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PLAY-THE-WINNER RULE AND INVERSE SAMPLING
FOR SELECTING THE BEST OF k = 3
BINOMIAL POPULATIONS

By MILTON SOBEL! AND GEORGE H. WEIss?
Imperial College, London
1. Introduction.

Given. k independent binomial populations with unknown probabilities p,” of
success and ¢, of failure (p,’ + ¢,/ = 1) on a single trial (i = 1, 2, ..., k).
Problem. to select the (or a) best population (i.e., the one with the largest p’,

say py)- .

Main emphasis. the comparison of procedures (all using inverse-sampling stop-
ping rules) that differ only in the sampling method.

The first procedure, R, uses play-the-winner, cyclic variation (PWC) sampling
rule. It puts the populations in a random order at the outset say «,, 7y, « -+, m.
Population #; is sampled until a failure is observed and then r;,, is sampled
(j=1,2, ..., k); m,,, is identified with x;,. Sampling terminates as soon as any
one population has r successes; that population is selected as best. We determine
r so that the probability of a correct selection (CS) satisfies

(1.1 P{CS|R,;} = P* whenever p, — max,,,p; = A*,

where the constants P* (with 1/k < P* < 1)and A* (with A* > 0) are preassigned.
Approximations and a table for r = r(P*, A*) are given for selected values of
k, P* and A*. Table 2 gives exact vs. approximate expected total number of
observations E{N| R,} for k = 2 and some comparisons with a fixed sample size
procedure.

The second procedure, R,’, uses vector-at-a-time (VT) sampling; it takes one
observation from each of the k populations (simultaneously) until at least one
of them has r successes. The winner (or one selected from the winners at random)
is then chosen as best. We determine r by (1.1) with R, replaced by R,’. It is
shown (Section 4) that the minimum P{CS} and hence the value of rrequired to
satisfy (1.1) is exactly the same for the PWC-rule (procedure R;) and the VT-rule
(procedure R,’). (In [5] a similar result was found for fixed-sample stopping
rules; also see the discussion of procedure R, below.)

A procedure, R,*, dual to R, is studied (Section 6); it is based on waiting for
a fixed number of failures and it is shown asymptotically to be an improvement
on R; when p, < 1.
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Another variation, R,, of procedure R, reorders the k populations according
to the number of successes (using randomization for ties) after every complete
cycle, consisting of k failures (one from each population). It is proven that this
does not alter the PCS of R,; hence the same value of r will be required for R,.
This reduces E{N} and E{L} defined in (1.2) below, but for any k, large r and
fixed p, > 0 (so that the p; for j > 1 cannot get close to 1) the saving will be
small and has not been evaluated.

Asymptotically (A* — 0, A*r* — constant > 0) the PWC is shown to be better
than the VT-rule uniformly (i.e., throughout the parameter space) with regard
toboth E{N}and E{L}. The smallest value (7, say) of r such that these asymptotic
approximations hold for all r = r, is also estimated, but no bound on the accuracy
of this estimate is given. )

Background. the PWC sampling rule (called PW for k = 2) was considered
by Robbins and others in connection with the 2-arm bandit problem (see refer-
ences in [12] and also a footnote on page 284 in [2]). The effect of the PW
sampling rule for a stopping rule, based on the absolute difference in the number
of successes reaching a fixed constant r, has been studied for k = 2 in [12].

In addition to using E{N| R} as a criterion for evaluating any procedure R,
we also consider the expected loss (risk function)

(1.2) E{L|R) = L= (P — p)E{N/ | R},
where N/’ is the number of observations from the population with success pa-
rameter p,/ (i = 1,2, ..., k).

In [10] a VT procedure with a fixed number of stages is considered for the
same formulation (1.1). The selection criterion is the number of successes. Some
comparisons with the present paper are given (Table 2). A sequential VT pro-
cedure & based on likelihoods is studied in [1]. A sequential scheme &, with
elimination is due to Paulson [7], [8]. His sampling scheme is based on ad hoc
independent Poisson random variables that have no intuitive relation to the
problem and are not counted by the author in evaluating E{N}. Although there
are many results on the PCS and E{N} for & in [1] (lower bounds for E{N} on
page 292, approximations to E{N} in Section 14.2, exact results for E{N} for
k = 2 on page 324), we do not make comparisons below with either 7 or &,
because

(i) The main interest here is to study the effect of different types of sampling
with other features (such as the stopping rule) remaining the same. Hence we
emphasize the comparison of R, and R,’.

(i) The emphasis in this paper is on two types of losses, the loss due to sam-
pling poorer populations as well as the expected total number of observations.
The former is not explicitly considered in the above references.

(iii) There is a lack of any theoretical evaluation of E{N} as well as a paucity
of empirical results for E{N} in [7]. Similarly, for k > 2 there are no empirical
(Monte Carlo) results for Case D in [1].
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(iv) We do not claim any optimal properties for R, or R,’, but the simplicity
of the procedure enables us to obtain exact results for the P{CS}, E{N}, and E{L}
for all k.

(v) Sequential procedures (like &% and %) are difficult to compare with
fixed-sample size or inverse sampling procedures because they are not always
applicable to the same practical situation and/or because the usual complication
of the former relative to the latter is difficult to evaluate numerically.

2. The procedures R,: exact results. Under inverse sampling we stop as soon
as one population has r successes and select it as best; the integer r > 0 is prede-
termined so that (1.1) is satisfied. We wish to find the probability of a correct
selection P{CS|R;} under the procedure R,, which uses the PWC sampling rule.

