A NOTE ON SYMMETRIC RANDOM VARIABLES

BY DAVID L. BURDICK

San Diego State College

There exist independent random variables X_1 and X_2 such that X_1 is symmetric, X_2 is not symmetric, but $X_1 + X_2$ is symmetric. If X_1 and X_2 are i.i.d. random variables with a fractional moment and if for all real α $P[X_1 + \alpha X_2 > 0] = \frac{1}{2}$ then they are symmetric.

1. Theorem. There exist independent random variables X_1 and X_2 such that X_1 is symmetric, X_2 is not symmetric, but the sum $X_1 + X_2$ is symmetric.

PROOF. Let f(y) be an odd L_1 function which vanishes inside [-1, +1] such that $\pi i f(y)$ is the Fourier transform of an odd L_1 function $\rho(x)$ on $(-\infty, +\infty)$. The probability density function $\{|\rho(x)| + \rho(x)\}/\int_{-\infty}^{+\infty} \{|\rho(x)| + \rho(x)\} dx$ has as imaginary part of its characteristic function $\pi i f(y)/\int_{-\infty}^{+\infty} \{|\rho(x)| + \rho(x)\} dx$ which vanishes for $|y| \le 1$. Choose any asymmetric random variable X_1 with a Fourier transform that vanishes outside $|y| \le 1$ and let X_2 denote an independent random variable with the density function just constructed. Then $X_1 + X_2$ has a real characteristic function and hence its distribution is symmetric. A suitable candidate for f(y) is

$$f(y) = e^{-(y-1)} \sin (y - 1) \qquad y \ge 1$$

= 0 \qquad -1 < y < 1
= -f(-y) \qquad y \leq -1.

Then $\pi i f(y)$ is the Fourier transform of the function $\rho(x)$ where $\rho(x) = \{(2-x^2)\sin x + 2x\cos x\}/(4+x^4)$.

2. Theorem. Let X_1 and X_2 be independent random variables with the common probability density function g(x) possessing a real fractional moment. If for all real $\alpha P[X_1 + \alpha X_2 > 0] = \frac{1}{2}$ then X_1 is a symmetric random variable.

PROOF. If $P[X_1 + \alpha X_2 > 0] = \frac{1}{2}$ for all real α then by changing to polar coordinates in the x_1 , x_2 plane $\frac{1}{2}$ may be written as a function of the angle $\theta(\alpha)$ that the line $x_1 + \alpha x_2 = 0$ makes with respect to the x_1 axis as follows:

$$\frac{1}{2} = \int_{\theta(\alpha)-\pi}^{\theta(\alpha)} \left[\int_0^\infty \rho g(\rho \sin \theta) g(\rho \cos \theta) \, d\rho \right] d\theta .$$

Differentiating both sides of this equation with respect to $\theta(\alpha)$ and a simple change of variables yields the condition that $\int_{-\infty}^{+\infty} ug(u)g(\beta u) du = 0$ for almost all β . Changing to polar coordinates and the subsequent differentiation are justified by the Fubini theorem and the theorem that the derivative of the integral of an L_1 function equals the function almost everywhere.

Received November 24, 1971; revised April 8, 1972. AMS 1970 subject classification. Primary 6020. Let $|\beta|^s = e^{s \ln |\beta|}$; for purely imaginary s:

$$\int_{-\infty}^{+\infty} |\beta|^s [\int_{-\infty}^{+\infty} u g(u) g(\beta u) \ du] \ d\beta = 0.$$

The order of integration may be interchanged if $ug(u)g(\beta u)$ is integrable as a function of u and β since $|\beta|^s$ has absolute value one if s is purely imaginary. The values of the iterated integrals

$$\int_0^\infty \left[\int_{-\infty}^{+\infty} u g(u) g(\beta u) \ d\beta \right] du \qquad \text{and} \qquad \int_{-\infty}^0 \left[\int_{-\infty}^{+\infty} u g(u) g(\beta u) \ d\beta \right] du$$

are $\int_0^\infty g(u) du$ and $-\int_{-\infty}^0 g(u) du$.

The Tonelli theorem may be applied to the last two integrals to conclude that $ug(u)g(\beta u)$ is integrable. Thus the order of integration may be interchanged yielding:

$$\int_{-\infty}^{\infty} \frac{g(u)}{|u|^s} \left[\int_{-\infty}^{\infty} |\beta u|^s g(\beta u) u \ d\beta \right] du = 0.$$

From this it easily follows:

$$\left[\int_{-\infty}^{\infty} |v|^s g(v) \, dv \right] \left[\int_{0}^{\infty} \frac{g(u)}{|u|^s} \, du \, - \, \int_{-\infty}^{0} \frac{g(u)}{|u|^s} \, du \right] = 0 \, .$$

If a real fractional moment of X_1 exists, then the values of $\int_{-\infty}^{\infty} |v|^s g(v) \, dv$ are the boundary values of an analytic function along the imaginary axis and cannot vanish on any interval. Thus

$$\int_0^\infty \frac{g(u)}{|u|^s} du = \int_{-\infty}^0 \frac{g(u)}{|u|^s} du.$$

Substituting ln|u| = v and using standard theorems on Fourier transforms yields $g(e^v) = g(-e^v)$ for almost all v; therefore g(x) is even.

It would be interesting to know if the condition that a fractional moment exists could be omitted.

DEPARTMENT OF MATHEMATICS SAN DIEGO STATE COLLEGE SAN DIEGO, CALIFORNIA 92115