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MONOTONE MEDIAN REGRESSION!

By J. D. CrYER, TiM ROBERTSON, F. T. WRIGHT
AND ROBERT J. CASADY

University of lowa

Suppose that for each real number ¢ in [0, 1] we have a distribution with
distribution function Fi(+), mean p(f) and median m(¢) (p(¢) and m(t) are
referred to as regression functions). Consider the problems of estimating
1(+) and m(s).

In this paper we propose and discuss an estimator, #i(s), of m(+) which
is monotone. This estimator is analogous to the estimator j(s) of s(s)
which was explored by Brunk (1970) (Estimation of isotonic regression in
Nonparametric Techniques in Statistical Inference, Cambridge University
Press, 177-195). Rates for the convergence of #(+) to m(+) are given and a
simulation study, where (), i(+) and the least squares linear estimator
are compared, is discussed.

1. Introduction and summary. Suppose that for each real number ¢ in [0, I]
we have a distribution function F,(.) with mean p(f) and median m(f). (p(¢)
and m(f) will be referred to as regression functions.) Consider the problems of
estimating p(.) and m(+). The most common approach for estimating a regres-
sion function is to assume that it belongs to a family of functions which is
characterized by a small number of parameters, such as the family of linear
functions. The investigator then obtains an estimate of the regression function
by estimating these parameters.

We wish to consider some “nonparametric” estimators. Suppose one has
reason to believe that the function we are trying to estimate is non-decreasing.
In this setting Brunk (1970) proposed and studied an estimator of the mean
regression function p(+). In this paper we explore an analogous estimate of
m(+). A detailed bibliography of earlier work concerning the estimation of
monotone (isotone) parameters may be found in Brunk (1970). Pursuant to the
article by Brunk we pose our problem within the following framework.

Let {z,} be a sequence of numbers in [0, 1], not necessarily distinct, to be
called observation points. Let {Y,(,)} be a sequence of independent random
variables such that the distribution function of Y,(t,) is F, (+). Based on the
first n observations, the estimator of y(t;) studied by Brunk is given by

s}
s}

where the symbol 4 is used to denote the arithmetic average of the set of random

(1.1) f,(t;) = max, ., ming, AY(t,):i<nr<t

t.

k2

IA A
IA A

= min,,, max, , A{Y,(t): i< n,r
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variables described inside the braces. The equality of the two representations
for p,(t;) given in (1.1) seems to be well known; however, a discussion of this
equality can be found in Hanson, Pledger and Wright (1971). Motivated by
these considerations we propose an estimator of the median regression function
m(+) which is given by

(1.2) 1, (t;) = max, g, min,,, M{Y(t): i
= min,,, max,, M{Y(t):i

s}
s}

where M denotes the median of the set of random variables described inside the
braces (we adopt the convention of averaging the two middle items when the
sample size is even). The equality of the two representations for #,(t;) follows
from the work of Robertson and Waltman (1968). The value of either #,(f) or
A.(f) at values of ¢ between observation points can be specified in several dif-
ferent ways depending on the properties the investigator wishes his estimate to
enjoy. For example, one might define #7,(¢) to be the value of #,(+) at the largest
observation point, among the first n observation points, which is no larger than
t. This function would not be continuous and if one believed the actual regres-
sion function is continuous then this might be unsatisfactory. Another possibility
would be to adjoin the values at adjacent observation points with line segments.
The resulting estimators would be continuous but not differentiable. We can
see that there are many possibilities.

The results of Robertson and Waltman (1968), interpreted in the present setting,
show that #,(+) provides a maximum likelihood estimator when the distribution
at ¢ is the bilateral exponential with parameter m(?) (i.e., this distribution is ab-
solutely continuous with density function f(x; m(t)) = 27" - exp[—|x — m(1)]]).
Another interesting way of interpreting this result is that #,(+) provides the near-
est non-decreasing function to what we observed in a kind of L, sense. More
specifically, if our observations are y,(t,), yi(:), - - - y,(2,) then

() — pit)] = X l9(6) — yut)

for any other non-decreasing function g(-) on [0, 1].

