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RECONSTRUCTION ON TREES:
BEATING THE SECOND EIGENVALUE

By Elchanan Mossel

Hebrew University of Jerusalem and INRIA Rocquencourt

We consider a process in which information is transmitted from a given
root node on a noisy d-ary tree network T. We start with a uniform symbol
taken from an alphabet � . Each edge of the tree is an independent copy
of some channel (Markov chain) M, where M is irreducible and aperiodic
on � . The goal is to reconstruct the symbol at the root from the symbols
at the nth level of the tree. This model has been studied in information
theory, genetics and statistical physics. The basic question is: is it possible
to reconstruct (some information on) the root? In other words, does the
probability of correct reconstruction tend to 1/�� � as n→ ∞?

It is known that reconstruction is possible if dλ2
2�M� > 1, where λ2�M�

is the second eigenvalue ofM. Moreover, in this case it is possible to recon-
struct using a majority algorithm which ignores the location of the data
at the boundary of the tree. When M is a symmetric binary channel, this
threshold is sharp. In this paper we show that, both for the binary asym-
metric channel and for the symmetric channel on many symbols, it is some-
times possible to reconstruct even when dλ2

2�M� < 1. This result indicates
that, for many (maybe most) tree-indexed Markov chains, the location of
the data on the boundary plays a crucial role in reconstruction problems.

1. Introduction.

1.1. Definitions. We consider the following broadcasting process. The first
building block of the process is an irreducible aperiodic Markov chain (or
channel) on a finite alphabet � = �1	 
 
 
 	 k�. We will denote by Mi	 j the
transition probability from i to j; by M the random function which satisfies
P	M�i� = j
 = Mi	 j; and by λ2�M� the eigenvalue of M which has the second
largest absolute value (λ2�M� may be negative). The second building block is
a d-ary tree T = Td = �Vd	Ed� rooted at ρ. At the root ρ, one of the symbols
of � is chosen according to an initial distribution π = �π1	 
 
 
 	 πk�. We denote
this (random) symbol by σρ. This symbol is then propagated in the tree in the
following way. For each vertex v having as a parent v′, we let σv =Mv′	 v�σv′ �,
where the �Mv′	 v� are independent copies of M. Equivalently, for a vertex
v, let v′ be the parent of v, and let Av be the set of all vertices which are
connected to ρ through paths which do not contain v. Then we have

P	σv = j��σw�w∈Av
 = P	σv = j�σv′ 
 = Mσv′ 	 j


This model can be considered as a communication network on T, as a model
for propagation of a genetic property or as a tree-indexed Markov chain—using
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the terminology of information theory, genetics and statistical physics, respec-
tively. We refer the reader to [4] and the references there for more background.

Let d�	 � denote the graph-metric distance onT, and letLn = �v ∈ V d�ρ	 v�
= n� be the nth level of the tree. We denote by σLn = �σ�v��v∈Ln the symbols
at the nth level of the tree. We let cLn = �cLn�1�	 
 
 
 	 cLn�k��, where

cLn�i� = #�v ∈ Ln σ�v� = i�


That is, cLn is the count of the nth level. Note that both �σLn�∞n=1 and �cLn�∞n=1
are Markov chains. We want to know if the data on the boundary gives some
information on the root.

Definition 1. We say that the reconstruction problem is solvable if there
exists i	 j ∈ � for which

lim
n→∞ �Pin −Pjn � > 0	(1)

where � � denotes the total variation norm and Pln denotes the conditional
distribution of σLn given that σρ = l.

Definition 2. We say that the reconstruction problem is count-solvable
if there exists i	 j ∈ � for which

lim
n→∞ �P�c�	 i

n −P�c�	 j
n � > 0	(2)

where � � denotes the total variation norm and P�c�	 l
n denotes the conditional

distribution of cLn given that σρ = l.

We refer the reader to Section 4 for equivalent definitions of solvability and
count-solvability.

1.2. Count-reconstruction. Using a theorem of Kesten and Stigum [5] and
coupling, we can give an exact threshold for count-reconstruction. The follow-
ing theorem was proved jointly with Y. Peres [8].

Theorem A. The reconstruction problem is count-solvable if dλ2
2�M� > 1

and is not count-solvable if dλ2
2�M� < 1.

We give a sketch of the proof in Section 5. The details and some generalizations
can be found in [8].

