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ASYMPTOTIC BEHAVIOR OF ABSORBING MARKOV CHAINS
CONDITIONAL ON NONABSORPTION FOR APPLICATIONS IN

CONSERVATION BIOLOGY

By Frédéric Gosselin

Centre d’Ecologie Fonctionnelle et Evolutive-CNRS, Montpellier, France

We find a Lyapunov-type sufficient condition for discrete-time Markov
chains on a countable state space including an absorbing set to almost
surely reach this absorbing set and to asymptotically stabilize conditional
on nonabsorption. This result is applied to Bienaymé–Galton–Watson-like
branching processes in which the offspring distribution depends on the
current population size. This yields a generalization of the Yaglom limit.
The techniques used mainly rely on the spectral theory of linear operators
on Banach spaces and especially on the notion of quasi-compact linear
operator.

1. Introduction. Let N and N∗ denote the sets of nonnegative integers
and positive integers, respectively. The “classical” Bienaymé–Galton–Watson
(BGW) branching process has been the most studied discrete-time branching
process so far [see Athreya and Ney (1972), Jagers (1975) and Asmussen and
Hering (1983)]. Denoting by �pk�k∈N the probability distribution of the off-
spring (integer) number at the next time step n+ 1 of any individual part of
the population at any time n, and assuming as classically that p0+p1 < 1 and
p0 > 0, one property of BGW branching processes �Zn�n∈N is that provided the
average offspring number per individual is less than 1 (i.e.,m = ∑∞

k=1 kpk < 1),
extinction is certain (i.e., limn→∞Pπ�Zn = 0� = 1) and there is a unique prob-
ability distribution �bi�i∈N∗ limit in distribution of the process conditioned on
current nonextinction:

lim
n→∞Pπ

(
Zn = i

∣∣Zn > 0
) = bi� i ∈ N∗�

provided �πi�i∈N satisfies certain conditions stated by Seneta and Vere-Jones
(1966) or Asmussen and Hering (1983). Then �bi�i∈N∗ is called the Yaglom
limit of �Zn�.
Some authors investigated similar properties for generalizations of

BGW branching processes by introducing population-size-dependence
[see Fujimagari (1976), Lebreton (1981), Klebaner (1984, 1985) and Höpfner
(1985, 1986)], different types of individuals [see Joffe and Spitzer (1967),
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Buiculescu (1975) and Hoppe and Seneta (1978), pages 224–228] or a random
environment [see Athreya and Karlin (1971) and Tanny (1981)]. This paper
aims to generalize the existence of a Yaglom limit to discrete-time Markov
chains on a countable state space including an absorbing set, under biologi-
cally realistic and practical conditions. Indeed, such properties have already
been found by, for example, Seneta and Vere-Jones (1966), Kesten (1995) and
Ferrari, Kesten and Martı́nez (1996), but under conditions that will be seen
impractical for models of biological population extinction, the applied field we
are interested in (Section 7).
This paper is organized as follows: we first introduce the notation (Section 2),

state the two main results of the paper (Section 3), and apply them to
population-size-dependent BGW branching processes (Section 4). We then pro-
pose in Section 5 some basic spectral results, used in Section 6 to prove the
results in Section 3. We conclude this paper with important final remarks
(Section 7).
The characteristics of this work are (1) a heavy reliance on the linear opera-

tor theory, and especially on the notion of quasi-compact operator. This imposes
a rather stringent assumption (3.I), which is the main shortcoming of this
paper; on the other hand, (2) a large generality as far as the irreducible classes
of the Markov chain are concerned and (3) the formulation of sufficient condi-
tions that appear to be biologically realistic and verifiable [see Gosselin (1997
and 1998b)].

2. Notation and setting. We consider a countable state space G and a
discrete-time homogeneous Markov chain �Zn�n∈N on G. Pπ represents the
probability of an event when the distribution of Z0 is π = �πi�i∈G, and P =
�pi�j��i� j�∈G2 is the transition matrix of �Zn�. We first assume the following:

(2.I) There is a partition 	G0�G∗
 of G such that G0 is an absorbing set [i.e.,
for every i in G0, Pi�Z1 ∈ G0� = 1] and G∗ is nonabsorbing [i.e., here,
for every i in G∗, Pi�Zn ∈ G0� > 0 for some n in N∗].

