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SOME PROPERTIES OF BAYESIAN ORDERINGS
OF EXPERIMENTS!

By D. FELDMAN

Stanford University and Michigan State University*

Let Q be a finite set of states and Z the class of prior distribution on Q.
A nonnegative, continuous, concave function on E is called an uncertainty
function and if X = (27, .«/; Py, € Q)and Y = (%, &#; Qp, 0 € Q) are two
experiments X is called at least as informative as ¥ with respect to U if

U X) S U Y) forall £€Z

where U(&| X) is the expected posterior uncertainty for an observation on
X when the prior is £€E. Any such U induces a partial ordering on the
class of all experiments. The paper characterizes (i) the class of functions
U which lead to a total ordering of the class of experiments and (ii) the class
of transformations of a function U which preserve its induced ordering.

1. Introduction and summary. Consider a decision problem (Q, A4, L), where
Q is a set of states, 4 an action space and L a loss function on Q x 4. Let E(Q)
denote the class of all possible experiments with parameter space Q and suppose
that the decision maker is at liberty to perform one of the two experiments,
X, Y e E(Q) before choosing an act ae A. If we further assume that there is a
prior distribution & over 2, the decision as to which of the two experiments to
perform reduces to calculating which of the experiments has the smaller expected
posterior risk. In typical situations this choice will depend heavily on the nature
of the decision problem and on the particular prior in question. When these
are fixed E£(Q) can be totally ordered in the sense that for any pair of experiments
one is preferred or indifferent to the other.

There has been considerable interest in the (partial) ordering on E(Q) induced
by the requirement that the relation described above hold whatever be the de-
cision problem and the prior distribution. In such papers as Blackwell [1], [2]
and LeCam [7], for example, it is shown that under rather general conditions
this global requirement is equivalent to the relation of Blackwell sufficiency
between the experiments. In this paper we shall be concerned with certain
properties of orderings of £(Q) induced by an intermediate requirement, namely
that the expected posterior risk of X be smaller than that of Y for every prior
¢, but for a fixed decision problem. In particular we shall investigate (i) classes
of decision problems which totally order E(Q) and (ii) transformations of a de-
cision problem which preserve the order relation in E(Q).

If the sufficiency relation is at one end of the spectrum of Bayesian orderings
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BAYESIAN ORDERINGS OF EXPERIMENTS 1429

in E(Q) problem (i) addresses itself to orderings at the opposite end. The solu-
tion of problem (ii) provides insight for determining those decision problems
for which a specified experiment is desirable when it is known to be desirable
for some given problem.

Let E be the class of all priors over Q. The concave functional

U(§) = inf, § L(0, a) d£(0)

defined for all £ € E for which the integral makes sense, is the Bayes envelope
of the decision problem and we follow de Groot [5] in calling U the uncertainty
function of the problem. In [5] it is shown that (when the number of states is
finite) any concave functional on Z is the Bayes envelope of some decision
problem, and, since our interest is primarily in the posterior behavior of this
function we shall identify a decision problem with the uncertainty function it
induces on Z.

Let X = (72, .%; Py, 0 € Q) denote an experiment with measurable sample
space (/,.") and a family of probability models P,, 6 € Q, and let ¥ =
(7, .25 Q,, 0 € Q) denote an alternative experiment. We say that X is at least
as (more) informative as (than) Y with respect to U if U(§| X) < U(¢|Y) for all
§elZ (and U(|X) < U|Y) for some & e E) where U(§|X) is the expected
posterior uncertainty if X is observed and the prior distribution is £ and U(£|Y)
is the corresponding value for an observation on Y.

The relation “at least as informative as with respect to U” induces a partial
ordering on E(Q) and can be represented as a subset of £(Q) x E(Q) which we
shall denote by II(U). We then express the fact that “X is at least as (more)
informative as (than) Y as (X, Y) e I(U)((X, Y) e II(U) and (Y, X) ¢ II(V)).