1.3. Reconstruction. It turns out that the criteria in Theorem A are tight
for solvability for binary symmetric channels.
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Theorem B (Bleher, Ruiz and Zagrebnov [2]). If M is the binary symmet-
ric channel:

M =
(

1 − δ δ

δ 1 − δ

)
	

then the reconstruction problem is solvable if and only if dλ2
2�M� =

d�1 − 2δ�2 > 1.

This result is generalized to general trees in [4].
Theorem A together with Theorem B imply that, for binary symmetric chan-

nels, count-solvability and solvability of the reconstruction problem have the
same critical value. It was believed that this kind of phenomena should hold
in general. We show that this is not the case. The main results of this paper
are the following.

Theorem 1. Consider the asymmetric binary chains

M =
(

1 − δ1 δ1

1 − δ2 δ2

)

(3)

	Note that λ2�M� = δ2 − δ1
. Suppose that 0 ≤ λ ≤ 1 and that dλ > 1; then
there exists a δ > 0 s.t. if λ2�M� = λ and δ1 < δ, then the reconstruction
problem is solvable for the d-ary tree and the chain (3).

Theorem 2. Consider the symmetric chains on q symbols:

M =




1 − �q− 1�δ δ 
 
 
 δ

δ 1 − �q− 1�δ δ 
 
 





 
 
 


 
 







δ 
 
 
 δ 1 − �q− 1�δ




(4)

	Note that λ2�M� = 1 − qδ
. Let 0 < λ < 1 and take d such that dλ > 1. Then
there exists a Q s.t. if q > Q and λ = 1 − qδ, then the reconstruction problem
is solvable for the d-ary tree and the chain (4).

The process of broadcasting on a tree with the channels (3) corresponds to
the ferromagnetic Ising model with external field on the tree. The broadcasting
processes on a tree with the channels (4) corresponds to the Potts model with
no external field on the tree.

We remark that Theorems A and 1 (2) imply that, if dλ2�M� > 1 and
dλ2

2�M� < 1, then for δ < δ1 (q > Q), the reconstruction problem is solvable,
but is not count-solvable.

In [7] we study recursive schemes for reconstruction. We take l to be a fixed
number of levels, and consider a reconstruction algorithm for the l-level d-ary
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tree. Then starting at the boundary, we use this algorithm recursively in order
to reconstruct the root of the tree (see [7] for more details).

In [7] it is shown that, for the binary symmetric channel, any recursive
scheme is inferior to the majority scheme in the sense that there are binary
symmetric channels for which the recursive scheme fails to solve the recon-
struction problem while the majority scheme does solve it. The proofs of
Theorems 1 and 2 show that, for the channels (3) and (4), this is not generally
the case. That is, for these channels, it is sometimes possible to reconstruct
using recursive schemes while all majority schemes fail to reconstruct.

Theorems 1 and 2 are sharp in the following sense.

Proposition 3. LetM be of the form (3) and take d an integer s.t. �dλ2�M��
≤ 1. Then the reconstruction problem is unsolvable for the d-ary tree andM.

Proposition 4. Let λ = 1 − qδ. Suppose that 0 ≤ dλ ≤ 1. Then the recon-
struction problem is unsolvable for the d-ary tree and the chain (4).

The proofs of Theorems 1 and 2 and Propositions 3 and 4 are given in
Section 2.

Is it true for general Markov chains that it is impossible to reconstruct when
�dλ2�M�� ≤ 1? It turns out that a Markov chain constructed in [7] provides a
counterexample. In Section 3 we prove:

Proposition 5. There exists a channel M such that λ2�M� = 0 and such
that the reconstruction problem is solvable forM and all d ≥ 1000.

2. Random cluster methods. The proofs of Theorems 1 and 2 and of
Propositions 3 and 4 all use “random-cluster” arguments. We start with some
notations and definitions which we will apply in these proofs. Recall that we
denote by T = Td = �Vd	Ed� the d-ary tree rooted at ρ. We consider the space
�0	1�Ed . We denote an element of this space by �τ�e��e∈Ed . By λ-percolation
on T we mean the random process which has the state space �0	1�Ed and for
which P	τ�e� = 1
 = λ independently for all e ∈ Ed. An edge e with τ�e� = 1 is
called an open edge. More generally, we say that a subtree T′ = �V′	E′� of T
is open if all the edges e ∈ E′ are open. For v ∈ V, the component of v, which
we denote by � �v�, consists of all the vertices in Vd which are connected to v
by a path of open edges.