For every subset G′ of G we denote byQG′ the substochastic matrix, restric-
tion of P on G′� QG′ = �pi�j��i� j�∈G′2 . Under (2.I), we particularly denote
Q = QG∗ . There is then a unique partition 	Gh
h∈I of G∗, constituted by
the equivalence classes of communicating states (i.e., for every j in any Gh,
Gh is the union of 	j
 with the set of states i in G that lead to j and that j
leads to). By construction, when the Markov chain leaves Gh, with probability
1 it can no longer return Gh. Therefore, p

�n�
i� j = �Qn

Gh
�i� j for every n in N∗ and

i and j in Gh. Besides, provided Gh is not restricted to one element that does
not lead to itself, the matrix QGh

is irreducible, that is, for every i and j in

Gh, p
�n�
i� j > 0 for some n in N

∗.
Under (2.I), considering a realization � of the Markov chain, we say that

	Zn���
n∈N goes extinct if there is n in N, such that Zn��� ∈ G0.



ASYMPTOTIC BEHAVIOR OF ABSORBING MARKOV CHAINS 263

We next consider a map t from G to R+ such that we have the following:

(2.II) t�G0� = 	0
, and t has positive values on G∗ and for any c > 0, there is
at most a finite number of j in G∗ such that t�j� < c.

(2.I) and (2.II) are supposed to be met throughout the paper. We will also
often refer to the following conditions.

(2.III) ∃ i ∈ G∗, ∃n ∈ N∗, p�n�
i� i > 0;

(2.IV) supi∈G∗ �i�mt < ∞, where �i�mt =
∑

j∈G�t�j�/t�i��pi�j.

3. Statement of the main results.

3.1. Certain extinction. We first propose a sufficient condition for the cer-
tain (ultimate) extinction of �Zn�. Under assumptions (2.I) and (2.II), each
state i in G∗ is transient and, whatever the initial distribution π,

Pπ

{
lim
n→∞ t�Zn� = 0 or lim

n→∞ t�Zn� = ∞
}
= 1�

Proposition 3.1. Assume (2.I), (2.II) and (2.IV). If �i�mt ≤ 1 for all but a
finite number of i in G∗, then, whatever the initial distribution π,

Pπ

{
lim
n→∞ t�Zn� = 0

}
= lim

n→∞Pπ�Zn ∈ G0� = 1�

Proof. If π = δi, where i is in G∗, the proof is similar to that of
Propositions 4 and 5, pages 55 and 56, in Lebreton (1981). The general case
readily follows. This result also stems from Theorem 5 in Foster (1953) if we
have �i�mt ≤ 1 for any i in G∗. ✷

3.2. Asymptotic results conditional on nonextinction. Extinction is the fate
of any model fulfilling the conditions of Proposition 3.1. The aim of this paper
is to prove that, under certain additional conditions, some stochastic equilib-
rium is then asymptotically reached conditional on nonextinction. We therefore
study the convergence of the following quantities, where states i and j are in
G∗ and times n in N and n′ in Z:

απ�j�n�n′� = Pπ

(
Zn = j

∣∣Zn+n′ ∈ G∗)�
δπ�j�n�n′� = Pπ

(
Zn = j

∣∣Zn ∈ G∗�Zn+n′ ∈ G0
)
�

bj�n� =
1
n

n∑
ν=1
1	Zν=j
�

τπ� j�n� =
1
n

n∑
ν=1

Pπ

(
Zν = j

∣∣Zn ∈ G∗) = Eπ

(
bj�n�

∣∣Zn ∈ G∗)�
(3.1)

Denoting by r�Q� the spectral radius (cf. Definition 5.1) of the bounded
linear operator Q on the Banach space l∞t of all the sequences �xj�j∈G∗ with
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�t�j�−1�xj�� bounded, we will prove the convergence of the quantities in (3.1)
when the following two assumptions are added:

(3.I) If G∗ is infinite, lim supt�i�→∞ �i�mt < r�Q�.
(3.II) There is only one k in I such that r�QGk