Let 4, denote the best population, 4, the one following 4, in the initial random-
ization, etc. (continuing in cyclic order) and let §(4;) = S, denote the current
number of successes for A4;, so that r — S; = T, is the number of successes 4,
needs to qualify to be selected as best; let T = (T, Ty, - -+, T,,). We define proba-
bilities U;(m) = U,(m,, m,, - - -, m,)(1 < i < k) by
2.1) U,(m) = P{CS|T = m and the next observation is on A}
and use p; to denote the single-trial probability of success for population 4; (i =
1,2, ..., k). Forthe PWC sampling rule the outcome of a trial on 4, is either

a success (with probability p;) in which case m, is changed to m;, — 1, or a failure
in which case the next observation is on 4, ,. Thus

(2.2) Um) = p,Uy(my, my, -+ -, my — 1, -+, my) + ¢, U, (m)

where U,,, = U, and boundary conditions are given by

(2.3) U0, my, -, m) =1 if m;>0 forall j=1
U(@my --+-,m;_,0,m; ., ---,m)=0 if m; >0 forall j+#1i.

To find a solution of (2.2) satisfying (2.3) we use generating functions V; =
Vix) = Vi(xp Xy - - -, X,) defined by

(2.4) Vi= Xm0 D=t Us(m)x™1x,™2 -0 X, ™ (i=1,2,.--,k).
Then (2.2) leads to
(2:3) (1= )y = aVo = po T ()

(I —=pix)Vi — qViu =0 for i=2,..-,k

(where V,,, = V). Hence, letting D = (1 — pyx)(1 — pyx;) -+ (1 — prx;) —
G192 9w
(2.6) V, = Pl,% Hk=2(xj(1 - ijj)>

1 — x;

Vi — P1% [ 1;=2< X;iq; >:I Hi—;z(l —-Paxa) (1 =2, 3, -..’k)

l—xj 9
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(where products with no factors are taken equal to one). Since we use random-
ization with equal probabilities 1/k for each population at the outset,

(2.7) P{CS|R,} = (1/k) Xi Ui(r)

the coefficient of x," x,” - - - x,” in (1/k) 3%, V;, wherer = (r, r, - - -, r) and ris
chosen to satisfy (1.1).
To get an explicit expression for (2.7) we use the expansion

(2.8) 1 _ 2, (9195 - -+ 94)° .
D [IL5- (1 — pyx;)]™
= Dm0 Lo+t Za=o (Prx) (PaXa)? « -+ (PrXe)”
X Lo (ECE) -+ C5)ea 2 -+ 40)* -
Using the well-known identity for the incomplete beta function (see e.g., (2.3)
in [6])
- D(r 4 ) L(s+)) i

2.9 : = I(r,5) = "y
(2.9) anoF(),P q(r) PIi r(s),vq

(where the first equality holds for any real r > 0 and the second for any real
s > 0), we find from (2.6) and (2.8) that the coefficient of (x, x, - - - x,)"in V, is

(2- 10) Uyr) = p" 2% (“Z‘l)‘hi H?=2 I(Ij(i’ r),
where 1,(0,7r) =1 =1 — I(r, 0) for r > 0. From ¥V, with @« > 2 we obtain

2.11)  Uu(r) = p" Bze (PTG 1y NI - £,(0 + 1 7)] -
Hence by (2.7) we can use (2.10) and (2.11) to write

(2.12)  P{CS| R} = (H/R)EII5-2 1o (X, 1]
+ Dama [T522 1o (X DI =a (X + 1, D]}

where the random variable X has the negative binomial distribution with index
r > 0, success parameter p, and mean rgq,/p, (cf. (2.9) above).

Similar calculations are used to find the expected number of observations
E{N,;| R} on A, under procedure R,; the sum of these is the expected total number
of observations E{N|R,}. For any fixed i, let S;/(m) = S;(m) be defined by

(2.13) S;m) = E{N;|T = m and the next trial is on A}
G=12,...,k).

As in (2.2) we obtain

(2.14) S;(m) = p;S;(my, my, -, my — 1, oo my) 4 q;8;,,(m) 4 9;;,

where 9;; = 1 for j = i and zero otherwise, and S, ,, = S,. The boundary condi-
tions are

(2.15) S;(my, +-o,m;_y, 0,my o, m) =0 if m, >0 for a #j.
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The desired result is obtained by finding for i = 1,2, ..., k
(2.16)  E(N|R;} = (1/k) £5.,8,90);  E{N|R} = Si, E{N;|R,} -

Using the generating functions as in (2.5), we define T; = T;(x) and obtain

1
o () st -
(2.17) T, =T, Yiz} (__‘1___> for j<i
1 — XoPa
T, =T, ZL:-(*—%—) 7;;11(_‘1!;> for j>1i,
1 — XoPa 1 — XpPp

where D, defined as above, is expanded in (2.8). From (2.17) we obtain for
J <iandj > i, respectively,

(2.18) ;) = (1/g:) Zieoo L@ + L NITTEZ5 Lo @ + L DL <54 Lo (@5 7]
§;9(0) = (1/¢:) Daolo@ + 1N pcipzi Lol + L AN Z0n 1 (@, 1)] -

By (2.16) the average of these k quantities (j = 1, 2, - - ., k) in (2.18) is E{N; | R,}
and the sum (i = 1, 2, ..., k) of these k averages is E{N|R,}.

REMARK 2.1. We show that E{N|R,} is uniformly bounded if the p; are all
bounded away from zero. It suffices to consider S, (r) for any i/, j in (2.18) and
set all the incomplete beta functions (after the first one) equal to unity. We then
obtain for all j

(2.19) S;(r) < L Twcol(a+ 1,1 = Logei (1 — oyt Yo, (etr)ee dt
9: ' 9s
:_r_sqi__—d[ :_C.
| o A=y p
Hence E{N|R,} is bounded by r 33%_, (1/p,).

