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AN EXPONENTIAL PROBABILITY BOUND FOR THE ENERGY
OF A TYPE OF GAUSSIAN PROCESS

By L. H. KoopMANS! AND C. QUALLS?
The University of New Mexico

Real-valued stochastic processes of the form x(f) = §A(t, A)Z(d2) are
considered, where Z(2) is a zero mean Gaussian process with independent
increments and § S |A(t, A)|2F(d2) dt < oo, where F(di) = E|Z(dA)|2. 1t is
shown that the energy of x(¢), § x2(¢) dt, is a well-defined random variable
and an exponential bound for P(§ x2(t)dt — E § x%(t) dt = ¢) is derived. This
bound is used to obtain an exponential bound for crossing probabilities
P(|y(t)| > a for some ¢) where y(£) = § A(t — )x(z) dz, § h¥(t) dt < co.

1. Introduction and summary. Let {Z(2): —oco < 2 < oo} be a measurable,
zero mean, complex-valued Gaussian process with independent increments on
a probability space (2, .o, P). This process will be thought of as the spectral
process of a real-valued stationary time series in continuous time. As such, it
generates a complex-valued spectral measure Z(A4) on the F-measurable subsets
of the real line with the property that Z(— A) = Z(A), where F is the spectral
distribution function of the time series. The Lebesgue-Stieltjes measure induced
by F will also be denoted by F and it is related to Z by the expression F(4 N B) =
EZ(A)Z(B). Thus, in particular F(A) = E|Z(A)|* Let A(t, 2) be a complex-
valued L x F measurable function (where L denotes Lebesgue measure on
(— o0, o0)) such that

(1.1) A(t, —2) = A(t, 2)
and
(1.2) § § |A4(t, D|PF(dA) dt < oo .

(All integrals are over the range (— oo, o) unless specified otherwise.) The
basic result of this paper is the following theorem.

THEOREM A. Let A(t, 2) be an L x F measurable function satisfying conditions
(1.1) aud (1.2) and consider the stochastic process defined by the stochastic integral

(1.3) x(f) = § A(t, )Z(d2) .

Then the energy of this process, § xX(t) dt, is a well-defined random variable for which
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the following simple exponential probability bound is valid:
3
1.4 P(§ x*(t)dt — E § x*(¢)dt = ¢ S(l i)ex <__e_>’
(L4 PO —E§xdiz e s (14 ) exp(—s5

forall ¢ = 0, where A* = L Var § x(¢) dt.

This inequality is based on an elegant inequality for quadratic forms in sym-
metric random variables recently published by Hanson and Wright [2]. We
have modified their inequality slightly and have applied it to the simpler case
of normal random variables yielding an exponential bound which we feel is of
interest in its own right. The details of this modification will be given in Sec-
tion 2. In Section 3 we establish Theorem A.

Stochastic processes of the form (1.3) have been of interest for some time.
(See Priestley (1965).) With the condition (1.1) they constitute a large and im-
portant class of real-valued (possibly) non-stationary processes. With the ad-
dition of condition (1.2) the processes become decidedly non-stationary and, in
fact, have finite energy, with probability 1. In this form they are useful as
models for transient phenomena or for non-transient phenomena over finite time
intervals. In a study of the failure probability for linear structures given in [3],
such a process (an earthquake) was used as the input to a linear system (an ideal-
ized physical structure) with impulse response function A(z), § #*(t) dt < co. If
y(t) = § h(t — u)x(u) du is the output of the system, then an investigation of the
probability of failure of the structure leads naturally to evaluation of the cross-
ing probability P(|y(f)] > a for some t, —co < t < co). In Section 4 an ele-
mentary application of inequality (1.4) will be shown to yield the bound

(1.5) P(|y(1)] > a for some ) < (1 + E(")> exp( 5(“))

where e(a) = (a® — § B (t) dt E § x*(f) dr)] § h*(t)dt and A is as in (1.4). This
bound is of exponential form as are the asymptotic values of crossing proba-
bilities (for large a) given in the literature (e.g., [5] Lemma 2.9) and has the
practical advantage of being valid for all values of a for which ¢(a) = 0, and
thus, readily usable in applications.

2. Modification of the Hanson-Wright inequality. Since we deal with the special
case of normal random variables, the derivation of our version of the Hanson-
Wright inequality is considerably shorter than the one in [2] and is given below
for completeness.