� = r�Q�, where r�QGk
� is the

spectral radius of the operator QGk
on l∞Gk� t

= 	x ∈ CGk/ supj∈Gk
t�j�−1

�xj� < ∞
. The matrix QGk
such that r�QGk

� = r�Q� is aperiodic.
We will see in Section 5 that, whenG∗ is infinite and conditions (2.I) to (2.IV)

are satisfied, (3.I) is a sufficient condition for the quasi compactness of the
linear operator Q on n�QGk

� = n�Q�l∞t . Under conditions (2.I) to (3.I), r�Q�
is positive and there is at least one, and at most a finite number of, k in I
such that (Proposition 5.4). Assumption (3.II) then stipulates that the spec-
tral radius r�Q� is reached in only one irreducible class, Gk, assumed to be
aperiodic.
We here introduce for convenience the set Ck of the vectors �xi�i∈G∗ such

that xi ≥ 0 for every i on G∗,
∑

i∈G∗ t�i�xi < ∞ and there is i with xi > 0 that
leads to Gk [i.e., Pi�Zn ∈ Gk� > 0 for some n in N∗].

Theorem 3.1. Assume (2.I), (2.II), (2.III), (2.IV), (3.I) and (3.II). Then, r�Q�
is in �0�1�, the matrix Q has unique right and left nonnegative eigenvectors,
�ui�i∈G∗ and �vi�i∈G∗ , associated with the eigenvalue r�Q�, such that

sup
i∈G∗

uit�i�−1 < ∞�
∑
i∈G∗

t�i�vi < ∞ and
∑
i∈G∗

vi =
∑
i∈G∗

uivi = 1

and there is 0 < ε < 1 such that, as n and n′ tend to infinity:

(a) If π = �πi�i∈G∗ is a probability distribution such that
∑

i∈G∗ t�i�πi < ∞,
1−Pπ�Zn ∈ G0� = r�Q�n�u�π� + o�r�Q�n�1− ε�n��

in particular,

lim
n→∞

Pj�Zn ∈ G∗�
r�Q�n = uj� j ∈ G∗�

(b) If π = �πi�i∈G∗ is a probability distribution that belongs to Ck, and if we
denote for every n′′ in N, p�n′′�

i�0 = ∑
j∈G0 p

�n′′�
i� j , we have

∑
j∈G∗

t�j�
{∣∣∣∣∣απ�j�n�n′′� − 1− p

�n′′�
j�0 vj

r�Q�n′′

∣∣∣∣∣
+

∣∣∣∣∣δπ�j�n�n′′� − p
�n′′�
j�0 vj

1− r�Q�n′′

∣∣∣∣∣1	n′′>0


}
= o

(�1− ε�n)
and ∑

j∈G∗
t�j�

∣∣∣απ�j�n�−n′′� − r�Q�n′′
vj

∣∣∣ = o
(�1− ε�n)�
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with n′′ = 0. These results imply that the Markov chain has a Yaglom limit,
which is �vj�j∈G∗ ,

lim
n→∞Pπ

(
Zn = j

∣∣Zn ∈ G∗) = vj� j ∈ G∗

and
(c) If π = �πi�i∈G∗ is a probability distribution that belongs to Ck, for any

α > 0,

lim
n→∞Pπ

( ∑
j∈G∗

∣∣bj�n� − ujvj
∣∣ > α

∣∣∣∣Zn ∈ G∗
)
= 0

and

∑
j∈G∗

�τπ�j�n�−ujvj�=O
( 1
n

)
and

∑
j∈G∗

�απ�j�n�n′�−ujvj�=o
(�1−ε�inf �n�n′�)�

4. Application to population-size-dependent BGW branching pro-
cesses. A population-size-dependent BGW branching process �Zn�n∈N is a
Markov chain with state space N such that for every i in N∗ its one-time step
transition probability, �pi�j�j∈N, is the ith fold convolution of a probability
distribution ��i�pk�k∈N. As a result, denoting by �i�Wr�n the random variable
representing the offspring number at the next time step n+ 1 of the rth indi-
vidual in a population of size i at time n,

Zn+1 =
Zn∑
r=1

�Zn�Wr�n�

with the convention
∑0

r=1 = 0, where �i�Wr�n has the probability distribution
��i�pk�k∈N, and the random variables ��i�Wr�n�n∈N� i∈N∗�1≤r≤i are independent
one from the other and independent of Z0.
We here consider G∗ = N∗ = N − 	0
 and assume

(4.I) For every i in N∗, �i�p0 + �i�p1 < 1, �i�p0 > 0 and �i�p1 > 0.