The propositions we shall state will all be proved under the following basic
assumptions concerning the decision models:

(i) Q is a finite set with N elements. Z is then the N-dimensional simplex
consisting of all points & = (§(0,), - -+, §(f,)) with £(f,) = 0 and } £(0,) = 1.

(ii) U is nonnegative, continuous and concave on E and U(§) = 0 at all de-
generate probability vectors & = (0,0, -..,0,1,0, ... 0). This assumption
essentially means that the payoff or loss function of the problem has been
transformed to a regret function, which does not affect the class of Bayes
procedures.

(iii) E(Q) consists of all those experiments X = (.7, ./} P,, 6 € Q) such that
P,, 0 € Qis a dominated family with densities p,(f) at x and with the property
that the mapping

X = p, = (pa(0h), po(02), - -+ pa(Oy)) € Ry
is Borel.
Under these assumptions, we show in Section 3 that the only functions U
which induce a total ordering in E(Q) are geometric means i.e., functions of
the form U(§) = J[, [£(F,)]" for some fixed r = (¢, ---, ty) with 7, = 0 and
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2. t; = 1. The ordering amounts to a comparison of one value of the Laplace
transforms of the experiments being compared.

In Section 4 we show that II(U,) = II(U,) if and only if the loss function cor-
responding to U, differs from that of U, by a multiplicative function of # which
is nowhere 0.

2. Preliminaries. Let Q = (6,0, ---, 0,) be a finite set, and E the class of
all prior distributions on Q. 1If éeE then & = (£(6,), £(0,), - - -, £(fy)) with
§(f;) = 0 and }},£(0;) = 1. The uncertainty function U is taken to be non-
negative, continuous, and concave on & with the additional property that
U(§) = 0 for every degenerate probability function £&. Without loss of generality
we then assume that any experiment X = (227, %7; P,, 0 € Q) is dominated and
we denote the density of P, at x, with respect to the dominating measure, by
p.(6)—the likelihood function at x is then denoted by p,. If £ is the prior proba-
bility function and x is an observed value of X, the posterior probability func-
tion becomes:

£ = p. _ép
TONE0)P0)  paé)
where £p, is the ordinary product of the functions £ and p,.

Let E£(Q) denote the class of all experiments with parameter space Q. We
define the ordering induced by U on E(Q) as the subset, II(U), of E(Q) x E(Q)
characterized by: (X, Y)eIl(U) if

UE1X) = §., UE)p.(8) dp(x) = §, U(§,)q,(€) dn(y) = UE|Y)
for every & ¢ E.

If (X, Y)eIl(U) and (Y, X) ¢ II(U) we say that X is more informative than Y
with respect to U, or, we may interpret II(U) as a preference relation.

Typically, the ordering II(U) will be a partial ordering of E(Q). The ordering
induced by U is total if for every pair of experiments X, Y either (X, Y) e II(U)
or (Y, X) e IL(V).

Instead of dealing with U and ¢, directly we will use a convenient extension
of U defined as follows: Let F*(Q) = F* denote the class of all nonnegative
functions, f, on Q (F* is the orthant of nonnegative vectors in N-space). For
every f¢ F* define '

_ul I
v =u( 5 f(ﬁi))wi) and

V1K) = § o V(fp.) dp(x) -
The properties of U on E guarantee the following for ¥ on F*:
(i) continuity
(ii) superadditivity: V(f + g) = V(f) + V(9), /g€ F*
(2.1) (iii) nonnegative homogeneity: V(cf) = cV(f), ¢ > 0, fe F*
(iv) V(f) = 0 for all f with only one nonzero component
(v) For any experiment X, V(f| X) < V(f) for every fe F*.
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A 1-1 correspondence between functions U on Z and ¥ on F* is established
by noting that V' is determined by its restriction to any subset F, — F* with the
property that for every f € F* there exists ¢ > 0 such that ¢fe F,. In particular
we may take Fy = {f: >3, f(6,) = 1}, which yields U.

If U is the uncertainty function for the decision problem (Q, 4, L) then
U(€) = inf, 33, L(0;, a)§(0;). The function ¥ merely extends the domain of U
to F* and is related to the decision problem by:

(2.2) W(f) = inf, 3, L(0;, a)f(8,) for all feF+.