It also follows from the work of Robertson and Waltman (1968) that r,(t;) is
a strongly consistent estimator of m(z,)- when we keep the number of distinct
observation points fixed and let the number at each grow large. Hanson, Pledger
and Wright (1971) obtained convergence rates for the convergence of f,(+) to
¢(+) under a condition which implies that the sequence of observation points is
dense in [0, 1]. These convergence rates imply that 2,(+) is a strongly consistent
estimator of (). In Section 2 we obtain similar convergence rates for con-
vergence of #1,(+) to m(+) under this same assumption about the sequence of
observation points.

Simulation studies of “isotonized” estimators of population characteristics
have been carried out by the authors and others (cf. Wegman (1970) and Hogg
and Malmgren (1971)). Generally speaking, “isotonized” estimators do not

IA A
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perform as well as parametric estimators when the assumed parametric model is
the correct one. (This is, of course, to be expected.) However, they perform
better than the corresponding totally nonparametric estimators, that is, the raw
sample means and medians, when the function to be estimated is monotone. In
Section 3 we discuss the results of a simultaion study where we considered
#,(+) and 1, (+) as competitors and compared them to a least squares linear esti-
mator of the regression function.

2. Consistency. In this section we investigate the rate of convergence for the
estimator #,(+). Consistency results for isotonized estimators are known under
two different hypotheses about the set, {t,}, of observation points. The first and
perhaps easier situation is when the number of observations at each of a fixed
number of observation points gets large. In this case almost sure convergence
of f,(t;) to p(t;) is an easy consequence of the strong law of large numbers.
Similarly the almost sure convergence of 1,(t;) to m(t;) follows from well-known
results concerning the almost sure convergence of sample percentiles to popula-
tion percentiles. It seems clear that convergence rates could easily be obtained
under this hypothesis about {¢,}.

The other hypothesis about {#,} which has yielded convergence rates is one
which loosely says that we have a large number of distinct observation points
but perhaps only a few observations at each. We need some preliminary results
which we give here for the sake of completeness.

LEMMA 2.1. If the random variables X\, X,, - - -, X,, are independent and centered
at expectations then for any m < n, and positive number ¢,

P[max S, = ¢] < e~E[e!n]

m<j<n Mj

forall t =20 (S; = S, X,).

Proor. The proof of this lemma is essentially the same as the proof of the
Kolmogorov inequality. Jensen’s inequality is applied to the convex function
e'* to obtain E(e'*) = 1 when E(X) = 0.

The next lemma is a consequence of the results in Hanson (1967).

LeEMMA 2.2, If {X,} is a sequence of uniformly bounded random variables which
are centered at expectations then there exists a positive constant ¢ such that

E[e“’n‘] § ec-ﬂ
for all t.

For the remainder of this section we assume that m(+) is continuous on [0, 1]
and that for each positive number ¢,

2.1 inf, F, (m(t,) + ¢) — >0
and

(2:2) 3 — sup, F,(m(t,) — <) > 0.
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It is of interest to note that (2.1) and (2.2) are satisfied when the random variables
Y,(t;) — m(t;) are identically distributed, their common distribution function G
has median O and

G(—e) <4 < G(e)
for all ¢ > 0.

THEOREM 2.3. If for each nondegenerate closed subinterval I of (0, 1) we have
(2.3) liminf,_,, [n~" - cardinality of {j: j=n,t;e1}] >0

then for each observation point t, in (0, 1) and each positive number ¢, there exists a
positive constant ¢ and a number p (0 = p < 1) such that

(2.4) Pl (1) — m(t,)] > el = c-p".
Proor. Fix k and suppose s, is an arbitrary number between #, and one.