In order to prove Theorems 1 and 2, we will use the following definition.
Let T′ be a subtree of the tree T which is rooted at ρ. We say that T′ is an
l-diluted b-regular tree if, for all i, all the vertices of T′ at level il have exactly
b descendents at level �i+ 1�l.

Lemma 6. Let Td be the infinite rooted d-ary tree, and let 0 ≤ λ ≤ 1 be a
number such that dλ > 1. There exists a positive ε = ε�d	λ� s.t. for all b ≥ 1,
there exists l ≥ 1 s.t. if one performs percolation with parameter λ′ ≥ λ on T,
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then

P	ρ is the root of an open l-diluted b-regular tree
 ≥ ε�d	λ�
(5)

In order to prove Lemma 6, we are going to use the following standard fact.

Lemma 7. Let Td be the d-ary tree, and let 0 ≤ λ ≤ 1 be a number such
that dλ > 1. There exists a number ε > 0 such that, for all b, there exists a
number l = l�b� s.t.

P	�� �ρ� ∩Ll� ≥ b
 ≥ ε
(6)

Proof. Let Zl = �� �ρ� ∩ Ll�. It is clear that Wl = �dλ�−lZl is a positive
martingale. Therefore, Wl → W a.s. Moreover, it is known ([1], page 9) that,
since dλ > 1, we also have P	W �= 0
 = limlP	Zl �= 0
 > 0. Therefore, it
follows that there exist positive numbers ε1	 ε s.t. P	Zl > ε1�dλ�l
 ≥ ε for all
l. Now the claim follows. ✷

Proof of Lemma 6. It is clearly enough to prove that (5) holds for λ, since
the probability on the left-hand side of (5) is monotone in λ′. Take ε to satisfy
(6), take B to be a number such that P	Bin�ε/2	B� ≥ b
 ≥ 1/2, and take l to
be a number such that P	�� �ρ� ∩ Ll� ≥ B
 ≥ ε. Let Ar be the event that ρ is
the root of rl levels of an l-diluted b-regular open tree. Let pr = P	Ar
. We
have p0 = 1, and

pr+1 ≥ P	�� �ρ� ∩Ll� ≥ B
P	Ar+1� �� �ρ� ∩Ll� ≥ B

≥ εP	Bin�pr	B� ≥ b



Therefore, it follows by induction that, for all r, we have pr ≥ ε/2 and the
lemma follows. ✷

We also need a complementary result for λ close to 1.

Lemma 8. Let Td be the infinite rooted d-ary tree, and take l ≥ 1 and ε > 0.
There exists λ < 1 such that, if one performs percolation with parameter λ′ ≥ λ
on T, then

P	ρ is the root of an open l-diluted �dl − 1�-regular tree
 ≥ 1 − ε


Proof. Again by monotonicity, it suffices to prove the claim for λ. Let

f�p� = P
[
Bin�p	dl� ≥ dl − 1

] = pdl + dl�1 − p�pdl−1


Then f�1� = 1 and f′�1� = 0. Therefore, there exists 1 > p∗ > 1 − ε s.t.
f�p∗� > p∗. We now take λ < 1 s.t.

P
[�� �ρ� ∩Ll� = dl

] ≥ p∗

f�p∗� 




290 E. MOSSEL

We denote by pr the probability that ρ is the root of an l-diluted �dl − 1�-
regular open tree of rl levels. Then p0 = 1 ≥ p∗, and using induction and the
monotonicity of f,

pr+1 ≥ P
[�� �ρ� ∩Ll� = dl

]
f�pr� ≥

p∗

f�p∗�f�pr� ≥ p
∗	

and the lemma follows. ✷

The last lemma we need is a simple combinatorial fact.

Lemma 9. Let r and s be numbers s.t. r+ s > dl and n ≥ 0. Let Td be the
d-ary tree rooted at ρ. Let T′ = �V′	E′� be an l-diluted r-regular tree rooted
at ρ and let T′′ = �V′′	E′′� be an l-diluted s-regular tree rooted at ρ. Then it
is impossible that T′ ∪T′′ ⊂ T with V′ ∩V′′ ∩Lln = �.