Under (4.I), G∗ is an irreducible, aperiodic class of �Zn� and assumptions
(2.I) and (2.III) are met. Under (4.I), (3.II) is also met as soon as we consider
a map t such that (2.IV) and (2.II) are met. We also denote by t0 the map such
that t0�n� ≡ n, by �i�f�s� =

∑∞
k=0 �i�pks

k, s ∈ �0�1�, the probability generating
function associated with ��i�pk�k∈N and by �i�gt�s� =

∑
j∈N pi�js

t�j�, s ∈ �0�1�,
the function associated with the probability distribution �pi�j�j∈N and the
map t. Then, for every i in N∗,

�i�gt0
�s� = �i�f�s�i and �i�mt0

= E
(
�i�W1�1

) = �i�f
′�1� =

∞∑
k=1

k �i�pk�
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4.1. The case when t = tν0. We first look for more practical formulations of
assumptions (2.IV), (3.I) and (3.II) when we consider the map tν0 such that
tν0�n� ≡ nν, n ∈ N. We find a relationship between lim supi→∞ �i�mtν0

and
lim supi→∞ �i�mt0

, quantities involved in (3.I) applied, respectively, to t = tν0
and t = t0.

Proposition 4.1. Let �Zn� be a population-size-dependent BGW branching
process. If ν ∈ N∗ and supi∈N∗ E��i�Wν

1�1� < ∞, then (2.IV) is met with t = tν0
and

lim sup
i→∞

�i�mtν0
=

(
lim sup

i→∞
�i�mt0

)ν

�

Proof. First,

�i�mtν0
= ∑

j∈N∗

jν

iν
pi� j =

E
{(

�i�W1�1 + �i�W2�1 + · · · + �i�Wi�1
)ν}

iν
�(4.1)

and since, by Hölder’s inequality,(
�i�W1�1 + �i�W2�1 + · · · + �i�Wi�1

)ν

≤ iν−1
i∑

j=1
�i�W

ν
j�1�

we get supi∈N∗ �i�mtν0
≤ supi∈N∗ E��i�Wν

1�1�, which proves (2.IV) with t = tν0.
Second, let us define for every i and ρ in N∗, �i�m�ρ� = E��i�Wρ

1�1�. Of
course, �i�m�1� = �i�mt0

. Since M �= supi∈N∗ E��i�Wν
1�1� < ∞, we get

supi∈N∗ �i�m�ρ� ≤ M for ρ ≤ v. We then recall the result of Theorem 2.5 in
Klebaner (1984),

E
{��i�W1�1 + �i�W2�1 + · · · + �i�Wi�1�ν

}
= �i�m

ν
t0
+ fν�i� �i�m�1�� �i�m�2�� � � � � �i�m�ν���

(4.2)

where fν�i� �i�m�1�� �i�m�2�� � � � � �i�m�ν�� is a polynomial of order ν−1 in i and
a nonnegative, nondecreasing function with respect to �i�m�ρ��1 ≤ ρ ≤ ν. It
follows from (4.1) and (4.2) that

�i�m
ν
t0
≤ ∑

j∈N∗

jν

iν
pi� j ≤ �i�m

ν
t0
iν + fν�i�M�M� � � � �M�

iν
� i ∈ N∗�

which proves lim supi→∞ �i�mtν0
= �lim supi→∞ �i�mt0

�ν. ✷

Proposition 4.1 does not give any insight about the other quantity involved
in condition (3.I), that is, r�Q�, whence Lemma 4.1, whose proof is obvious,
based, for example, on Gel’fand’s theorem in Section 5.1.