REMARK 2.2. The experimenter may be concerned (as the referee was) about
whether large deviations occur among the U, in (2.10)and (2.11). The maximum
difference U, — U, for the case ¢, = ¢, + A* (i = 2,3, ..., k) is

(2.20) U —-U, = E,{I’;;M(X, ry — I‘;I—;A,(X + 1, )}
for k = 2 this is
(2.21) Uy — U, = [p(pr — AN 25 177 9:(q: + AM)]

= [p(p — A*)]r JIlrsr 1 q(q, + A*)] s

where ,F\(a, b, c; z) is the usual hypergeometric function. U, — U, can be in-
terpreted as the probability that A, reaches r successes in the same cycle as the
other population (if experimentation were continued). Let ~ denote proximity
and not be confused with ~. For A* = .2 and k = 2 with r = 20 (P* = .95)
and r = 40 (P* =~ .99) from (2.21) we find U, — U, = .025 (maximum attained



SELECTING THE BEST OF kK BINOMIAL POPULATIONS 1813

at p, = .90) and U, — U, = .004 (maximum attained at p, = .84), respectively.
Hence P* varies between .95 + 1(.025) in the first case and between .99 + 1(.004)
in the second case. An approximation to U, — U, for general k is given in
Remark 6.1.

3. Approximation and the determination of » for procedure R,. Since the in-
complete beta function is decreasing (increasing) in the first (second) argument,
we can get bounds on the P{CS|R,} in (2.12) with the same asymptotic value
for r — oo by replacing X by X + 1 or vice versa, obtaining

(3.1)  E{Ilim (X + 1,7} < PCS|R,) < E{IT4=a T, (X, 1}

Let X, denote the number of failures observed (or the number of completed
cycles requlred) to obtain r successes when p; is the probablllty of success on a
single trial (j = 1,2, .-, k). Then the X,. (j=1,2, ..., k) are independent
negative binomial chance variables with success parameter p; and common index
r,and X = X, in (3.1).

We can also obtain (3.1) by noting that the left and right members of (3.1)
are P{Xz,1 < X,,j (j=23,.--,k)}and P(X,,1 < X,,j (j=2,3, ..., k)}respective-
ly, and that the PCS must lie between these. Hence the first inequality in (3.2)
below; the error here is bounded by »%_, P{X, = X, }, which — 0 as A* — 0.
Hence letting A,; = p, — p; and assuming thatp, > p; (j = 2, 3, - - -, k) we have
for any r

(3.2)  P[CS|R} > P(X,, < X, (j=2,3, -+, k)}
=7 (rq»*r/‘;]’:m )> Craim ) ()
__APL:GI’:)% (=23, .——,k)}
= §=. [Tk [1 — G, <fo qil;%Au ’*)] dG.(y) ,

where G,,(y) is the cdf of Y, defined by the parentheses in (3.2) with success
parameter p;. It is well known that the Y,,j tend to standard normal chance
variable foreachj(j = 1,2, ---, k). In(3.2) we use a version of the Helly-Bray
theorem and Polya’s theorem (cf. [9] page 97, 100) as in the following

LemMa 1. If G;,(x) and G;(x) are cdf’s (or complements of cdf’s) with G(x)
continuous and such that G,,(x) — G,(x) forall x (j =1,2, ---, k), then
(3:3) Zeo [[5-2 Ga(%)] 4G () = § 2o [T15-2 G(x)] dGi(x) -
Proor. By Polya’s theorem G,,(x) — G,(x) uniformly in x for each j. Hence
for the product of two
(3’4) IGZ'nGSn - G2G3| é IG3n(GZn - G2)| + IG2(Gan - GS)I
= [Go — Gyl + Gy, — Gyl



1814 MILTON SOBEL AND GEORGE H. WEISS

we also have uniform convergence in x; similarly for any finite product of such
functions. Let H,(x) = []%_, G,,(x), H(x) = T]%_, G;(x). Then the difference D
of the two members of (3.3) is

(3.5 D = |J[Hu(x) — H(x)]dGy(x)| + |§ H(x) dG,,(x) — § H(x) dGy(x)| -

The last term — 0 by the Helly-Bray theorem. By the uniform convergence
|H,(x) — H(x)| can be made less than a fixed ¢ for all x, so that the first term
also — 0. []

In applying Lemma 1 to (3.2) we take G,;(x) = ®(x) the standard normal cdf
for each j, (n is replaced by r), and we use the sign “~” to mean asymptotic
approximation with A* — 0. This implies that to satisfy (1.1) we need r — oo;
we assume that A*rt tends to a positive constant (cf. (3.8) below). Hence we
obtain from (3.2) for 0 < p,; < p, <1 (j=2,3, ..+, k)

(3.6) P(CS|R,} ~ §{=. Hf;.z{l By (Z/’_‘L;_lq—_fa_’*ﬂ d0(x)

= {2 T4, @ (yqulé +3A11‘ ﬂ) ao(y) .
19
As a step in the minimization of (3.6) subject to the conditions A,; > A* (j =
2,3, ..., k), note from (2.12) that the exact PCS is strictly decreasing in each
p; for j = 2 and hence set p;, = p, and A;; = A* for j = 2. Then for 0 < p, <
P < 1(sothat 0 < p < 1 in (3.8)) we can write (3.6) in the form

(3.7 min P[CS|R,} ~ {*. @ 1(*" + H)dcb(x) Ao, H)

(1 —p)
where the last equality defines 4,_,(p, H) and where
(3.8) - A ad =0
(9,74 + 4.2} Gpt + 4ap

(H is the same as for k = 2 in [11].) For k = 2 we obtain
(3.9) Ao, H) = §2. @ (;‘f + f,’ ) d(x) = ©(H) ,
independent of p.