An experiment, X, is called completely informative with respect to V if
V(f|X) =0, for all fe F*. At the other extreme, any X for which V(f]|X) =
V(f) for every fe F* is called uninformative. An uninformative experiment is
an auxiliary randomization or, alternatively, an experiment whose likelihood
functions are concentrated on the ray: {f: f(f,) = ¢, for some ¢ > 0}. Hence-
forth we denote the function identically equal to ¢ by c*.

Note that completely informative experiments always exist: take, for example,
any family of N mutually singular probability measures.

Let X, denote the family of experiments {X,, re T}. 21X, denotes the ran-
domized experiment obtained by choosing 7 according to the probability measure
A over T and observing X,. Then

(2.3) V(f12Xp) = §0 V(/1X,) da() -

If X is sufficient for Y then (X, Y) e II(V) for every V([5]) and, in fact, the
converse is also true (e.g. [2]). For N = 2 there is a V,such that (X, Y) e II(V,) =
(X, Y) e IL(V) for every V satisfying the conditions (2.1). Using coordinate no-
tation, the ¥, that works in V(a, b) = min (a, b) as is shown in [1] and [3] (the
corresponding U, is Uy(§) = min (§, 1 — §)). The decision problem correspond-
ing to this ¥, (or U,) is a testing problem—indeed any non-degenerate testing
problem (with N = 2) generates the same ordering. We will show in Section
4 that for higher dimensions the situation is far more complex and that no such
V, exists.

We consider now some examples of other uncertainty functions for the case
N=2(E=1]0,1)).

ExampLE 1. U(§) = §(1 — §). This uncertainty function is the one corre-
sponding to a squared error loss problem on a two state space i.e. U is the vari-
ance of the prior distribution on Q = (0, 1). The corresponding V is:

ab
a—f—b'

U(¢] X) is shown in [9] to be related to the Fisher information in the family
Po(§), € €0, 1], treating & as the parameter of the family. For binomial ex-
periments we get an explicit solution to the ordering problem as follows: let

V(a, b) =
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X, Y be binomial experiments with parameters (p,, p,) and (r,, r,) respectively.
Then (X, Y) e II(V) = for every a, b = 0:
P1Pe + 919 < nr, + 5155
ap, + bp,  aq, 4 bg, — ar, 4 br,  as, + bs,
where g, =1 — p,and 5; = 1 — r;. After algebraic reduction the ordering can
be seen to be:

(X, y)eH(U)Q(Pl_Pz)z > (n—n) and (pr— p) > (rn— ) .
p(l —p)  n(l —r) Pl — p) (1 — 1)
Note that (p, — p,)*/(p:(1 — p;)) is the Fisher information of the binomial family
Epp+ (1 —&)p,Eef0,1]até =0fori=1andaté =1 fori = 2.

ExampLE 2. U(§) = [§(1 — &)]t. This U is the standard deviation of the prior
distribution and the ordering it induces is vastly different from that of Example 1.

UEIX) = [0 = O 5., [P()pu(x)]t dp() -
Hence, the ordering induced by U is total, depending only on the magnitude of
the number § . [ p(x)py(x)]t du(x). The corresponding ¥ for this function is
V(a, b) = (ab).

ExampLE 3. U(§) = —€&logé — (1 — &) log (1 — &). This is the Shannon in-
formation suggested for comparing experiments by Lindley [8]. The V corre-
sponding to U, here, is:

V(a, b) = (a + b)log(a + b) — aloga — blogb.

Although this function has received a great deal of attention, very little is known
concerning the ordering it induces.