Lemma 4.1. Under assumptions (2.I), (2.II) and (2.IV), we have r�Q� ≥
limn→∞ r��n�Q�, where �n�Q is the finite matrix �pi�j��i� j�∈G∗2� t�i�� t�j�≤n.
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This allows us to propose a sufficient condition for the results of Theorem 3.1
to hold for t = tν0.

Theorem 4.1. Let �Zn� be a population-size-dependent BGW branching
process. Assume (4.I). If lim supi→∞ �i�mt0

< 1, and for every ν in N∗, supi∈N∗

E��i�Wν
1�1� < ∞, then there is N > 0 such that ν ∈ N∗ and ν > N imply that

the results of Theorem 3.1 hold with t = tν0.

Proof. Let r∞� tν0
�Q� denote the spectral radius of the bounded linear

operator Q on the Banach space l∞tν0 (cf. definitions in Sections 3.2 and 5.1).
First, using the same notation as in Lemma 4.1, assumption (2.III) yields
limn→∞ r��n�Q� > 0, which proves inf ν∈R+∗ r∞�tν0

�Q� > 0. Now, since for every
ν in N∗, supi∈N∗ E��i�Wν

1�1� < ∞, and lim supi→∞ �i�mt0
< 1, we get from

Proposition 4.1 that condition (2.IV) is met for t = tν0 for every ν and

lim
ν→∞

[
lim sup

i→∞
�i�mtν0

]
= 0�

This proves that condition (3.I) is met for t = tν0 for every ν sufficiently
large. ✷

4.2. The case when t = At01	t0>0
. Let A > 1 and t0�A = At01	t0>0
. We
have

�i�mt0�A
= ∑

j∈N∗

Aj

Ai

pi�j = �i�gt0
�A� − �i�gt0

�0�
Ai

= �i�f�A�i − �i�f�0�i
Ai

� i ∈ N∗�

It is then easily proved that for some A > 1, assumption (2.IV) is met for
t = t0�A if and only if supi∈N∗ �i�f�A�iA−i < ∞.

Proposition 4.2. Let �Zn� be a population-size-dependent BGW branch-
ing process such that lim supi→∞ �i�mt0

< 1. If supi∈N∗ �i�f�A′� < ∞ for some
A′ > 1, then for every A > 1 sufficiently small, supi∈N∗ �i�f�A� < ∞ and
limi→∞ �i�f�A�i A−i = 0.

Proof. Each �i�f is then indefinitely differentiable on �0�A′�. Then, for
every s in �0�A′�, by Taylor’s theorem, there is θs� i ∈ �1� s� such that

�i�f�s� = 1+ �i�mt0
�s− 1� + �s− 1�2

2 �i�f
′′�θs� i��

However, denotingM = supi∈N∗ �i�f�A′�, we have �i�pk ≤ MA′−k, k ∈ N, i ∈ N∗

and

�i�f
′′�s� ≤

∞∑
k=2

k�k− 1�MA′−ksk−2 �= g�s�� i ∈ N∗� s ∈ �1�A′��
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where g is indefinitely differentiable on �0�A′�. Then, using
lim sup

i→∞
�i�mt0

< 1�

there are ε > 0 and I > 0 such that

i ≥ I ⇒ �i�f�s� ≤ 1+ �1− ε��s− 1� + g�s��s− 1�
2

2
�= h�s�� s ∈ �1�A′��

By the mean-value theorem, there are a < 1 and 1 < A ≤ A′ such that h�A� ≤
aA. Then, i ≥ I implies �i�f�A� ≤ aA, which proves Proposition 4.2. ✷

Remarks. First, the last conditions of Proposition 4.2 and Theorem 4.1
are met if there is a maximum offspring number per individual, that is,
there is K > 0 such that for every i, k ≥ K implies �i�pk = 0. Second, if
lim supi→∞ �i�mt0

< 1 and supi∈N∗ �i�f�A′� < ∞ for some A′ > 1, we also have
for every ν in N∗, supi∈N∗ E��i�Wν

1�1� < ∞. Then, assumption (3.I) is met both
for t = t0�A for some A > 1 (Proposition 4.2) and for t = tν0 for any sufficiently
big ν (Theorem 4.1).
Proposition 4.2 allows us to propose a more convenient formulation of

Theorem 3.1 when considering t = t0�A.