For the second part of the minimization, we obtain an approximate result
and a correction term (which is small). We obtain an approximate minimum
of (3.7) by minimizing H in (3.8) and disregarding the fact that p is also varying;
this shows (as for k = 2 in (2.9) of [11]) that the least favorable (LF) configu-
ration is

(3.10) po=2 4 30 + OpA%)Y;
P=p= e = pe=§ = 3T 4 YA

Putting (3.10) in the expression for p in (3.8) gives

(-1 p=1%— 30" + T
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which indicates that for o = 1 we get a first approximation.
To approximately satisfy (1.1) we solve for r by solving

(3.12) Ay (3, H) = P*

with existing tables (e.g., [3] or [4]). If H, or 2 = A(P*, k) is the value of H
that satisfies (3.12) then for small A* we have as in (2.11) or [11]

(3.13) r~§(lﬁi

27 \ A*
except that 1 is now a function of both P* and k. Table 1, based on (3.13),
contains values of r for selected k, A* and P*.

For example, if we take k = 3, P* = .90 and A* = .10 and use the tables in
[2] or [3], we find for the solution of (3.12) that H = 1.58. Using H = 1.58
from (3.13) we obtain r = 74. A correction term in the original technical report
on this paper indicates that r = 76 is a better solution for this example; the

TABLE 1
Values of r required by procedures® Ry, and Ry’ based on (3.13)

k A* P* = .90 P* = 95 P* = .99
2 .1 48.672 80.17 160.35
.2 12.17 20.04 40.09¢

3 5.41 8.91 17.82

4 3.04 5.01 10.02¢

(EP .4)t (.886) (.946) (.990)

3 .1 75.50 110.57 195.27
2 19.31 28.04 49.14

.3 8.71 12.65 21.97

.4 5.04 7.20 12.43

(EP .4) (.901) (.952) (.991)

5 .1 104.50 142.07 230.58
.2 26.97 36.38 58.31

3 12.47 16.67 26.21

4 7.16 9.48 14.89

10 .1 138.84 179.61 272.62
.2 36.24 46.30 69.17

3 16.69 21.25 31.21

4 9.63 12.28 17.78

1 Exact probabilities for A* = .4 based on (2.12) using randomization, e.g., for
k =2 and P* = .90 we calculate the exact values v3 and v4 for r = 3 and 4 using
(2.12), and then randomize by entering .04v4 + .96y; in the table.

2 For the procedures Ry and R;’ we use the integer r + 1 when the appropriate
entryisr + ¢ with0 < ¢ < 1. To obtain a PCS closer to the nominal P* one can
use the decimal entries and randomize between r and r + 1 as explained in the
previous footnote.

3 By the remarks about procedures Rr and R/’ in the introduction and in
Section 6, the same value of r is also required by these procedures.

4 Use [r] (i.e., 40 and 10) in these cases since the exact PCS using (2.7) is .990
to 3 decimals.
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correction term and its derivation were deleted for brevity. These corrections,
however, were used in computing Table 1, e.g. the entry for the above problem
. N
is 75.50.

For the expected number of trials we use (2.18) and the fact that for r — oo

(3.14)  I(a,n) =I(a +1,r) + (g7 = L(a + 1 [l 4 o(1)].
Thus we can approximate S,/(r) in (2.18) for all j and also E{N;| R;} by

(3.15)  E{N;|R;} ~ (1/q) Zaoo Mo Loflx + 1, 1) ~ $;0()  (j=1,2,--+, k)
where the infinite sum Z does not depend on i or j. Hence for r — oo (or A* — 0)
we have

(3-16) E{N|R;} ~ (Lo 1/9)Z -

Using the second identity in (2.9) for § =1 in (3.15) and interchanging sum-
mations, we can write for Z

(3.17) Z=p’ B (e Bin i1 — L a + 1]
To simplify (3.17) we first assume p, > 0 and prove the

LeMMA 2. For any positive integers r, j and any p = 0

(3.18) Dis I a + 1) = (r + NI(rJ) — (IpL(r + 1,)) -
The same result holds for any real r = 0 and in the limit as p — 0, if we define
1,0, « + 1) to be O for a = 0.

Proor. Using (2.9) and the integral form for I,(r, « + 1) with r > 0,

(3.19) e+ 1) = i CE et D) goag _pear
I'(r)a!

~d
=r§a'1t<r+1,/)t—§,

where we interchanged summation and integration and use (2.9) again in the
last step. Integrating-by-parts and noting that I,(r 4 1, )/t — 0 as 1 — 0, we
obtain the lemma (3.18).

Returning to (3.17) we multiply out the last product and use Lemma 2 for
k — 1 of the terms to obtain for Z

0200 z="8 4 5[ LE{L(+ 1 X} = L E ol (r X
P Pi P
o (DT ELNIS i D @ + 1)}

For p, > p; (j = 2,3, -+, k) and r — oo all the expectations in (3.20) tend to
zero exponentially fast. We drop all terms after the first line in (3.20); for ex-

ample the last term is bounded above in absolute value by

r r C're=¢r
G20 E(XTTalyfr X+ D)~ Sty (n ) ~ 8

-l 51 A0}
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The normal approximation and the first term of the Feller-Laplace expansion
for the tail of the normal distribution were both used in (3.21). Using the
normal approximation for the first line of (3.20), we obtain for large r

(322) Z ~ _r_ql_ + Z’;'=2 rAlj (D<'—A1j <_r_>%> ~ L‘b_ s

P PiPj D; P
where D; = ¢,p;* + q;p,* and r = r(A*, P*, k) is determined by (3.13) so as to
satisfy (1.1). For small A*, r is large and we can take the first term alone in
(3.22) to estimate Z. Hence for A* — 0 (or r — co) we have from (3.16) and
(3.22)

(3.23) E{N|R,} ~ IEL( b L) < kr
P 9 P
This upper bound for A* — 0 is also obtained in (4.12) below as the asymptotic
limit for E{N|R,’} as A* — 0, thus showing that E{N|R;} < E{N|R,'} for A*
small (or r large).
If we define the expected loss or risk E{L | R} under procedure R by

(3:24) E{L|R} = Xia (P — PO)E{N:| R},
then from (3.15) and (3.22) we have for A* — 0 (or r — o)

q;

4. Procedure R,’ and comparisons with procedure R;,. Let R,’ denote the pro-
cedure that uses the same inverse-sampling termination rule as R, together with
the vector-at-a-time (VT) sampling rule. Ties are decided by randomization,
i.e., we select one of the ¢ contenders that reached r successes at the final stage
using an independent experiment with probability 1/c for each.