3. Total orderings. We begin by proving a sequence of simple lemmas, each
a consequence of the assumption that II(}V) totally orders E£(Q)i.e., for any two
experiments X, Y either
V(f1X) = V(f]Y) for every feF*
or :
V(f1X) < V(f]X) for every feF*.
This assumption guarantees that if for some f, we have V(f,| X) < V(f,|Y) then
(X, V) ell(V). '

LemMma 3.1. If II(V) is a total ordering of E(Q) and if the experiments X, Y
are such that for some f,c F*
V(fol X) = V(f| ¥) # 0,
then V(f| X) = V(f|Y) for all fe F*.
Proor. Let T = (1,2), X; = X and let X, be completely informative. 21X, is

the randomized experiment which chooses X, with probability 2 and X, with
probability 1 — 2. Then

V(f1aXp) = V(f1 X)) + (1 = HYV(f1 X)) = AV(fX), [feF?



BAYESIAN ORDERINGS OF EXPERIMENTS 1433

since X; is assumed completely informative and X; = X. Under the assumption
that V(f,| X) = V(f,]Y) > 0 we get for every 2

Vol 2X7) = AV([o] X) < V(fol Y) = (X, YV) e II(V)

since II(V) is a total ordering.
Suppose, now, that for some f,, V(f,| X) > V(f;|Y). Then for 2 sufficiently
close to 1

V(fil4Xp) > V(fil Y)

which contradicts (X, Y) e II(V) for every 4. Hence for every fe F*, V(f|X) <
V(f|Y)sothat (X, Y)eII(V). Repeating the argument with Y instead of X we
get (Y, X) e II(V) which, together with the result (X, Y) e II(V), implies V(f| X) =
V(f|Y) for all fe F*. When this relation holds between experiments, for a
given V, we shall say that the experiments are equivalent with respect to /" and
write X = Y(V).

REMARK. Lemma 3.1 implies that for any pair of experiments X, Y we can
have just three possibilities:

(i) X = Y(V)
(ii) V(f1X) < V(f]Y)allfe FraV(f]Y)#0
(iii) V(f1X) > V(f]Y)all fe F*a V(| X) #0.

LemMA 3.2. Let II(V) be a total ordering of E(Q) and let X, Y be a pair of ex-
periments. Let T = (1,2), X, = X and let X, be completely informative. If for
some foe F+, V(fo| X) > V(fo|Y) > O then there exists a 2¢ (0, 1) such that
X, = Y(V). :

Proor. V(fy| X) > V(f,|Y) > 0 implies that there exists a 2¢ (0, 1) such
that 2V(f,| X) = V(f,|Y) > 0 and, since 2V(f,| X) = V(f,| 2X,), we have, by
Lemma 3.1, 2X, = Y(V).

REMARK. Lemma 3.2 shows that if X, Y are any two experiments, then
V(I X) = eV (f]Y):

If X=Y(V), takec =1

If (Y, X) e II(V) and if for some fy: V(f,| X) > V(f,|Y) > O then, by Lemma
3.2, there is a 2 > 0 such that 21X, = Y(V) so that AV(f|X) = V(f|Y) for
every fe F* and we can take ¢ = 1/4.

If (X, Y)eIl(V) we use the same argument to produce 2 such that V(f| X) =
AV(f|Y) and take ¢ = 2.

In particular, if Y is any uninformative experiment, we get for any experi-
ment, X ’

VI X) = ex V(fIY) = ex V(f)

where ¢, depends on X but not on f¢ F*. If Xis completely informative, ¢, = 0.
If X is uninformative, ¢, = 1. Generally we have 0 < ¢, < 1. If we assume,
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now, that ¥ is normalized so that ¥(1*) = 1 where 1* is the N-vector of all 1’s,
we get ¢, = F(1*| X) and

V(S1X) = V([ X)¥(f)
for every fe F*.

LEMMA 3.3. Let II(V) be a total ordering of E(Q). Then, for any pair of func-
tions f, g € F* we have V(fg) = V(f)V(9g)-
Proor. Let f < 1. Consider the following experiment, X:
7= (0,1,2, -+, N), p(0) = f(6), p;(0) =0 if 6 =+0, and
=1—f(0, if 6=6¢,.
X can also be described as follows:
X=0 with probability f
= X* with probability 1 — f

where X* is a completely informative experiment. Then, clearly,
V| X) = 2. V(p) = V(f)
so that from the remark following Lemma 3.2
gl X) = V(/)Ng)
for every g € F*. On the other hand

Mgl X) = Z: Vigps) = V(gf)

which proves the assertion for all f < 1. Since V is nonnegative homogeneous
the result can be extended to any fe F*.