Proof. By induction on n. When n = 0, there is nothing to prove. Suppose
n > 0 and V′ ∩V′′ ∩Lln = �. We will show that V′ ∩V′′ ∩Ll�n−1� = �, so the
proof would follow by induction. Let v ∈ Ll�n−1� and look at the dl descendents
of v at Lln. If we have v ∈ V′ ∩ V′′, then v has r descendents in Lln ∩ V′

and s descendents in Lln ∩ V′′, which is a contradiction to the assumption
V′ ∩V′′ ∩Lln = �. ✷

Proof of Theorem 1. We will denote the states of the chain by 0 and 1.
Using the notation (3), we note that if v is a parent of w in the tree Td,
then P	σ�w� = 1�σ�v� = 1
 = δ2. We may therefore perform percolation with
parameter δ2 in such a way that

P	� �ρ� ⊂ �w σ�w� = 1��σ�ρ� = 1
 = 1
(7)

Similarly, we may perform percolation with parameter 1 − δ1 in such a way
that

P	� �ρ� ⊂ �w σ�w� = 0��σ�ρ� = 0
 = 1
(8)

Let ε and l be chosen to satisfy (5) for b = 2 and λ. Let Arl be the event that
there exists an l-diluted binary tree T′ rooted at ρ s.t. all of the vertices of T′

at the rl level are labeled by 1. Lemma 6 together with (7) implies that, for
δ2 ≥ λ,

P1
rl	Arl
 ≥ ε(9)

for all r. On the other hand, it follows from Lemma 8, (8) and Lemma 9 that
there exists δ > 0 s.t. if 0 < δ1 < δ, we have

P0
rl	Arl
 ≤ ε/2(10)

for all r. We now choose δ1 s.t. (10) holds and δ2 = λ+δ1 so that (9) holds. We
get that, for all r,

�P0
rl −P1

rl� ≥ ε/2

It follows that the reconstruction problem is solvable. ✷
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Proof of Theorem 2. The proof is similar to the proof of Theorem 1. We
fix i �= j ∈ � . Using the notation (4), we note that if v is a parent of w in
the tree Td, then P	σ�w� = i�σ�v� = i
 = 1 − �q − 1�δ, and for all i′ �= i,
P	σ�w� �= i�σ�v� = i′
 = 1 − δ. We may therefore perform percolation with
parameter 1 − �q− 1�δ in such a way that

P	� �ρ� ⊂ �w σ�w� = i��σ�ρ� = i
 = 1
(11)

Similarly, we may perform percolation with parameter 1 − δ in such a way
that

P	� �ρ� ⊂ �w σ�w� �= i��σ�ρ� = j
 = 1
(12)

Let ε and l be chosen to satisfy (5) for b = 2 and λ. Let Arl be the event that
there exists an l-diluted binary tree T′ rooted at ρ s.t. all of the vertices of
T′ at the rl level are labeled by i. Lemma 6 together with (11) implies that,
when 1 − �q− 1�δ ≥ λ,

Pirl	Arl
 ≥ ε(13)

for all r. On the other hand, it follows from Lemma 8, (8) and Lemma 9 that,
when δ > 0 is small enough, we get

Pjrl	Arl
 ≤ ε/2(14)

for all r. We now choose Q large enough s.t. when λ = 1 − qδ, (14) holds for
q ≥ Q. We automatically have 1−�q−1�δ ≥ λ so that (13) holds. We get that,
for all r,

�Pirl −Pjrl� ≥ ε/2

It follows that the reconstruction problem is solvable. ✷

The proof of Propositions 3 and 4 uses another type of random-cluster argu-
ment. The channels for which we can use this kind of argument are channels
M which have matrices �Mi	 j�ki	 j=1 which satisfy

Mi	 j = λNi	 j + �1 − λ�νj(15)

for some channel N which has the matrix �Ni	 j�ki	 j=1, a distribution vector
�νj�kj=1 and a number 0 ≤ λ ≤ 1. The proof of Propositions 3 and 4 follows
immediately from the following propositions.

Proposition 10. Suppose thatM has the form (15). Then the reconstruction
problem forM is unsolvable whenever dλ ≤ 1.