To obtain the P{CS|R,’} we consider the event that on the mth stage (i.e.,
after m vectors of observations and not before) the best player A4, has his rth
success (r < m) and each of the remaining 4, (i = 2) has at most r — 1 successes.
Summing on m, we obtain

P{CS|R/} — @ = X3, (72Dp g™ Iiea [ 2550 (5pifq™ ]
(4.1) =P Di=o (g Tl [, + 1, )]
= EfIli (X + 1, N},

where Q is the contribution to the P{CS|R,’} arising from randomization over
ties. Since each / -function in (4.1) is strictly increasing in ¢, we minimize the
right side of (4.1) by setting p, = p, (i = 3, 4, - - -, k); this does not prove that
we have a minimum for the P{CS|R,’}, although it is a proof for the asymptotic
(r — oo) case. To prove that p, = p, (i = 3,4, -- -, k) also yields a minimum
of the P{CS|R,’} for small r, we write Q in the form

(4.2) %{Tl,z + e+ Tl,k} + %{Tl,z,s + e+ Tl,k—l,k} + e+ (l/k){Tl,z,---,k} ’

(3.25) E{L|R,} ~ 9 k| <P1 - p@> .
P1



1818 MILTON SOBEL AND GEORGE H. WEISS

where, e.g., T, , is the probability that 4, and A, (and only these two) tie for
first place by getting their rth success on the same vector and before the others.
Thus for the pair (1, @) with any a > 1

(4.3)  Too=p" D70 (5990 Us 1) — L, + 1 D] Tlsive (1, + 1, D]
for the triple (1, a, B) with a = § arbitrary (but not equal to 1)

(4‘4) Tl,a = plr Z;'o=0 (j+}-—1)q1j Ha:=a,ﬂ [Iqx(]’ I‘) - qu(] "I‘ 13 r)]
X Hﬂllc=2,i=#a,i*ﬂ [Iqi(j +1,n],

etc. Multiplying the differences in square brackets and using (4.2) to combine
terms, we find that a typical term has 4 factors of the form 7, (j + 1, r) and
k — 1 — h factors of the form 1,(j> ), where a runs over a fixed set S, of &
values among (2, 3, - - -, k) and 8 runs over the complementary set CS,; let &,
denote the set of size (*;?) consisting of all such sets S, of size #. The coefficient
W, of this typical term, starting from the right end of (4.2), is

@9 mmor{ Oy (et O
_ ss(% — 1>hx"'1 dx = k("l;l) = Ik ;(Zﬂ;(”l;r Dso.

Hence we can write the exact value of the P{CS|R,’} in the form

(4.6) PICS|R,'} = p" D50 (5709 DA Wi Dsye o [Taes, 1,/ + 1, )]
X [Hﬁecsh Iqlg(j’ r)] ‘

Since W, > 0, all terms in (4.6) are positive and it follows as above that we

minimize P{CS|R,’} by setting p, = p, (i = 3,4, ---, k). This simplifies (4.6)
considerably and a lower bound to the P{CS|R,’} for p, = p, becomes

minpiépz,(i=3,4,...,k) P{CS | RI,}

. 1y . :
(4.7) =p" i (g T LS A5, + L Iy )

U -0+ L0l
k[1,,(js 1) — 1,(j + 1, )]

The same minimization can also be applied in (2.12) for procedure R; and we
clearly note that the result is exactly the same as in (4.7) above. Hence, after
the first step of minimization, the P{CS} expressions for R, and R,’ are exactly
the same. It follows that the least favorable configuration is the same for R, and
R,' and hence they require exactly the same value of r to satisfy (1.1). This same
result was also found for a related procedure R* explained in Section 6.

To obtain the expected total number of observations E{N| R,’} under procedure
R,', we use the fact that we have an expression F, like (4.6) with the extra factor
km = k(j 4 r) if we select 4, and k — 1 similar expressions F; corresponding

=p’ D= (e’
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to the selection of 4, (i = 2, 3, - .-, k). Thus

(4.8) Fyo=kpr 250 + nNC Y Sk w,
X Lsye o Maes;, L, + 1 Dl pecsy 1o 1]

= "L E (T Wi e Macsy LG + 1 e, L )

where W), is given by (4.5), the F, (i = 2, 3, ..., k) are obtained by interchang-
ing p, with p; (and ¢, with ¢;), and
(4.9) E{N|R,"} = Xk_|F,;.

To get an asymptotic approximation for (4.9) when p, > p, for i > 2, we first
show that every F; (i > 2) tends to zero as r — oo. It suffices to show that for
g, > g, and r — oo
(4.10 rNle  (Gtr—1yg i (7 79, — 1

-10) P 5 U5y 1) ~ 1, <7’ r> = 0<_r>.
We interpret (4.10) as the probability that Y, z2Y, where Y, =X, /rand X,
is the negative binominal with parameter p; and common 1ndex r, the expectatlon
of Y, is q;/p; and the variance is ¢,/rp* — 0 (i = 1, 2) as 7 — oo. Thus for an
asymptotlc (r — oo) analysis we can replace Y, by ¢,/p, (or X, », DY 19/p,) and
this gives the middle expression in (4.10). Usmg a normal appr0x1mat10n to
the beta as in (3.21), we obtain for A = p, — p, = ¢, — g, > 0and r — oo

(4.11) I, (% r> ~® <;2qu:&> ~ %e-czr _ o<%> :

For the nonzero term F, in (4.9) we do a similar analysis and every I -function
approaches 1 in expectation. Hence by (4.8) we obtain

(4.12) E{N|R,} ~ ¥

1
To obtain the total expected number of observations from the non-best popula-
tions we replace k in (4.12) by k — 1. Using the expected loss defined in (3.24)
we obtain for A > 0

(4.13)  E[(L|R/} = — [z:-;l F] Sk (py— ps) ~ pL Sk (P — py) s

where the last expression holds for large r.