Theorem 4.2. Let �Zn� be a population-size-dependent BGW branching
process. Assume (4.I), lim supi→∞ �i�m < 1 and supi∈N∗ �i�f�A′� < ∞ for some
A′ > 1. Then, for all A > 1 small enough, the results of Theorem 3.1 hold with
t = t0�A = At01	t0>0
.

4.3. Applications. We now consider the more specific process �Zn� such
that, for every i in N∗, the offspring number probability distribution ��i�pk�k∈N
is a power series distribution associated with a power series that does not
depend on i [see, e.g., Johnson and Kotz (1969), Chapter 2, Section 3]; that
is, the probability generating functions �i�f have the shape �i�f�s� = g�s�i�λ�/
g��i�λ�, s ∈ �0�1�, where 0 < �i�λ ≤ 1 and g�s� = ∑∞

k=0 cks
k, s ∈ �0�1�, is a

probability generating function, which we assume such that c1 > 0, c0 > 0,
c0 + c1 < 1 and

∑∞
k=2 k�k − 1�ck < ∞. Due to these last assumptions, �Zn�

satisfies (4.I). Furthermore,

�i�f
′�1� = �i�λg

′��i�λ�/g��i�λ� �= h��i�λ�� i ∈ N∗�

We can prove that h��i�λ� is a nondecreasing function of �i�λ and, since g and
g′ are continuous on �0�1�,

lim sup
i→∞

�i�f
′�1� = lim sup

i→∞
�i�λ g′

(
lim sup

i→∞
�i�λ

)[
g

(
lim sup

i→∞
�i�λ

)]−1
�

Set λ = sup	x ∈ �0�1�� h�x� ≤ 1
. If lim supi→∞ �i�λ < λ and supi∈N∗ �i�λ < 1,
Theorems 4.1 and 4.2 prove that the outcomes of Theorem 3.1 apply with t = tν0
or t = t0�A, for some values of ν and A > 1, respectively. If limi→∞ �i�λ = 0
and supi∈N∗ �i�λ ≤ 1, we can prove with similar methods to the above that
Theorem 3.1 applies with t = t20.
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Finally, for population-size-independent BGW branching processes, the
results of Theorem 3.1 hold with t = t20 when p0 > 0, p1 > 0, p0 + p1 < 1,
m < 1 and f′′�1� < ∞ (cf. notation in Section 1). Indeed, (2.I), (2.III), (2.IV)
and (3.II) are then satisfied and, introducing the vector β in l∞

t20
such that

βi = i, i ∈ N∗, we have Qβ = mβ, which insures us that r�Q� ≥ m. But,
simultaneously, Proposition 4.1 implies lim supi→∞ �i�mt20

= m2 < m, which
proves that (3.I) is also satisfied.

5. Basic spectral results. The most classical tool in the study of branch-
ing processes is the iteration of probability generating functions. Under our
conditions, the use of such techniques appears limited [see Gosselin (1993,
1998a)]. We therefore prefer to use a linear operator approach. We present in
this section some reminders and results from this theory.

5.1. Reminders from the linear operator theory. In this subsection we recall
for the sake of convenience some notions and results of the spectral theory of
linear operators on a Banach space. Basic references are Section 6 in Krein
and Rutman (1950), Dunford and Schwartz (1958), Kato (1966), Dieudonné
(1972) and Istratescu (1981).
Let E denote a complex Banach space and � �E� the set of bounded linear

operators from E onto E. In this section, U is in � �E� and �U�E denotes
its norm, σ�U� its spectrum and ρ�U� = C − σ�U� its resolvant set. We
denote by rE�U� = supλ∈σ�U� �λ� the spectral radius of U, which is, from
Gel’fand’s theorem, the limit of the nonincreasing sequence ��Uk�k−1