Proposition 11. All binary channels (3) have the form (15) with λ = λ2
�M�. All symmetric channels (4) with λ = 1 − qδ ≥ 0 have the form (15) with
λ = λ2�M� = 1 − qδ.
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Proof of Proposition 10. Since the matrixM satisfies (15), we may write
the random functionM asM =XN+�1−X�Y, whereN is a random function
which satisfies P	N�i� = j
 = Ni	 j, Y is a random variable which satisfies
P	Y = j
 = νj, X is a �0	1� variable which satisfies P	X = 1
 = λ and all
these variables are independent. Thus the broadcasting on the tree T can be
implemented in the following way.

1. For each vertex v, let Nv be an independent copy of the function N, and
let Yv be an independent copy of Y (these variables are all independent).

2. Perform percolation with parameter λ on T. The percolation process is
independent of the variables Yv and Nv.

3. Fix σ�ρ� = i.
4. Denote + = �τ�e��e∈Ed .
5. In order to produce �σ�v��v∈Vd , we use the following procedure. Assume

that we have produced σ�v� and that w is a child of v. If the edge �v	w� is
open, set σ�w� =Nw�σ�v��; otherwise, set σ�w� = Yw.

Note that we may use this process simultaneously with σ�ρ� = i for all
i ∈ � with the same random variables +	Yv andNv. In this way, we obtain a
coupling of the distributions �Pin�ki=1. The key observation here is that if the
root component of + does not intersect Ln, then we would obtain the same
labeling of Ln for all root values i ∈ � . Thus we obtain

max
i	 j∈�

�Pin −Pjn� ≤ P	� �ρ� ∩Ln �= �



However, classical results on branching processes (see, e.g., [1]) imply that
when dλ ≤ 1, we have limn→∞P	� �v� ∩ Ln �= �
 = 0. We have thus proved
that the reconstruction problem is unsolvable. ✷

Proof of Proposition 11. For the symmetric channel on q symbols and
λ ≥ 0, we take N = I the identity matrix, ν the uniform distribution on �
and λ = λ2�M� = 1 − qδ. For the general binary channel:

M =
(
m0→0 m0→1

m1→0 m1→1

)
	(16)

we note that m0→0 +m0→1 = 1 = m1→0 +m1→1, and therefore there exists a
number λ such that λ =m0→0 −m1→0 =m1→1 −m0→1. We may now write

M = λI+
(
m1→0 m0→1

m1→0 m0→1

)

= −λJ +
(
m0→0 m1→1

m0→0 m1→1

)
	

where J =
(0 1

1 0

)
.
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Thus λ = λ2�M�. Moreover, if λ ≥ 0, we may take N = I and ν = �m1→0,
m0→1�/�1 − λ�, and if λ ≤ 0, we may take N = J and ν = �m0→0, m1→1�/
�1 + λ�. ✷

Another demonstration of the importance of random-cluster representations
is given in the following proposition.

Proposition 12. Suppose thatM�1� andM�2� are channels s.t.

M�1�
i	 j = λ1Ni	 j + �1 − λ1�νj	

M�2�
i	 j = λ2Ni	 j + �1 − λ2�νj	

with the same N and ν and λ1 ≤ λ2. Then, if the reconstruction problem is
solvable for M�1� and the d-ary tree, it is also solvable for M�2� and the d-ary
tree.

Proof. Let λ3 be a number such that λ1 = λ2λ3. We then have

M�1�
i	 j = λ3M

�2�
i	 j + �1 − λ3�νj


For simplicity, we denote the random symbols at the nth level for the d-ary
tree and the chain M�1� given that σ�ρ� = i by σin; for v a vertex of the tree,
we denote by σiv the symbol at v given that the root is i. Similarly, we denote
random symbols at the nth level for the d-ary tree and the chain M�2� given
that σ�ρ� = i by τin, and the symbol at v by τiv.

We assume that the reconstruction problem is unsolvable for M�2� and we
will show it is unsolvable for M�1�. In other words, we will show that, if for
all i	 j ∈ � there exist couplings of τin and τjn s.t. limn→∞ P	τin = τ

j
n
 = 1,

then we also have for all i	 j ∈ � couplings of σin and σjn such that limn→∞
P	σin = σjn
 = 1.