Then, using the definition of s,(+), obvious properties of medians and maxi-
mums and finally the assumption that m(.) is non-decreasing we can write:

m,(t,) — m(t,) = min, max,_, M{Y(t,);j=nr=1t; < s} —md)
< max,,, M{Y,(1;);] < n.r < t; < 5} — m(t,)

= max,,, M{Y;(t;) — m(s,); ] = n,r = t; = 8}
+ m(s,) — m(t,)
max, ., M{Y;(t;) — m(t;);j < nr = 1; < 5}
+ m(sy) — m(t,) .
Fix n at least as large as k, let ¢ be an arbitrary positive number and choose s,

between ¢, and one, so that m(s,) — m(t,) < ¢/2. Relabeling the first » observa-
tion points and the associated random variables, if necessary, assume that k = 1

IA

andthatt, <, < - - S H S b > Ly =, = - =2, =2 0ands; < £,
iy < --- < t,. Letting Z; = Y,(t;) — m(t;) we have:
m(t) — m(t) < max,_;., M{Z,, Z,, - -+, Z;} + ¢[2
< max,_ ., M{Z,,Z,, ---,Z;} + ¢[2.
Now let W, = I _.,..(Z;) and observe that M{Z,, Z,, - - -, Z;} > ¢/2 implies that

i_, W, < j/2. Thus, using the fact that E(W,) = F, (m(t;) + ¢/2) we can write:
[,(t) — m(t)) > €] C [max, g, M{Z,, Zy, -+, Z;} > ¢[2]
C [min,; ., (Xia Wi — Jjj2) = 0]
C [min, ., (X (W — F, (m(t;) + ¢/2))
+ Ll Fym(t) + ¢[2) — jj2} = 0]
C [min,; o, { X (W — E(W)))
+ j(inf; F (m(t) + ¢/2) — )} = 0] .
It follows from (2.1) that there exists a positive number d such that

inf, F, (m(t) + ¢/2) — 4 > 3
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so that
(A, (t) — m(t) > e] C [min, ;o (T, (W, — E(W))) + jo} < 0]
(2.5) C [min g, {j7! X (W — E(W))} < —0]
= [max, ;. {j7 Di. (E(W;) — W,)} = 4]
C [max,g; ., { T (B(W) — W)} = 1-9].

Now the random variables E(W;) — W, are independent, identically distributed,
centered at expectations and uniformly bounded so that by taking probabilities
in (2.5) and applying Lemma 2.1 and then Lemma 2.2 we conclude that

P, (t) — m(t) > e] < e7t 7 VE[evSn]
é e-—l-5~yenlcl'y2

for some positive constant ¢, and for all nonnegative y (S, is defined in the
obvious fashion). Now /is the number of observations in [#,, s,] so that by (2.3)
there exists a positve constant ¢, such thatn . ¢, < /for n sufficiently large. Thus

Pl (t,) — m(t)) > e] S exp[—n-c,-0-y +n-c, -y
for all positive y. Letting y have the value 6 - ¢,/2 - ¢, we conclude that:
Plm,(t,) — m(t) > e] < exp[—n-c?. &#*/dc;] = a”
where 0 < a < 1. A similar argument, using (2.2) rather than (2.1) gives
P, (f) — m(t) < —e] < 7

for sufficiently large n (0 < y < 1). The desired result can be easily obtained
using these two conclusions.

COROLLARY 2.4. Assume the hypotheses of Theorem 2.3. Then for 0 < a <
b < 1 ande > 0, there exist constants ¢ > 0 and 0 < o < 1 such that

(2.6) Plsup,<,<, |7, (f) — m(t)| = e] < ¢ - p".
It follows that
2.7) P(lim, . SUp,z,z, (1) — m(f)] = 0] = 1.