E �k∈N∗ . We
call resolvant the map from ρ�U� to � �E� that associates to each ζ in ρ�U�
the bounded operator R�ζ�U� = �ζI − U�−1. For �ζ� > rE�U�, R�ζ�U� =∑∞

k=0�Uk/ζk+1�.
An eigenvalue λ ofU is a complex number such that there is a nonnull vector

x in E such thatUx = λx. Then x is called an eigenvector ofU associated with
the eigenvalue λ. Every eigenvalue of U is in its spectrum σ�U�. A spectral
value (resp., eigenvalue) λ of U is called a peripheral spectral value (resp.,
eigenvalue) if �λ� = rE�U�.
If λ is an isolated spectral value and if γ denotes the oriented bound-

ary of a closed neighborhood V of λ whose intersection with σ�U� − 	λ
 is
void and whose boundary is regular enough, the operator 7�λ�U� = �2iπ�−1×∫
γ R�ζ�U�dζ is a projection called the spectral projection associated with U

and λ. This projection does not depend on γ and commutes with U. The Lau-
rent expansion of the resolvant around λ is R�ζ�U� = ∑

k∈Z ak�ζ − λ�k, with,
for k positive, a−k = �U−λI�k−17�λ�U�. In particular, λ is called a pole of the
resolvant if �U − λI�7�λ�U� is nilpotent. The order (or index) ω of λ is then
the largest positive integer ω such that a−ω = �U−λI�ω−17�λ�U� �= 0. Every
pole of the resolvant of U is an eigenvalue of U. The eigenvalue λ is called
simple if it is isolated in the spectrum and if Im�7�λ�U�� is one-dimensional.
Its order is then one.
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We next recall the key notions of compactness and quasi compactness of
linear operators.

Definition 5.1. U in � �E� is said to be compact if the image by U of
every bounded subset of E is relatively compact.

If E has finite dimension, every U in � �E� is compact. The spectrum of
a compact operator on E consists of the set of its eigenvalues plus, if E is
infinite dimensional, zero. These and other spectral properties make compact
operators (spectrally) closer to operators in finite-dimensional Banach spaces
than noncompact operators, whose spectrum can be continuous.
The transposed operator of U, denoted by U′, acts on the dual space E′.

It has the same spectrum as U, and U is compact on E if and only if its
transpose U′ is compact on E′. For every linear form y in E′ and x in E, we
set �y�x� = y�x�.

Definition 5.2 [see Sasser (1964)]. U is said to be quasi-compact on E if
there exist a positive integer n and V in � �E� such that Un−V is a compact
operator in � �E� and rE�V� < rE�U�n.

Obviously, U is quasi-compact on E if and only if its transpose U′ is quasi-
compact on E′, and a compact operator is quasi-compact if and only if its
spectral radius is positive. Furthermore, a quasi-compact operator has a non-
void peripheral spectrum [see Brunel and Revuz (1974)] and every peripheral
spectral value of a quasi-compact operator is an isolated eigenvalue and a pole
of the resolvant [see Sasser (1964)].

5.2. Criteria for compactness of linear operators on l∞, l∞t , l1 and l1t . We
associate with the set G∗ and the map t introduced in Section 2, the following
norms: for every sequence x indexed by G∗, let

�x�∞ �= sup
j∈G∗

�xj�� �x�∞� t �= sup
j∈G∗

t�j�−1�xj��

�x�1 �=
∑
j∈G∗

�xj� and �x�1� t �=
∑
j∈G∗

t�j��xj��

We then define the four associated Banach spaces l∞ = 	x ∈ CG∗
/�x�∞ < ∞
,

l∞t = 	x ∈ CG∗
/�x�∞� t < ∞
, l1 = 	x ∈ CG∗

/�x�1 < ∞
 and l1t = 	x ∈
CG∗

/�x�1� t < ∞
. In this paper, we say that an operator U on one of these
Banach spaces is linked to the matrix �ui�j��i� j�∈G∗2 , and we denote shortly
U = �ui�j�, if for any x in this Banach space, we have �Ux�i =

∑
j∈G∗ ui�j xj,

i ∈ G∗.
It is well known that �l1�′ = l∞ and �l1t �′ = l∞t . Moreover, any bounded linear

operator U on l1 is linked to an infinite-dimensional matrix U = �ui�j��i� j�∈G∗2

[see for instance Vere-Jones (1968)]. Its transposeU′ on l∞ is then linked to the
transposed matrix tU = �uj� i��i� j�∈G∗2 . The same holds for a bounded operator
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on l1t and its transpose on l∞t . We denote the norm and spectral radius of a
bounded operator U on l1 (resp., l∞, l1t , l

∞
t ) by �U�1 and r1�U� [resp., �U�∞

and r∞�U�, �U�1� t and r1� t�U�, �U�∞� t and r∞� t�U�]. We now give two results
about the compactness of linear operators on these Banach spaces.