THEOREM 1. Let A = [a;;] be a real, symmetric N X N matrix and w =

(g, -+, uy) a vector of independent, standard normal (.#"(0, 1)) random variables.
Then, sz = Ny, Y. a;(uu; — E(u;uy)), for everye = 0
4 €
2.1 Pz (14 5) exp(—5)
@1) (szo=(1+=) exp(—55

where A* = Y2, > al; = L Var S.
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Proor. We use a basic probability inequality (see, e.g. Loéve, page 255);
namely

(2.2) P(S = ¢) < Ee’S9,
which is valid for all # > 0. Since u is orthogonally invariant, we may transform
A to diagonal form diag(b,, - - -, by) and obtain the quadratic form

S=>¥ bw2—-1), where w = Du is N(0,]).

=14

The moment generating function of w2 — 1 is easily calculated and is given by

_ e’ 1
(2.3) Eexpi(w?—1) = =23y for 1<%.
Now, define a function C(4) by the expression

-2
2.4 CHR) = €~ for 0< | <43,
(2.4) exp(CO) = o <12l <4
and

C0)=1.
By expanding log(1 — 22) in a power series about 4 = 0 it can be verified that

w  (22)%

c) =1+ ZZ"=‘1<(+)2 for |4 < 4.

By a term by term comparison of this expression it is evident that C(2) < C(|4])
and that C(4) is an increasing function of 2 when 2 > 0. Thus, since max;|b;| <
(32, b2 = (tr A = A, we will have
C(6b,) < C(Olb) < C(OA)  for 0 <0< %& .
Now, combining this fact and expressions (2.2)—(2.4), we obtain
P(S=¢) S e T[X,Eexpbb(w? — 1)
< e~ exp[0® T2, C(0]b,))b¢]
< e~“f exp[*C(OAN)A?]
e~ oA
(1 — 20A):
Finally, the minimization of the right-hand side of this inequality as a function
of ¢ yields inequality (2.1).
The expression for A? is an immediate consequence of the representation of
S in terms of the w;’s and the fact that Var(w? — 1) = 2.

— p—el

1
for 0< 0 < —.
or < <2A

3. The exponential bound for a class of complex quadratic forms. Let {A,: k =
0, +1, ..., +n} be a finite F-measurable partition of the real line with the
property that A_, = —A, for all k. (Thus, A, = {0}.) Let I,(4) denote the set
characteristic function of A, and define the product simple function

F (A 1) = Diemn Dhemn Cin (VL) 5
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where the complex numbers C; , are chosen in such a way that & (4, p) satisfies
the symmetry conditions

(3.1) F(pA)=F(4Ap) and  F(—24 —p)=F(4p).
Thatis, C, ;= C; ,and C_; _, = C, ;. Then,
T = §§. 5 p)Z(dn)Zdy)
= Dfemn Di-n G5 Z(8)Z(8,)

is a real-valued quadratic form in complex normal random variables.

LEMMA. Inequality (2.1) is valid with S = T — ET and

A*=3Var T = § § § |54 ) F(d)F(dp) -

Moreover
(3.2) ET* = [§ .52, HFEDF + § § 1.5 (3, p)"FdA)F(dp) -

Proor. The proof is based on a simple reduction of the complex quadratic
form to a form in real random variables and coefficients. Associated with the
complex-valued spectral measure Z(A4) are two zero mean real-valued spectral
measures X(A) and Y(A) such that Z(4) = X(A) — iY(A) for every F-measurable
set 4. It is seen from the properties of Z(4) that X(4) and Y(B) are independent,
zero mean, normal random variables with X(—A4) = X(4), Y(—A4) = —Y(4)
and EX(A)X(B) = {[F(An B) + F(An (—B))], EY(A)Y(B) = {[F(An B) —
F(A n (—B))]. It follows that if 4 — (0, o), Var X(A4) = Var Y(A) = }F(A).

