Proor. Let w* denote the fixed point of the operator T. Because of Theorem
4.1 then there exists a Borel measurable map f from S to A satisfying (4.11) and
the equality

(4.11) Low* = Tw*,
consequently L,w* = w*, i.e. w* is also the fixed point of L,. On the other

hand, by virtue of uniqueness of the fixed point, it follows that w* = I(f*).
I(f=) satisfies the optimality equation, for from (4.11) we have

LA(f*) = I(f*) = TI(f*) -
Thus it follows from Theorem 3.2 (c) that f= is optimal. This completes the
proof.

5. Algorithm for finding an optimal policy. Concerning the method of construc-
tion of an optimal policy in a Markov decision process, Howard’s policy im-
provement routine [4] in the case of finite state and finite action is well known.

Our object in this section is to give an algorithm for finding an optimal policy
in the decision process of our concern, a generalization of Howard’s routine.

Let N denote a Markov kernel on the measurable space (S, <#(S)), and E a
Markov identity kernel on (S, <#(S)).

DerINITION 5.1. If fis a Baire function on S, and if
h =1lim, (E+ BN+ --- + B"N")f
is well defined and finite, then f is called a S-charge and £ is called a §-Potential

of f, where 0 < 8 < 1. Consequently it follows that any fe M(S) is a S-charge.
We shall call G = Y2 (SN)" a B-Potential kernel.

LEMMA 5.1. Let h be any element of M(S), and let
f=(E—pNp,
then h is a B-Potential of f, and h = Gf.

Proor. Since h = f + BNh, inductively we have

h=(E+ BN+ --- 4 B*IN"Y)f + B"N"h, n>=1
Then by virtue of the boundedness of # we have
(5.1) lim,_, (E 4+ BN 4 -+ + B IN*1)f = k.

Since the left side of (5.1) is well defined, by monotone convergence we have
Gf = h.

LEMMA 5.2. Let « be an arbitrary policy. Suppose f is a Borel measurable func-
tion from S into A such that f(s) € A(s) for all s S.
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@) If Lil(x) = I(z), then I(f*) = I(z).
(b) If LI(x) < I(r), then I(f~) < I(r).
Proor. Let
J= L I(x) — I(x),
AT = I(f~) — I(x),
re(s) = r(s, f(5)) »
Ni(s, +) = q(- |, f(9)) -

J =r; + BN, I(x) — I()

Then it follows that

and
Al =r; + BN I(f~) — Kx)
=J+ BN, .Al.
Hence
J = (E — BN,)AI.

Because Al e M(S), from Lemma 5.1 it follows that A7 is a 8-Potential of J and
Al = G,J, where G; = 3.7, (BN,)". By the last statement we have J > 0 only
if I(f~) = I(z), and J < 0 only if I(f~) < I(x), which completes the proof.

THEOREM 5.1. Let Assumptions (1*), (I), (II) be satisfied. Let {f,},-q..... be
defined in the iterative manner:

(i) Take an arbitrary Borel measurable map f,: S — A such that f,(s) € A(s) for
all se S.

(i) For eachn = O select a Borel measurable map f, ,: S — A such that f, . (s) €
A(s) for all se S and L, | I(f,”) = TI(f,”). Then we have

@) (/=) = I(f7) = - = I(fi7) = I(f20) = -+ T sup I(n),
(b) if for some N it occurs that f,, = fy.,, then [y is an optimal policy.

REMARK. The existence of such f, ,, in (ii) is assured by Theorem 4.1.
PRrooF. (a) Trivially we have
Ly, A7) = TILY) =2 Ly (™) = I(f,”) -
Lemma 5.2 applies and gives for every n > 0
I(fz70) = 1(f,)

Next we can obtain inductively
(5.2) TI(f,=) = T*I(f=) for n>1.

It is obvious from the proof of Theorem 4.2 that

lim,_, T"I(f,*) = w* = sup, I(x),

which together with (5.2) implies lim,_,, TI(f,~) = sup, I(z), and the converse
inequality is trivally true. Hence
(5.3) lim, ., TI(f,*) = sup, I(x) .
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Since on the other hand it holds that
I(fren) =Ly A(fo0) = Ly, (7)) = TI)
by (5.3) we get lim,_, I(f,”) = sup, I(x) .

(b) Suppose that f, = fy,, and that there is a Borel measurable f satisfying
I(f‘”) = I(f%..)- Then we have

Ly, A(fv™) = TI(fy™) = LFI(fy®)
which implies
I(f541) = LiI(f540)

because f, = fy,;- From Lemma 5.2 it follows that
1(f*) £ 1Ga)
The converse inequality is true by hypothesis, consequently

1(f=) = 1(£s™) = 1/[5) »
which implies f,= is optimal. This completes the proof.

Acknowledgment. The author wishes to express his hearty thanks to the referee
for many useful comments.
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