Since ¢, < ¢; (i = 2,3, - -, k), we find by comparing (3.23) and (4.12) that
for large r the procedure R, requires a uniformly smaller expected total number
of trials when A > 0. In addition, for large r procedure R, has a uniformly
smaller expected loss when A > 0.

To approximate the value of r above which these results hold we now return
to (3.14). A finer analysis of the application of (3.14) to (2.18) shows that a
constant (with respect to r) is obtained from the omitted term in (3.14) whenever
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7 = 1in (2.18). For any i, we find that y = 1 in exactly i — 1 of the equations
in (2.18), namely for j = 2, 3, ..., i in the first line of (2.18). Moreover, for
each i, the contribution to E{N|R,}is 1/kg;. For y > 1 we can use an argument
similar to that in (4.11) to show that the omitted sums approach zero as r — oo.
Hence we can replace (3.23) by the finer result

i— 1

@14 ENIRY =" (B )+ 2t (S

1 2 2

>—|—o(1),

and a similar result holds for E{L|R,} if we replace g, by ¢,/(p, — p;) fori > 2.
For procedure R; there are no corresponding nonzero terms omitted in (4.12)
and (4.13). Hence we approximate the smallest value (7,, say) of r, such that
the stated result for E{N} holds for all r > r,, by the solution in r of

(4.15) (g )+ 4ok o= A

P 9: k 9 P
For p, = p, = --- = p,, this has the solution p,/24, i.e.,
(4.16) no~pf2A,

which is the same as that obtained in [11] for k = 2.
Similarly we approximate the smallest value (r,, say) of r, such that the stated
result on E{L} holds for all r > r,, by the solution in r of

@17 Mgy (Bl g o VAP L T (5 py.
P q; k g P
For p, = p; = ... = p, this is the same equation as (4.15) and hence (4.16)

again gives the required solution.

5. Comparisons in the case of k equal success-parameters. Starting with R/, we
use the fact that the expectation of the minimum of k independent negative-
binomial NB(p, r) chance variables, each with common success probability p
and index r, is asymptotically (r — oo) equivalent to the [100/(k + 1)]st percen-
tile of the underlying NB(p, r) distribution. Thus the common number of ob-
servations M from each of the populations until any one of them reaches r
successes has asymptotic (r — oo) expectation equal to the solution in s of

(5.1) I(r,s) = pr B5=0 (457" = (k + )7
Since s and r will both be large, we use the normal approximation to the NB(p, r)
and replace (5.1) by
(5.2) P{M_’/P S+%—r/p}~(p<(s+%)1’—r>: L

(rg)lp (rg)/p (rg)* k+1
where M is the common number of observations per population (failures plus
successes). Multiplying the solution of (5.2) by k, we obtain the result

kr k k

(5.3) E(N|R/} ~ ks = KT _ Kpgyp _ &
p P 2
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where 2 = A(k) is the [100k/(k + 1)]st percentile of the standard normal dis-

tribution, independent of P*.

For the procedure R, we superimpose the PWC procedure on the same data
that was obtained a vector-at-a-time and note that the same population that
reaches r successes first under procedure R,’ (or one of them if there was more
than one) will also reach r successes first under procedure R,; this is because at

1821

any time the number of failures from different populations can differ by at most

one. Hence the asymptotic value of s for the winning population is again the
solution of (5.2) and the number of failures is s — . By PWC sampling, all the

populations have s — r failures and hence each of the k — 1 non-winners has
p(s — r)/q successes. Thus we obtain for the total

TABLE 2

~

Comparison of approximate and exact results for k =2 and

inverse sampling vs. fixed sample size procedures

(A* = .2, P* = .95)

Maximum of E(N) Values (p1 = p2)

Type c;{usiéopping P = ¥p1+ p2) Procedure Rr Procedure Ry’
Approx.® Exact® Approx.c  Exact?
0.1 361.18 348.48 363.26 353.22
0.2 179.89 172.97 182.17 177.98
0.3 119.34 114.32 121.86 119.62
Inverse Sampling 0.4 88.92 84.83 91.74 90.50
P(r =20) = .958 0.5 70.35 66.95 73.72 73.08
P(r =21)= .042 0.6 57.94 54.79 61.74 61.54
0.7 48.56 45.77 53.21 53.36
0.8 40.64 38.43 46.95 47.32
0.9 31.59 31.44 42.18 42.82
1.0 — 20.04 39.08 40.08
Fixed Sample Size 67.64° 67¢ 67.64¢ 68e
(A* = .2, P* = .99)
0.1 744.39 725.54 747.32 732.50
0.2 371.47 360.86 374.64 368.18
0.3 247.00 239.04 250.48 246.84
0.4 184.60 177.86 188.45 186.22
Inverse Sampling 0.5 146.94 140.86 151.29 149.94
P(r=40)=1 0.6 121.53 115.80 126.59 125.84
0.7 102.38 97.34 109.02 108.74
0.8 87.87 82.52 95.96 96.04
0.9 72.86 68.56 85.97 86.42
1.0 — 40.00 79.00 80.00
Fixed Sample Size 135.3 134 135.3 134

= Based on (5.4).
¢ Based on (4.9).

» Based on the sum of E{N;/R;} in (2.16).
e.¢ Based on Table I of [10].