Proor. In order to see that (2.6) follows from Theorem 2.3, choose / obser-
vation points such that ‘

0< gy <a< tk(Z) < e K Loy < b < ta) <1 and
(2.8) Mty — ML) < €f2
i=1,2,...,1 — 1. It follows from Theorem 2.3 that for each ey (i=1,
2, ..., 1), there exist constants ¢; = c(t,;,) > 0 and 0 < p(¢,,;) = o, < 1 such

that for n sufficiently large:

Pl|r,(t,)) — m(t, )| < 2] < ¢ p.
Hence
Plmax;, |, (1) — m(t,;)] > €2l < c- pm.
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with ¢ = 31!_, ¢, and p = max,_, p,. However, using (2.8) we conclude that
[SUPagisy 72, (1) — m()| > €] C [max;, [m, (L)) — m(t,)| > ¢/2]

and (2.6) follows. The conclusion (2.7) follows from (2.6) and the Borel-
Cantelli Lemma.

COROLLARY 2.5. Under the hypotheses of Theorem 2.3 it follows that
P[lim,_,, m,(f) = m(t) forall te(0,1)]=1.

ProoF. From Theorem 2.3 it follows that there exists a countable dense
subset T (namely, the observation points excluding zero and one) such that

P[lim,_,, m,(f) = m(f) forall teT]=1.

Using the fact that #,(f) is nondecreasing and the assumption that m(¢) is con-
tinuous, one can argue that

[lim,_, m1,(f) = m(f) for all te T] c [lim,_., #1,(f) = m(t) for all te (0, 1)]
and the desired result follows.

We note that the techniques used here are similar to those of Hanson, Pledger
and Wright (1971). However, the results are easier to obtain because we are
able to convert statements about medians into statements about sums of inde-
pendent Bernoulli random variables. One might wonder if a weaker hypothesis
than (2.3) would suffice for medians. It can be seen by examining the proof of
Theorem 2 of Hanson, et al. (1971) that a similar example can be constructed
for medians to show that strong consistency does not follow if one simply
assumes that the set of observation points is dense in [0, 1]. However, we can
prove a theorem and corollary from which we can conclude that our estimator
is weakly consistent when the set of observation points is dense in [0, 1]. For
the sake of completeness we restate Lemma 3 of Hanson, Pledger and Wright
(1971).

LEMMA 2.6. Let F be a real valued function on [0, oco) such that F(y) — 0 as
y — oo and (3 y|dF(y)| < oo. Then for each ¢ > O there exists a positive integer
M such that if {X,: i = 1,2, ...} is an independent sequence of random variables
such that EX; = 0 and P[|X,| = y] < F(y) for all i and y = 0, then

(2.9) P[sUPyay 17Xy + o + X Z ] S ¢

THeOREM 2.7. If the set of observation points is dense in [0, 1], then for each
observation point t, € (0, 1) and each ¢ > 0, we have

P[|m,(t,) — m(t,)] > e]—0 as n— oo .

Proor. Using the techniques and the definition of W, given in the proof of
Theorem 2.3, we see that for n > k

[#,(t) — m(t,) > €] C [max,g; ., J~ i (E(W,) — W) = 4]
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where / = card({j: j< n,t, <t; < s}). Let > 0. Since the W,’s are uni-
formly bounded there clearly exists an Fas hypothesized in Lemma 2.6. So cor-
responding to y = min (7, d) there exists a positive integer M such that

Plsupzy j7 - DI (E(W) — W) =71 =7
Soforl=>=M
Plmax, ;. j~" - i (E(W) — W) = 4]
= Plsupyg; J7 - i (E(W) = W) zrl=r=7.
Since theset {7,: k = 1,2, ...} is dense in [0, 1], we see that / — oo as # —» co.

Hence P[r,(t,) — m(t,) > ¢]—0 as n— co. A similar argument shows that
P, (t,) — m(t,) < —e]—0asn— oo.

CoRrOLLARY 2.8. If the set of observation points is dense in [0, 1], then for any
0<a<b<landanye¢ >0

P[sup, ., |1,(t) — m(f)] > ¢] — 0 as n— oo .

Proof. This result follows from Theorem 2.7 just as (2.6) follows from
Theorem 2.3.