ReMARK. The result of Lemma 3.3 can obviously be extended to read:

V(1o /o) = 115 V(fi) whence we easily get V(f™) = [V(f)]" for any integer,
m. Since:

v = vnt-

we get V(f") = [V(f)] for any rational r, and finally, by continuity of V', V(f*) =
[¥(f)]t for any real number, .

We are now ready to prove the main theorem of this section which will be
shown to be a consequence of Lemma 3.3.

THEOREM 3.1. The ordering induced by a normalized V, satisfying the conditions
(2.1) is total if and only if V' is of the form:

(3.1) V(f) = 1L [f10)]% = exp[ 2, 1; log f(6,)]
for some fixed t = (t,, ---, ty) where t;, >0 and Y, t, =1 (i.e., V is a geometric
mean).

Proof. The “if” part is only a matter of checking that I’s of this form do,
in fact, satisfy (2.1) and generate a total ordering of the experiments. The
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properties (2.1) are well-known properties of the geometric mean (see e.g. [6]).
Now, let X have likelihood functions p, with respect to z2 and Y have likelihood
functions ¢, with respect to . Then (X, Y)eII(V) —

§o V(/po) de(x) = § o T1: [f10:)p.(0:)]% dpx(x)
= TL: [f0)]% § o TS [ pa(0:)]" dpn(x)
= [L @)1 5, 11: [9,00)] dn(y) = ., V(fq,) dn(y)
for every fe F* if and only if

(3:2) § o IL: [P(09)] dp(x) = §, T1: [9,(00)]% dn(y) -

Since the ordering is determined solely by the magnitude of a single number
associated with each experiment (in fact ¥(1*| X)) the ordering is total.

To prove the converse consider the linear space H = {h: etc F*} (H is
Euclidean N-space) and let W (k) = log V(e").

According to Lemma 3.3 and the remark following it:

V9" = NIV @)r

W(ah, 4 bh,) = log V(e®1 . ebt2)
= alog V(eM) + b log V(etz)
= aW(hy) + bW (h,) .

so that:

Hence Wis a linear functional on H. Furthermore /1, > h, = e"1 > eh: — V(eh) >
V(e™) since V' is superadditive. Hence 4, > h, — W(h,) = W(h,). Thus W is a
positive linear functional on & and the continuity properties of V' guarantee that
W is continuous and bounded. ¥ normalized — W (1*) = log V(e*) = loge = 1.
Hence by the representation theorem for continuous linear functions on R, we
have W(h) = 3, t;h(0;) for some fixed t = (#,, - -+, t,) with 7, > 0 and 3, =
t; = 1. Since a(0;) = log f(0,) for some fe F+ we get

V(f) = expl X t; log f16,)] = TIiL [/(00)]
which was to be proved.

The function L,(t) = § . I1:[p.(6;)] dp(x) defined for every ¢ in the N-dimen-
sional simplex: ¢; = 0, 3 #; = 1 is called the Laplace transform of the experi-
ment, X. If we denote by V, the geometric mean of order ¢ on F*, defined in
(3.1), from (3.2) we see that (X, V) e II(V,) = Ly(1) < L(1).

Since the function L,(r) uniquely represents the experiment, X, any property
of experiments, in particular ordering properties, should be expressible in terms
of their Laplace transforms. Efforts at establishing such expressions have thus
far been unsuccessful. Note, for example that if X is sufficient for Y then
Ly(r) < L,(1) for every ¢ in the simplex. The converse, however, is not true, as
shown by Torgersen in [10].

For N =2, L,(t) was studied by Chernoff [4] in which he uses the value
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p = inf, log L,(r) to order experiments. The preceding theorem shows that this
is not a Bayesian ordering, as we have used the term.