¢ Based on (5.3).
f Based on Table 1 of [5].
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(5.4) E{N|R;} ~ (s —=nk—1) + 5= kr — Ak — p)(rlg)t _ (k - P)

q P 2q
where 4 = A(k)isasin(5.3). Comparing the two leading terms in (5.3) and (5.4),
we find for large r that E{N|R,;} < E{N|R,}forall psince k = 1 = p/(1 — pg).
For k = 1 we note that 2 = 0 and (5.3) and (5.4) are equal, both having a slight
negative bias. This negative bias appears to be the case for most values of k.
On the other hand, if we omit the last (correction) term in (5.3) and (5.4), then
the resulting approximation has a slight positive bias, i.e., it is conservative, for
most values of k. For the accuracy of (5.4) we compare exact and approximate
results in Table 2 and discuss some examples below.

For k = 3, A* = .2 and P* = .95 we need an r-value of 29 for procedures
R; and R,’. Using r = 29 the exact value of E{N|R,} for p, = p, = p, = .9 is
59.8 and the approximate value from (5.4) is 59.4. For k = 2, A* = .2 and
P* = .95 we need an r value of 21 (with randomization we take r = 20 with
probability .958 and 21 with probability .042). For r = 20 (and 21) the maximum
error in using (5.4) to approximate E{N| R,} over all p, = p, is roughly 6 percent.

We have not proved for each r that the maximum of E{N} for fixed p, occurs
when all the p; (i = 2) are equal to p,, but we note from (3.23) and (4.12) that
this holds asymptotically (r — o) for both R; and R,’.

For the expected loss criterion with a common p and any r, we find that
E{L} = 0 for both procedures. From (3.25) and (4.13) we note that the maxi-
mum for fixed p, may occur when the p; (i = 2) are equal, but not equal to p,.

In summary, the procedure R, with PWC sampling is asymptotically (» — co)
superior to R,” with VT sampling throughout the parameter space with respect
to both E{N} and E{L}.

6. A dual procedure R,*. Another procedure R;* that is comparable with R;
and in some sense dual to it is defined by waiting until every population has
exactly r failures under PWC sampling. The population with the larger (or
largest) number of successes is declared to be the best. In case of ties we ran-
domize between all contenders for first place. Since each population has exactly
rfailures at termination we can treat the populations separately and do not need
the recursive-equation approach. The results are quite similar to those obtained
above and it was therefore decided to include them.

Let Y, (i=1,2, .., k) denote the random total number of observations re-
quired to obtain 7 failures from the population with success parameter p;, where
p, is the largest of the p, and the rest are defined by the same cycle (starting
with the best player A) as is used by the PWC sampling rule. Then for a popula-
tion with arbitrary p

(6.1) PY, =y} = ¢ (=P y=nr+l..,
(6.2) PY, <yl =q D= O = 1(ny — 1),
the mean E{Y,} = r/q and the variance o*(Y,) = rp/q’. Hence the probability of
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a correct selection (CS) is given by

(6.3) P{CS|R*} — @ = ¢" L5 (7P [laa 1 (15 )
where Q is the contribution that arises from randomization when there are ties
for first place. If we let T, denote the probability that the two populations with
parameters p, and p, (and only these two) tie for first place, etc., then
(6.4) Q=4T,+Tis+ - + T+ HTuas + -0 + Tiporid
+ e + (l/k)TLz,...,k )
where, for example,
(6.5) Ty = g7 D5 O3 (rJ + 1) — 1 (r, )] TTkes 2,7 )
and T, , ; contains two such differences in square brackets, etc. We wish to show
that all negative signs, as in (6.5), disappear when we multiply out all the square
brackets that arise. Consider any term that contains a fixed subset of % functions
1, (r,j + 1) with argument j 4- 1. For any (0 < & < k) and any subset of size
h, the final coefficient which we denote by W, will be
__l)kh'zl k_h_l . _ 1 k—h—1 1
6.6) xi- (TVT( J=sie (o —1) T e =
(6-6) % k — i i o x k()
Hence, if we let S, denote any fixed subset of size 4, CS, its complement, and
S, denote the (*;") possible subsets of size 4, then
(6.7)  P{CS|R*} = ¢ Tino (77 Tizo Wi
X Zshe Fh [Haesh Iqa(r’j + 1)][HﬁeCSh Iqﬁ(r’ ])] *
It follows that in the minimization subject to ¢, = ¢, + A* we can set ¢, =
q, + A* = § (say) (i = 2, 3, - - -, k) and obtain
I+ 1) — )]
k[Iy(r,j + 1) = Iy(r, )]
The expected total sample size is easily seen to be
(6.9) E{N|R*} = rXiagq" -
To evaluate 7 so as to satisfy (1.1) with R, replaced by R,*, we use the normal
approximation as in (3.6) and obtain

(6.10)  min P{CS|R,*} ~ §=., ®* ( ’(‘f + 1;) d0(x) = A,_,(0, H)

where (similar to (3.8), but with p and g interchanged)
= A and o = _ne .
(n§ + Pg) g + pi
An approximate minimization therefore leads (as at (3.11)) to
(6.12) ¢ =% — 3% + 24"}
=G = =q =35+ +T{A*y(=9).

(6.8) min P{CS | R;*} = ¢," 225 (Y57 )py

(6.11)



1824 MILTON SOBEL AND GEORGE H. WEISS

Putting this in the second expression in (6.11) gives
(6.13) p =4+ A + T(A%));
e = 4 now will provide a lower bound for small A*. [A correction term as in

the original technical report may be desirable but this is omitted for brevity.]
The first approximation for 7 is the solution of

(6.14) A%, H) = P*

and if 2 = A(P*) is the table value of H that satisfies (6.14), then
© 8 (2

6.15 ~3 <_>

(6:13) B TAVY:

is the first approximation for r.
Hence E{N|R,*} is given by (6.9) with r replaced by the right side of (6.15).
Comparing with (3.23) we find that procedure R, is preferred when

(6.16) gp/pp <1l or  p>4%

and procedure R, * is preferred when p; < §.