3. Comparisons among estimators. For certain distributions the mean and
median functions are identical. In such instances we might consider the esti-
mators of these regression functions provided by (1.1) and (1.2) as competitors
and it is meaningful to compare their properties. An assumption which is fre-
quently made is that the regression function is linear or at least approximately
so. Hence another competitor is provided by:

(3.1) Ity = a + bt

where d and b are the usual least squares estimators. In this section we discuss
some conclusions which are based mostly on a simulation study of these three
estimates and illustrate these remarks with two examples.

As measures of fit we considered both mean squared error and mean absolute
error. We computed these, both pointwise at the observation points and as a
global measure summed them over the distinct observation points. We also ob-
tained the pointwise bias of the estimators.

For the least squares estimator, these quantities are easily obtained from
standard results:

(3:2) E[[(0] = (t = 1) - [ D50 (6 — D17 2 3o (8 — Dyeuty)
+ o7t ()

(3.3) var[i(1)] = 3, [%—_’()_t(’:__:t% + ,,—IT Var[Yyt)]

wheref = n7' 3}7_, ¢;. If, in addition, the ¥’s are normally distributed we may use:

(3-4) E[|i(t) — p(n)]] = (2vfz)} - e 4 2b - [D(b]0}) — ()]
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where v = Var[f(t)], b = bias = E[i(t)] — p(f) and @ is the standard normal
distribution function. Unfortunately, these moment computations are mathe-
matically intractable for our nonparametric estimators so that we resorted to
simulation techniques.

Bias. In general, both of the nonparametric estimators are biased at the
extreme observation points. For example, if ¢ = min{#, f,, - -, t,} then it fol-
lows from the definition of f(q) that

aq) = minszq A{Y () j=<mqg=1t = s}
< AVt =g

However, A{Y,(t;); j<n, t; =g} is an unbiased estimator of p(q) so that
E[#(¢q)] < u(g). Furthermore, this inequality is strict except in the rare circum-
stance that the distribution at any observation point #; with #; > g does not
overlap the distribution at ¢. In fact, if there is substantial overlap among the
distributions at # = ¢ and other observation points then we would expect E[/(g)]
to be much smaller than x(g). In an analogous fashion, f(-) is biased high for
£s at the other extreme. Similar remarks can be made about E[r(f)], at least
for symmetric distributions.

In order to illustrate these comments we considered the case when p(f) = 4¢*
and the distribution at # was the bilateral exponential with variance one. We took

3 3 .
e(2)
(1)
(1) p(t)
(2) Estimate of .
2 ) ) ;
(3)E(Z(t)
I I ¢
5 | * 5 ]
[ ]
[ ]
-I "I
[ ]
-2 -2

FiG. 1. Bias. F1G. 2. Typical data set.
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one observation at each of nine equally spaced observation points; .1, .2,...,.9.
In Fig. 1 we have plotted u(f) together with E[i(t)] (obtained from (3.1)) and
an estimate of E[A(f)] based on 10,000 iterations of the sampling experiment.
Our estimate of E[£(#)] is plotted only at the observation points. We did not
plot the corresponding estimate of E[#i()] because it was almost identical to
E[f(1)].

Observe that E[/(#)] is much lower than p(¢) at values of ¢ close to zero. On
the other hand, E[(#)] is very close to x(f) at values of ¢ near one. This is true
because the distributions at adjacent observation points close to zero are over-
lapping but the distributions at observation points to the right of § do not overlap
greatly because the mean function rises abruptly there.

Error. As is well known, the least squares estimator, f(-), perfoms very well
when g(+) is linear or even approximately linear. On the other hand, one might
argue that when (. ) is very nonlinear this fact could be recognized and some
other, more appropriate, parametric model would be chosen. However, in
Fig. 2 we have plotted what we consider to be a typical data set when p(t) = 4¢*
and the distribution at ¢ is the bilateral exponential with variance one. Some
investigators might attempt to fit a line to such data even in the absence of prior
knowledge that the mean function is (at least approximately) linear. In such
cases the weaker assumption of monotonicity would appear to be more prudent.
In our simulation study we compared the errors (both mean squared and mean
absolute) of fi(+), /(+) and /(+) for this mean function.