In Section 2, Example 2 we discussed the special case U(£) = (&(1 — &),
which corresponds to ¥, and N = 2." Let U,(§) = &%(1 — £)'t. Thena family
of decision problems which yield this family of uncertainty functions is given
by: Q = (0, 1), 4 = [0, 1], the unit interval, and

L0, a) = t(l — a>H for 8 =0

a

:(1—1)( @ )t for 6 —1.
1 —a

For 1 = } the decision problem has the following simple structure: Q = (0, 1),
A = {nonnegative reals} and

LO0,a) =a
L(l,a) — a*

so that if # = 0 we want to choose a small, if 0 = 1 we want to choose a large
and the Bayes envelope of this problem is U(§) = 2(5(1 — £))%, which yields the
ordering of Example 2, Section 2.

4. Order preservation. It was shown in [5]that if (X, Y) e II(U) then (X, Y) e
II(U,) where U,(&) = U(¢|Z) and Z is any experiment. Correspondingly we
have (X, Y)eIl(V) = (X, Y) e II(V,). We show here that the transformations
V'— V,, and their limits are the only transformations for which the implica-
tion holds. The argument depends on the cone structure of the orderings, a
separation theorem for convex sets, and the representation theorem for linear
functionals.

Let C be a cone of continuous functions on F+i.e., W e C — cW e C for every
¢>0and W, W,e C—= W, + W,e C. We suppose also that C contains the re-
strictions to F* of all linear functionals on R,. Let C be the closure of C (in
the topology of uniform convergence on compact sets) and let M be the class
of regular Borel signed measures with compact support on F*. Call me M C-
positive if § W(f)dm(f) =0 for all WeC. The cone C thus determines an
ordering of the positive measures in M: (z,, 1) € II(C) if g, — p, is C-positive.

If W, ¢ C, there is, by the separation theorem for convex sets, a linear func-
tional (in this case an element of M) m, e M such that §{ W,dm < 0 and § W dm, =
0 for every We C.

Note that m C-positive — §I(f)dm(f) = 0 for every linear functional, /.
Therefore, the m; = my* — m,~ determined above can be assumed to be the dif-
ference of two bounded measures such that § i(f) dm,*(f) = § I(f) dm,~(f) for
every linear functional, /.

By suitable norming we can further assume § I(f) dm,*(f) = § I(f) dm,™(f) =
[(1*) where, as before, 1* is the vector of all 1°’s.
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Now consider a pair of experiments X, Y. We note first that every experi-
ment with finite parameter space has a ‘“‘standard representation” (see e.g. [2]
and [10]) as a measure, g, on the probability simplex, S, in N-space such that
(a) Ysdp(s) = N and (b) §ss,du(s)=1,i=1,2, ..., N. The pair X, Y thus
induces a signed measure m on F'*, with compact support and with the properties

(i) §U(f)dm(f) =0

(it) §U(f)dm*(f) = §U([f)dm™(f) = I(17)
for every linear functional, /.

Conversely, any measure m € M with properties (4.1) is determined by some
pair of experiments X, Y.

Let ¥ be a function with properties (2.1) and consider the closed cone Cy(V)
determined by the class of functions V = {V,, Z ¢ E(Q)} and denote by C(V') the
closed cone determined by ¥ and all the linear functionals on F*. We now
prove the following:

THEOREM 4.1. Let V, W be two functions with properties (2.1). The implication
(X, Y)ell(V)=(X,Y)ell(W)isvalid forall X, Y € E(Q) (i.e., II(V) c II(W)) =
WeCyV). :

Proor. As mentioned above the “if” part was essentially shown in [5]. The
arguments preceding the statement of the theorem show that if W ¢ C(V) then
there exists m, ¢ M such that:

(i) Vo(f)dmy(f) = 0 for every ¥V, e C(V) and
(i) W(f)dmy(f) <O.