We are going to use the same procedure as in Proposition 10 in order to
produce σin using the M�2� Markov chain and λ3-percolation. Therefore, for
v ∈ Ln, we can write

σiv =
{
τiv	 if v ∈ � �ρ� ∩Ln,
σv	 otherwise,

(17)

where σv is independent of i. Since we know that, for all i	 j ∈ � , there exist
couplings of τin and τjn s.t. limn→∞ P	τin = τjn
 = 1, it follows from (17) that we
may also couple for all i and j, σin and σjn so that limn→∞ P	σin = σjn
 = 1. ✷

Remark 13. It is possible to generalize the proofs of Propositions 3, 4 and
12 to general trees using the branching number (see [6]) instead of d. We do
not believe that such generalizations hold for Theorems 1 and 2.
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3. Proof of Proposition 5. This example is taken from [7]. Take M to
have the state space Z2 × Z2. M can be represented as a random function in
the following way:

M�x	y� =
{ �r	 x+ r mod 2�	 with probability 1/2,
�r	 y+ r mod 2�	 with probability 1/2,

where r takes each of the values 0 and 1 with probability 1/2, and is indepen-
dent of anything else. Thus, M has the following matrix:

M =




0
50 0
00 0
00 0
50

0
25 0
25 0
25 0
25

0
25 0
25 0
25 0
25

0
00 0
50 0
50 0
00


 


It is clear that, for all �x	y�	 �z	w� ∈ Z2 × Z2, we have

P	M�M�x	y�� = �z	w�
 = 1/4


Therefore, λ2�M� = 0. In order to show that the reconstruction problem is
solvable for M and the 1000-ary tree, we exhibit a recursive algorithm for
reconstructing x⊕y at the root with probability greater than 0
999, where ⊕
is the modulo 2 addition. (We assume that the initial distribution of the root
is uniform; see Proposition 14 to see why this implies that the reconstruction
problem is solvable.) Let v be a vertex and let w1	 
 
 
 	w1000 be its children.
Denote the corresponding labels by �xv	 yv�, etc. When xv ⊕ yv = 0, we have

xw1
⊕ yw1

= xw2
⊕ yw2

= · · · = xw1000
⊕ yw1000




If, on the other hand, xv ⊕ yv = 1, then xwi ⊕ ywi are i.i.d. variables taking
the values 0, 1 with probability 1/2 each. This leads us to use the following
recursive algorithm. In order to reconstruct xv ⊕ yv, look at the 1000 recon-
structed values for xw1

⊕ yw1
	 
 
 
 	 xw1000

⊕ yw1000
. If there are at least 700 of

them which take the same value, then we reconstruct xv ⊕ yv = 0; otherwise,
we reconstruct xv⊕yv = 1. This reconstruction method leads to the following
recursions. Let pn be the probability that we reconstructed correctly xv ⊕ yv
for the root of the 1000-ary tree of n levels. Then p0 = 1, and

pn+1 ≥ P	400 ≤ Bin�0
5	1000� ≤ 600
P	Bin�pn	1000� ≥ 901


Therefore, we get by induction that pn ≥ 0
999 for all n. ✷

4. Equivalent definitions for reconstruction solvability. As we noted
before, both σLn and cLn are Markov chains. Let �Xn�∞n=0 be a Markov chain
s.t. Xn has as state space the finite space �n. We denote � = �0 and let
π = �πi�i∈A be an initial distribution ofX0. We note that, givenXn, if one uses
the optimal reconstruction strategy (maximum likelihood), the probability of
reconstructing X0 given Xn is at least maxi πi.
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We denote by Pσ the distribution P	X0 = i�Xn = σ
, by Pn the distribution∑
i πiPin and the reconstruction probability given Xn by 1n�π�. Since given

that Xn = σ , the optimal algorithm will reconstruct a symbol j s.t. Pσ 	j
 =
maxi Pσ 	i
, we have

1n�π� =
∑
σ

Pn	σ
max
i

Pσ 	i

(18)

Let H be the entropy function and let I�X	Y� =H�X�+H�Y�−H�X	Y�
be the mutual-information operator (see, e.g., [3] for definitions and basic prop-
erties). We have the following equivalence.

Proposition 14. The following conditions are equivalent �where π denotes
the initial distribution of X0� 

(i) There exists a π for which

lim
n→∞I�X0	Xn� > 0
(19)

(ii) If π is the uniform distribution on � , then

lim
n→∞I�X0	Xn� > 0
(20)

(iii) For any distribution π with mini πi > 0, we have

lim
n→∞I�X0	Xn� > 0
(21)

(iv) There exist i	 j ∈ � for which

lim
n→∞ �Pin −Pjn � > 0	(22)

where � � denotes the total variation norm and Pln denotes the conditional
distribution of Xn given that X0 = l.