To avoid difficulties we will assume that F({0}) = O for the time being and
will show how to remove this restriction later. Then, P(Z(A,) = 0) = 1. Then
it is easy to establish that

§ § F(4 w)Z(d)Z(dp)
= 2§7 §7 {[Re (4 1) + Re .5 (4, —m)]X(d)X(dp)

(3.5) + [=Im F (4, ¢) + Im F (4, —p)]X(dA)Y(dp)

+ [Im (4, 1) + Im F (4, — )] V(@A) X(dp)

+ [Re F(4, 1) — Re F (4, —pm)]Y(d)Y(dp)}.
Thus, if X, = X(A,)/(4F(A,))* and Y, = Y(4,)/(3F(A,))* when F(A,) # 0 and
X, =Y, =0if F(A,) = 0, then T can be put in the form required by Theorem
! by the representation

(3.4) T=300 Dk @ X Xy + B XY + 750 Vi X + 0, Y5 Y,
where (from (3.3)),

a;, = (ReC;, 4+ Re C; ) (F(A,)F(A,))
(3.5) Biw = (—=ImC;, + Im C; _)(F(A,)F(A,))*

i = (Im Cy + Im C; _)(F(4,)F(A,))}

;0 = Re Cy, — Re C; ) (F(A))F(A,))*
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It is easily checked that the appropriate symmetry properties for these coefficients
follow from (3.1).

Theorem 1 can be applied directly to (3.4) to obtain the first part of the lemma.
Since T'= S + ET, Var § = Var T and ET? = (ET)* + Var (S) = (ET)* + 2A%.
By recalling that A? is the sum of squares of the elements of 4 and by evaluat-
ing ET from (3.4) we obtain the expression

(3.6) ET" = [ X5 (a; + Bis + 155 + ;)T
+ 2 2% ke (@G + Bk 75+ 050) -
Thus, by virtue of (3.5) and the symmetry properties of the C; ,’s and F,

ET* = [2 53, C; , FA)T + 2 £ia Tt (IG5l + (G5 Lu)F(A,)F(A,)
= [§-5 (& DF@DT + § § | (4 ) F(d2)F(dp)

This readily yields Var T = § § |5 (4, p)|*F(dA)F(dp).

To remove the restriction F({0}) = 0, the representation (3.4) can be extended
to a double sum from 0 to # in j and k by taking a,, = C, ,F({0}), B0 = 70,0 =
000 =0, a5, = ay o = Re C, ((FF({ONF(AL))E Boi = 14,0 = Im C, ((F({O)F(A,))E,
and B,y =7,0=20y;, = 0,0=0for k = 1.

The inequality (2.1) is certainly still valid and the additional terms acquired
in (3.6) by extending the sums to the lower index zero are seen to account for
the spectral mass at the origin and along the coordinate axes. Thus, (3.2) is
correct in general. This proves the lemma.

We proceed to the proof of Theorem A. The class of simple functions with
rectangular (product) sets of constancy is dense in (L x F). Thus, because
of (1.2), there exists a sequence of such simple functions, {4,(#, 2)}, such that

(3.7) §§ 14.(1, ) — A(t, D)2 dtF(dR) — 0 as n— oo .

These functions can be modified (if necessary) to satisfy (1.1) without changing
their convergence properties by replacing A4,(r, 1) by A4,(t, —4) for 2 < 0. Con-
sequently, we assume (1.1) to be satisfied by 4,(¢, 2) for all n. Now, let

x,(t) = § A, (t, A)Z(dR) .
Then
T, = {xX0)dt = § § 5, m)Z(dR)Z(dp) ,
where
‘?n(l’ /l) = S An(t’ Z)An(t’ /l) dt *

It is easy to verify that .5 (4, ) satisfies (3.1) and the lemma can be applied
to yield
[

(3.8) P(T, —ET, 29 < (1 + A_>’ exp (i) :

n

v

0,

where A,>=1VarT,.
Also, for every m and n .5 (4, p) — .5 (4, p) is a simple function with the



1958 L. H. KOOPMANS AND C. QUALLS

same symmetry properties and (3.2) can be applied to obtain

(3.9)  ET, — T =[§ (Fu(d 1) — F (4 H))FE]
+ § § (A 1) — F a4, p)'F(dA)F(dp) -

By a standard argument based on (3.7), the two terms on the right-hand side of
(3.9) can be shown to go to zero. Thus, {T,}is a Cauchy sequence in £, (P). It
follows that there exists a random variable T with ET? < oo and E(T,, — T)*— 0;
thus E|T, — T| -0 as n — c. Moreover, ET, — ET, Var T, — Var T and
P(T, € A) — P(T € A) uniformly for all Borel sets 4. Consequently, we can pass
to the limit on both sides of (3.8) to obtain

1\

e\? €
(3.10) P(T_ET;S)§<1 +X> exp<‘—ﬁ>, e20,
where A* = L VarT.