With p(f) = 4+* and the distribution at ¢ normal and bilateral exponential,
we varied the number of observation points and the number of observations at
each. As expected, fi(+) did slightly better than 7(+) in the normal case and
vice-versa in the other case. In this nonlinear situation even when the number
of observations is small, /2(+) and fi(+) have smaller mean absolute error than

TABLE 1
Bilateral exponential distribution with p(t) = 4t* and ¢% = |
Mean Squared Error Mean Absolute Error
t I(+) O] #(s) I(+) O] i(+)
exact est. est.' est. est. est. est.
.1 .624 .619 .666 .653 .636 .575 .556
.2 .304 .301 .302 .280 .428 411 .385
.3 .181 .178 .239 211 .326 .375 .343
.4 .209 .205 .239 .206 .367 .378 .345
) .297 .293 .272 .237 .460 .402 .371
.6 .337 .333 318 .289 .489 .434 .413
.7 .274 271 .396 .375 417 .483 .472
.8 .267 .269 .527 .517 .405 .553 .549
.9 .964 .976 .769 .767 .836 .637 .638
Total 3.457 3.445 3.489 3.535 4.364 4.248 4.072




1468 J. D. CRYER, TIM ROBERTSON, F. T. WRIGHT AND ROBERT J. CASADY

[ and all three estimators have about the same mean squared error. (One would
expect the nonparametric estimators to outperform i(-) when the number of
observations is large and () is nonlinear since they are consistent estimators
and I(+) is not.)

In Table 1 we have given the results of one such simulation study. Again,
the distribution at ¢ was the double exponential with mean p(¢) = 4t and vari-
ance one. We took nine observation points with one observation at each. The
estimates of the various moments of the estimators were based on 10,000 iter-
ations of the procedure. We tabulated the mean squared error of i), a(+),
and s(+). In order to give the reader a feel for the sampling error involved,
we tabulated for /(-) both the exact values obtained from (3.2) and (3.3) and
estimates obtained from the simulation. Mean absolute error estimates are also
given. Note that all of the estimators do much better in the middle than in
the tails.

TABLE 2
Normal distribution with (f) = 4t and ¢? = 1
Mean Squared Error Mean Absolute Error

t I(e) O] (=) I(+) Py h(e)
exact est. est. est. exact est. est. est.

.1 .378 .379 .686 .694 .490 .489 .643 .649
.2 .261 .262 .425 .445 .408 .407 .520 .531
.3 .178 179 .382 .412 .336 .336 .495 511
.4 .128 .128 .365 .391 .285 .285 .486 .502
.5 L1 L1 .359 .386 . 266 .265 .480 .495
.6 .128 126 .363 .387 .285 .284 .484 .497
7 .178 175 .384 .409 .336 .333 .497 .512
.8 .261 .256 .433 .450 .408 .405 .524 .534
.9 .378 .371 .676 .687 .490 .486 .640 .646
Total 2.000 1.987 4.073 4.261 3.304 3.290 4.769 4.877

As a final comparison we present in Table 2 the results from a case most
favorable to the usual least squares regression estimator. Here the distribution
at t was taken to be normal with mean, 4¢ and variance one with one observa-
tion at each of nine points. Mean squared error and mean absolute error are
given, as in Table 1, with the additon of exact results from (3.4).

In summary, what do we recommend to the statistician who might consider
using /() or #i(+)? First of all, if there is reason to believe that y(+) is nearly
linear then it is difficult to find a better estimator than /(+). On the other hand,
if one is not sure, then fi(+) and #i(+) do provide, in the case that the regression
functions are monotonic, some protection against the possibility that yx(.) or
m(+) is very nonlinear.

Finally, r(+) is more difficult to calculate than f(-) but these calculations
pose no problem for a high speed computer. Both can be calculated using
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techniques which involve pooling of observations at adjacent observation points
(cf. Robertson and Waltman (1968)).
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