(v) There exists a π for which

lim inf
n→∞ 1n�π� > max

i
πi
(23)

(vi) If π is the uniform distribution on � , then

lim inf
n→∞ 1n�π� > 1/�� �
(24)

Proposition 15. Suppose that Xn = σLn or Xn = cLn , and π is some
distribution which satisfies mini πi > 0. Then the conditions in Proposition 14
are all equivalent to the fact that the sequence �Xi�∞i=0 has a nontrivial tail.

Proofs. We refer the reader to [3] for some standard facts in information
theory which we will use in the sequence. By the data processing lemma ([3,
p. 32]), it follows that I�σρ	 σLn� is a decreasing sequence, so the limits (19),

(20) and (21) exist. Similarly, using the coupling between Pin and Pjn, we see
that the sequence in (22) is decreasing, so that the limit in (22) exists.

�22� ≡ �23� ≡ �24�
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By (18), we have

1n�π� − max
i
πi=

∑
σ

Pn	σ
�max
i

Pσ 	i
 − max
i
πi�

≤∑
σ

Pn	σ

(∑
i

�Pσ 	i
 − πi�
)

=∑
σ

∑
i

πi�Pin	σ
 −Pn	σ
� =
∑
i

πi �Pin −Pn �

≤∑
i

πimax
j	 j′

�Pjn −Pj
′
n � = max

i	 j
�Pin −Pjn � 	

(25)

where the inequality in (25) follows from the fact that Pn is an average of the
Pin. Moreover, if π is the uniform distribution, then we have

1n�π� − �� �−1 =∑
σ

Pn	σ

(
max
i

Pσ 	i
 − �� �−1
)

= �� �−1∑
σ

max
i

�Pin	σ
 −Pn	σ
�

≥ �� �−2∑
σ

max
i	 j

�Pin	σ
 −Pjn	σ
�

≥ �� �−2 max
i	 j

�Pin −Pjn � 	

(26)

where the first inequality follows from the fact that, for a sequence �ai�ki=1, we
have

max
i
ai −

1
k

∑
i

ai ≥
1
k

max
i	 j

�ai − aj�


By (25) we have that (23) implies (22), and by (26) we have that (22) implies
(24) [which trivially implies (23)]

�24� ≡ �20�

We are going to use the following known inequalities, where p = �p1	 
 
 
 	 pk�
and q = �q1	 
 
 
 	 qk� are probability distributions, D�p��q� is the relative
entropy (Kullback–Leibler distance), G�x� = �2 ln 2�−1x2 ,F�x� = −x log�x/k�
for 0 ≤ x ≤ 1/2 and F�x� = log k otherwise ([3], pages 488–489):

D�p��q� ≥ G��p− q��(27)

and

�H�p� −H�q�� ≤ F��p− q��
(28)
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Let π be any initial distribution; then we have on one hand that

I�X0	Xn� =H�π� −∑
σ

Pn	σ
H�Pσ�

≤∑
σ

Pn	σ
�H�π� −H�Pσ��(29)

≤∑
σ

Pn	σ
F��π −Pσ ��	

and on the other hand,

I�X0	Xn� =
∑
σ

Pn	σ
D�Pσ ��π� ≥∑
σ

Pn	σ
G��π −Pσ ��
(30)

For π the uniform distribution, we also have

1n�π� − �A�−1 =∑
σ

Pn	σ
max
i

�Pσ 	i
 − �� �−1�

≥ �A�−1∑
σ

Pn	σ
�Pσ − π�
(31)

and

1n�π� − �A�−1 =∑
σ

Pn	σ
max
i

�Pσ 	i
 − �� �−1�

≤∑
σ

Pn	σ
�Pσ − π�

(32)

By (29), (30), (31) and (32), it follows that we have I�X0	Xn� → 0 iff 1n�π� −
�� �−1 → 0.