Let X,, Y, be a pair of experiments which induce m,~ and m,* respectively on
F*. Then (i) = (X, Y,) € II(V) and (ii) = (X,, Y,) ¢ [I(W). It follows therefore,
by contradiction that (X, Y)elIl(V) = (X, Y)eIl(W) for every pair X, Y re-
quires that W e C(V). Since W is assumed to satisfy condition (2.1) (iv) (i.e.,
W(f) = 0 for all f with only one nonzero component) it can not have a positive
linear term and therefore must be in the smaller cone Cy(V') as was to be shown.
We now consider the question: when is it true that for two functions V, W
satisfying (2.1) the double implication (X, Y)eIl(V) = (X, Y) e I(W) is valid
for every pair X, Y e E(Q)? Equivalently—when is it true that II(V) = II(W)?
The previous theorem makes it clear that the answer to this question amounts
to finding conditions under which the cones Cy(¥V) and Cy(W) are identical.
Let M, denote the class of measures on the simplex which represent experi-
ments and let V,(f) = §5 V(f9)dr(9), e M, Then V ={(V,, Zec EQ)}=
{V.» 1€ My}, a convex set. AV is the class of functions obtained by multiplying
each member of ¥ by the real number A and the cone generated by V is Cy(V) =
Uz av. .
Note that if W e 1V then so is aW where 0 < a < | since aW can be obtained
by an experiment which randomizes between a completely informative and an
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informative experiment. To avoid ambiguity of representation we associate with
each ¢ € M, the following number:

Ap) = inf{2: V,eaV}.
Clearly 0 < 2(¢) < 1and if 2(xz) = 2 then there is a z* € M, such that 2(¢*) = 1
and V, = AV,.. The measure p* will be called maximal wherever A(z*) = 1.

The use of maximal measures will enable us to distinguish between the ele-
ments of Cy(¥) and those of Cy(V).

LemMa 4.1, Let W(f) = lim, 2, V, (f) uniformly for fe S with 2, = 0 and p,
maximal. Then W e Cy(V) if and only if {1,} is a bounded sequence.

Proor. Suppose W e C(V). Then for some a > 0 and some pe M, W = aV,
where y is maximal. Now if 4, is unbounded we can assume for n, sufficiently
large and n =n, 2, > a+ 1 so that 1,¥, € U;>.s1 AV for all n=n, and
AV, & AV for any n = n, and 2 < a. This contradicts W = aV/, and therefore
2, must be bounded. Conversely, if {1,} is bounded we can assume 4, —a = 0
and since M, is weakly compact there exists ¢ € M, such that §¢ V(fg) dp.(9) —
§s V(f9) dpr. Hence lim, 2, ¥V, = aV, and W e Cy(V) as was to be shown.

LEMMA 4.2. Let p,, p, be maximal measures on S, yt the measure induced on S
by the pair of experiments (11,, 11,). Then A(p) = inf{a: V, € AV(p,)} = inf{2: V, €
V(p,)} where

V(gs) = (Vo 1€ M)} = {§s V.. (f9) d1(9), 1 € Mo} -

Proor. The proof follows immediately from the definition of maximality
and the fact that V€ V,, for every e M,.

The following lemma will enable us to characterize those functions W which
can not give rise to the same ordering as V.

LEMMA 4.3. Let We C(V) — Cy(V). Then the only function that Cy(W') and
Cy(V) have in common is the zero function.

ProoF. W e Cy(V) — Cy(V) implies W = lim, 2, V, ~with y, maximal and
A, — oo. If ye M, then W (f) = lim, 2, {5 V, (f9) dn(g) since the convergence
is uniform on compact sets. By Lemma 4.2 the maximal representation for W,
is given by .
W(f) = lim, a,2, §s V, (f9) d1.(9) -

Now § ¥, (f9) dr.(9) = §s V(f9) dp.(9) — 0 uniformly for feS. Hence a, A,
is either unbounded or W,(f) = 0.