Two other procedures R, and R,’ (suggested by the referee) are to reorder the
k populations after each complete cycle, consisting of k failures, according to
the total number of successes obtained up to that point. Ties are settled by
randomization. R, uses the play-the-winner scheme and we refer to it as the
PWO (play-the-winner, ordered variation) sampling rule; R, uses the VT-sam-
pling rule. Since we do not stop in the middle of a vector, it is clear that this
ordering does not affect the PCS for procedure R,” with VT-sampling. It is
shown (in Remark 6.2 below) that the PCS for procedure R, is also the same as
for procedure R;. It follows that the LF configuration is the same and the same
value of r is required for procedures R,, R,’, R, and R,’ to satisfy (1.1).

For procedure R,’ the maximum saving in E{N} incurred over procedure R,’
is at most (k — 1)/2, since, when a correct selection is made, the best population
has probability } of being before any other (a saving of one for each of the
k — 1 populations) and, when a wrong selection is made, the expected saving
is no greater than (k — 1)/2.

For procedure R, the saving in E{N} incurred in comparison with R, is more
than (k — 1)/2 (for P* close to 1) and is at least (P*/2) 33¥_, 1/, since each popu-
lation has probability } of getting a turn before the best population and 1/g; is
the expected number of trials up to and including the first failure (i = 2, 3, - - -, k).
When a wrong selection is made the saving is disregarded since P* — 1. Hence
for P* — 1 an upper bound on the saving is § >}, (1/¢;). For fixed k and large
r, this represents a fixed constant that does not enter into asymptotic (r — co)
considerations and, if the g, = ¢, are not near zero, we can treat this saving as
negligible. A numerical investigation of this saving has not been carried out.

REMARK 6.1. The problem of estimating the maximum of U, — U, (Remark
2.2) can also be handled with the help of Lemma 2 when P* is close to 1 and
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A* is not too large (i.e., small enough so we can disregard powers of A*). We
start with the asymptotic normal approximation to the probability that the best
population z, ties with at least 1 other population (note that (U, — U,)/2 is the
probability of both a correct selection and a tie involving the best population).
Letting 7 = p,/(2(rg,)?) and replacing X, in (3.2) first by X, — } for U, and then

by X, + % for U,, we obtain, as in Section 3 for p, = p, = ... = p,,
H
(6.17) U;—-Ur~wa[®”4<ﬂf;tl§+.0>—-®M*<fﬂ_i;g__p)}d@@),
(1 —p) (1 —»)

where p and H are given by (3.8). Since r is large and 7 is small for P* close
to 1,

_ N(k_l)ono wesf X + H\ [ xp* 4+ H
(618) U1 Uz ——(rqz)% S_wq) <(1 — p)% >§D<(1 — p)*>¢(x) dx

= (k= 1, (! r; O) () §2. D=2yt + H(1 — p))dQ()

2

by Lemma 2 of original technical report. The last integral A, ,(o/(1 + p),
H[(1 — p)/(1 4+ p)]*) in (6.18) is a slowly varying function of p and for k = 2
equals 1 and for k = 3 equals ®(H), independent of p. If we now set p, =
24 3A* + &, p, = 2 — LA* + ¢ and maximize p,p(H)((1 — p)/q,)* as a function
of ¢, we find ¢ = 4/(94* — 15) and we obtain as a first approximation

Z2—1\ (k=1 0 1 — p\¢
6.19) max (U, — U,) ~ 6} z( ) A_< ,H( ))
( ) (%A 2) 50()322_5 e k21+p 1+ o
where p and H are given by (3.8) with the above values of p,, p,, and 2 is the
root in H, of (3.12) as in Section 3. However more conservative results are
obtained by trial and error in (6.18) using ¢ above as a starting value. Note that
if we divide A* by 2 and keep the same P* then by (3.13) r is multiplied by 4
and by (6.19) the max (U, — U,) is cut in half.

ILLusTRATION. For k = 2, P* = .99, A* = .2 we find that r = 40 and 2 =
H, = 2.326. Then ¢ = .118and p, = % + JA* + ¢ = .89 and max (U, — U,) =
.004 by (6.19). Trial and error in (6.18) shows a maximum of .005 occurring
at p, = .83. More exact methods based on Remark 2.2 show a maximum of
.004 occurring at p, = .84. Hence the U-values vary between P* + 1(.004), i.e.,
between .988 and .992. Note that the value (1 — A*)" at p, =1 of U, — U, is
sometimes a good estimate of max (U, — U,) but for large r, as in this example,
it is very poor.

REMARK 6.2. Following is a proof that the PWO and the PWC sampling
rules have the same PCS when the inverse sampling termination rule (wait for r
successes from any one population) is used. Define the 1st full cycle to run up
to and including the kth failure; the 2nd full cycle then starts and runs up to
and including the next k failures, etc. Assume the last cycle is completed to
forma full cycle. Then the procedures R, and R, can differ in their final selection
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only when m populations (m = 2) reach r successes in the same full cycle. These
m populations are then tied in both successes and failures. Conditional on this
equality, we get a CS under procedure R, if 4, is first among these m, i.e., with
probability 1/m. Similarly, under procedure R, we condition on the fact that
m populations are tied in both successes and failures and disregard the other
populations. In the initial randomization A4, has probability 1/m of being ahead.
Subsequent randomizations do not change this. For example, if m;, < m of these
populations, including A,, are subsequently included in a randomization then
the resulting overall probability that A4, is ahead is (m,/m)(1/m,) = 1/m since A,
can change places with any one of these m, populations and still have probability
1/m, of being ahead in the second randomization. It follows that the PCS values
for the PWC and the PWO sampling rules are the same.
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