�19� ≡ �20� ≡ �21�
We note that if we write p�x� = P	X = x
 and p�y�x� = P	Y = y�X = x
,
then for fixed p�y�x� the function I�X	Y� is a concave function of p�x� ([3],
page 31). Suppose that limn→∞ I�X0	Xn� > 0, whereX0 has density π. IfX′

0
has the uniform distribution π ′, we can write

π ′ = απ + �1 − α�(�1 − α�−1�π ′ − απ�)
as a convex sum of distribution vectors, where α = ��� �maxi pi�−1. Now we
obtain that

lim I�X′
0	Xn� ≥ α lim�X0	Xn� ≥ �� �−1 lim�X0	Xn� > 0
(33)

In a similar manner, ifX′
0 is a uniform variable on � andX0 has distribution

π, then we obtain

lim I�X0	Xn� ≥ �� �
(
min
i
πi

)
lim I�X′

0	Xn�
(34)

By (33) we have that (19) implies (20), and by (34) we have that (20) implies
(21) (which trivially implies (19)).
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Proof of Proposition 15. First, if the conditions of Proposition 14 hold,
then we have that lim I�X0	Xn� > 0. In particular, the variable X0 is not
independent of the the tail sigma field.

We now prove the other direction (see [4] for a similar argument). For a set
U, let σU = �σv�v∈U. Fix a level n. For each m ≥ n and w ∈ Ln, let L�w	m�
be the set of vertices in T which connect to ρ through w. Since the variables
σL�w	m� are conditionally independent given σLn , we have

I�σLn	 σLm� ≤
∑
w∈Ln

I�σLn	 σL�w	m�� =
∑
w∈Ln

I�σw	 σL�w	m��	

and the right-hand side goes to 0 as n→ ∞. It follows that if for the sequence
σn the conditions in Proposition 14 do not hold, the σ-tail is trivial.

We use a similar proof for the sequence cLn . We let cL�w	m� be the count of
the vertices of Lm which connect to ρ through w, and we get

I�cLn	 cLm� ≤ I�σLn	 cLm� ≤ I�σLn	 �cL�w	m��w∈Ln�
≤ ∑
w∈Ln

I�σLn	 cL�w	m��

= ∑
w∈Ln

I�σw	 cL�w	m��	

as before. (For the sequence σLn , it is easy to see that the claim remains true
even without the assumption that mini πi > 0. Indeed, if the assumptions of
Proposition 14 hold, then we choose a vertex v with miniP	σv = i
 > 0. Then
the variable σv is not independent of the tail σ-field.) ✷

5. Count reconstruction.

Sketch of the Proof of Theorem A [8]. Let λ = λ2�M�. Assume first
that dλ2 > 1. In this case, let µ′ be a left eigenvector of the matrix M which
corresponds to λ (that is, µ′M = λµ′). By the Kesten–Stigum theorem [5] (or
rather by the proof ), it follows that there exist i	 j ∈ � s.t.

lim
n→∞ �Pin	�µ′	 cLn� > 0
 −Pjn	�µ′	 cLn� > 0
� > 0	

where � 	 � denotes the usual scalar product. This could be verified more directly
using a second-moment argument.

We turn to the case dλ2 < 1. We denote by cjLn the random variable cLn
conditioned on σ�ρ� = j. We are going to use the following observation: given
c
j
Ln

, we may write

c
j
Ln+1

=
k∑
i=1

Si�dcjLn�i��	(35)

where Si is a random walk on Zk satisfying Si�0� = 0 and

P	Si�t+ 1� = Si�t� + es
 = Mi	 s
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for 1 ≤ s ≤ k. Let a > 0 be a constant. Suppose that

min
i
c
j
Ln
�i� > adn	 min

i
c
j′
Ln
�i� > adn(36)

and

�cjLn − c
j′
Ln
�1 < εdn/2
(37)

The local central limit theorem ensures that if (35), (36) and (37) hold, then
we may couple cjLn+1

and cj
′
Ln+1

in such a way that

P
[
c
j
Ln+1

�= cj′Ln+1

]
≤ f�ε�	(38)

where limε→0 f�ε� = 0.
When dλ2 < 1, the Kesten–Stigum theorem implies that if ν is the station-

ary distribution of M, then, for all j ∈ � ,

c
j
Ln

− dnν
dn/2

(39)

converges to a k-dimensional normal variable � which does not depend on
j. From (39) it follows that, for every ε > 0 and i	 j ∈ � , we may couple ciLn
and cjLn in such a way that

lim
n→∞P

[
�ciLn − c

j
Ln
�1 < εdn/2

]
= 1
(40)

If we combine the fact (39) with (40) and (38), we obtain that, for every j	 j′ ∈
� , there exist couplings s.t.

lim
n→∞P

[
c
j′
Ln

= cjLn
]
= 1	

as needed. ✷
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