Now, (Doob, page 430), it is possible to select an L X P measurable version
of x(t) = § A(t, ))Z(dA). Thus, § x*(¢) dt is a well-defined random variable in
Z(P) since (Fubini) E § x*(t) dt = § Ex*(t)dt = § § |A(t, 2)|*)F(dA) dt < co. Now,
a straightforward application of the Cauchy-Schwarz inequality and the equation

§ Elx,(f) — x(n)]* dt = § § |4,(1, 2) — A(t, DI’F(d2) di

establishes that E|T, — § x*(f)dt| -0 as n— co. The uniqueness of < (P)
limits yields T = § x*(r) dt a.s. With this substitution in (3.10), Theorem A
is proved.

COROLLARY. Let A(t, A) be the function given in Theorem A. Then,
(3.11) A= 1§ §|F @, p)PFER)F(dp)

where
T ) = VAt VAT ) dt

The proof of the corollary is easily obtained by a convergence argument based
on (3.7). This result, along with the previously derived expression

(3.12) E§ x¥t)ydt = § § |A(t, 2)|*)F(dA) dt
provides a means for computing the parameters of inequality (1.4) of Theorem A.

ExAMPLE. An important subclass of the processes defined in Section 1 is of
the following type: Let {u(f): —oco < t < oo} be a stationary Gaussian process
with Eu(f) = 0, and covariance function R(¢) continuous at + = 0. Then R(7) =
{ e*2F(d2) where F is the spectral distribution function of the process and u(r)
has the representation u(f) = {e***Z(d2) where Z(A) is a Gaussian spectral mea-
sure of the type defined in Section 1.

This process is filtered by a time invariant linear transformation with fre-
quency response function B(2) with § |B(4)|?F(d2) < oo (so that an output with
finite power is obtained). Then the result is subjected to a real-valued tapering
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function G(f) with § G*(r) dt < co. The output of these two operations is of the
form x(f) = § A(t, 2)Z(dA) with A(t, 2) = G(1)B()e***. It follows from (3.11)
and (3.12) that

(3.13) E § x¥(t) dt = § G*(t) dt § | B(3)|*)F(d?)

and

(3.14)  A?=}Var {2t dr =} § § [BOP|B@|Z(R — wlFE)F(dg)

where
Z(2) = § G (et dt .

As a special case, the tail probabilities of {{ #*(#) df can be bounded by taking
Eu¥t) = § F(d2) = K < o0, B(A) = 1 and G(t) = I,(t), where I, is the set char-
acteristic function of the interval [0, T']. The evaluation of the parameters of
inequality (1.4) by (3.13) and (3.14) yields

E 7 u¥(t)ydt = KT, A* = L \T ST Rt — s)dtds.
Thus, with = ¢/A, inequality (1.4) can be put in the form
P(\T u¥(r) dt = KT + oA) < (1 + d)te=o2.

4. An exponential bound for crossing probabilities. Let {x(f): —oo < t < oo} be
as given in Section 1 and let 4(7) be a real-valued, L-measurable function on
(— o0, oo) for which § #*(f) dt < co. Then an L X P measurable version of

y(t) = § h(t — 7)x(7) dr
exists, and
y®)]P < § B (t — 7)dr - §x*(7) dr = § k¥(r) de § x*(z) dr  a.e.
by the Cauchy-Schwarz inequality. Thus, the event [sup, |y(f)] < a] contains
the event [MN < a] where M? = § x*(f) dt, N* = § k*(t) dt from which it follows
that
P(sup, |y(0)] > a) < P(M* = @/ N?).

Inequality (1.5) is an immediate consequence of this result and inequality (1.4).

This bound has numerous applications, since many processes of interest can
be obtained by linearly filtering Gaussian processes of the prescribed variety.

In fact, the class of processes {y(f)} for which inequality (1.5) is valid is a rather
large subclass of the original one defined in Section 1, since

Wty = § B(t, H)Z(dR)

where B(t, ) = § h(t — ) A(z, A) dr is easily seen to satisfy conditions (1.1) and
(1.2).

This paper was motivated by a problem in earthquake engineering and a nu-
merical example of the use of inequality (1.5) in this context is given in [3].
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