Suppose Wy(f) = lim, a, §s W(gf) dy,(g) for a maximal sequence {5,}. W(gf) =

lim,, 2,, Vs V(9f) d..(9) so that by appropriate choice of a subsequence of n’s:

Wo(f) = hmn an’zm(n) SS SS V(fgh) d’?n(g) d/um(n) *
Again, since the double integral converges uniformly to zero we must have

a, 2, unbounded or W,(f) = 0. Hence either W,(f) is identically 0 or W(f) €
C (V) — C(V).
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We shall now drop the standard measure notation and revert to the notation
developed earlier. We may now prove:

THEOREM 4.2. Let V, W be two functions with properties (2.1). The double im-
plication (X, Y)eIl(V) = (X, Y) e Il(W) is valid for all X, Y € E(Q) < W(f) =
V(gf) for some g such that g(6;) > O foralli=1,2, ..., N.

Proor. First note that if W is of the stated form W and V' do generate identical
orderings since the cones C,(¥) and C,(W) are identical.

By Lemma 4.3 the double implication means that W = aV,and V = bW, for
some a, b > 0 and some Y, Z ¢ E(Q). Hence we must have W = abW . ,, where
(Y, Z) is the joint experiment consisting of an observation on Y and an inde-
pendent observation on Z.

Now, W is an extreme point of the convex set W = {W,, Z e E(Q)} as can be
seen from:

W = a’WZl + (1 — a)WzZ = WaZ1+(l—a)Z2

implies «Z, 4 (1 — «)Z, is uninformative — Z, is uninformative for i = 1,2 and
hence W, = W.

Since W, , = 1/(ab)W, W, ,, must be a function in the extreme ray cW,
¢ = 0 and can not be a convex combination of functions in other rays of the
cone generated by W. That is to say if

W) = § Wlgg,r.) dq(y) dv(2)

then W(fq,r,) = c(y, z)W(f) for every y and z and every fe F*. Hence gq,r, =
c*(y, z) for every pair y, z where c*(y, z) is a vector each of whose coordinates
is the constant ¢(y, z). On the set ¢(y, z) > 0 we get, then

q, = c(y, z)r,~"

and by varying z for fixed y and then y for fixed z we see that the likelihood
vectors r, and ¢, must be concentrated on rays cg, cg™', g > 0 respectively, ex-
cept for those y’s and z’s for which ¢, or r, are roots of W. In particular, Z is
equivalent to an experiment of the type used in Lemma 3.3, namely:

Z=0 with probability g > 0
= X* with probability 1 — g

where X * isa completely informative experiment. Since W = V, we get W(f) =
V(gf) = V,(v) for some g > 0 and every Fe F*.

REMARK. We noted in Section 2 that for n = 2 (X, Y) e II(V) for every V is
equivalent to (X, Y) e II(V;) where V(a, b) = min (a, b). This is due to the fact
that the extreme rays of the convex cone consisting of all continuous nonnegative
superadditive functions on the positive quadrant which vanish on the axes are
related to one another by transformation of the type described in the above



1440 D. FELDMAN

theorem. More precisely if V,, V, are any two functions in different extreme
rays of the cone, there exist positive numbers ¢,, ¢, such that

V(a, b) = V(c,a, c,b) forall a,b.

This phenomenon does not occur in higher dimensions. For example if N = 3
the functions V,(a, b, ¢) = min (a, b) + min (b, ¢) + min (a, c¢) and Vy(a, b, ¢) =
min (a + b, b + ¢, a 4 ¢) are in different extreme rays and can not be related
as above.

The following corollary expresses the result in terms of the loss function of
the decision problem:

COROLLARY 4.1. The decision problems (Q, A, L,) and (Q, A, L,) induce the same
ordering on the class E(Q) if and only if there exists g such that g(0,) > 0 for i =
1,2, ..., N such that

Ly(0, a) = g(0)L,(8, a) .

The proof follows from Theorem 4.1 and the representation (2.2).

Note also that the fact that the action spaces are then to be the same for both
decision problems is not a restriction. First, because any two action spaces with
a 1-1 correspondence between them are essentially identical and secondly be-
cause it is always possible to amplify an action space by adding inadmissible or
redundant acts.
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