Proposition 5.1. Assume (2.II). A bounded linear operator U = �ui�j� on
l1 is compact if and only if

lim
n→∞

(
sup
j∈G∗

∑
i∈G∗/t�i�>n

∣∣ui�j

∣∣) = 0�

For the proof: In the previous formula, the limit does not depend on the
map t, provided this map fulfills (2.II). This result therefore directly stems
from page 278 in Taylor and Lay (1958).

Proposition 5.2. Let U = �ui�j� be a linear operator on l1 and Ut be the
operator on l1t linked to the matrix 	�t�j�/t�i��ui�j
. Then, U is bounded (resp.,
compact) on l1 if and only if Ut is bounded (resp., compact) on l1t . In particular,
a bounded linear operator U = �ui�j� on l1t is compact if and only if

lim
n→∞

[
sup
j∈G∗

∑
i∈G∗/t�i�>n

t�i�
t�j� �ui�j�

]
= 0�

The proof is straightforward and left to the reader.

5.3. Quasi compactness and spectral properties of the operators tQ on l1t
and Q on l∞t . We now return to the substochastic matrix Q, restriction of
the transition matrix P to G∗ (see Section 2). We have chosen to work on the
Banach space l∞t instead of l∞ because sufficient conditions for the compact-
ness of the operator Q on l∞ found in pages 24 and 25 of Gosselin (1993), are
more restrictive than the results to come and those in Gosselin (1998a). First,
we obtain the following.

Proposition 5.3. Let G∗ be infinite. Under assumptions (2.I), (2.II), (2.III),
(2.IV) and (3.I), the operators Q on l∞t and tQ on l1t are quasi-compact.

Proof. First, the operator Q is then bounded on l∞t (Proposition 5.2). Sec-
ond, denote by Qn the finite rank operator on l∞t linked to the matrix on G∗2

having its “first” (according to t) rows defined by �pi�j��i� j�∈G∗2� t�i�≤n, its other
rows being null. We get

�Q−Qn�∞� t = sup
i∈G∗/t�i�>n

∑
j∈G∗

t�j�
t�i�pi�j = sup

i∈G∗/t�i�>n
�i�mt�
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From lim supt�i�→∞ �i�mt < r�Q�, it results that for n sufficiently large,

�Q−Qn�∞� t < r�Q��

which, together with the compactness of the operator Qn on l∞t
(Propositions 5.1 and 5.2), proves the quasi compactness of Q on l∞t and that
of tQ on l1t . ✷

We next prove in Proposition 5.4 a first series of spectral properties of the
operators tQ on l1t and Q on l∞t , when they are quasi-compact.

Proposition 5.4. Assume (2.I), (2.II), (2.III), (2.IV), (3.I). For every k in I,
denote by rk the spectral radius of the operator QGk

on l∞Gk� t
= 	x ∈ CGk/

supj∈Gk
t�j�−1�xj� < ∞
. Then:

(a) r�Q� is in �0�1� and there is at least one, and at most a finite number
of, k in I∗ such that rk = suph∈I∗ rh = r�Q�.
(b) There are r in N∗ and a partition �G′

s�s∈	1�2�����2r+1
 of G∗ such that

Q =




QG′
1

0 · · · 0 0

QG′
2→G′

1
QG′

2

� � �
���

���
���

���
� � � 0

���
QG′

2r→G′
1

QG′
2r→G′

2
· · · QG′

2r
0

QG′
2r+1→G′

1
QG′

2r+1→G′
2

· · · QG′
2r+1→G′

2r
QG′

2r+1



�

where (i) for every s in 	0�1� � � � � r
, G′
2s+1 is the union of the classes Gh in

G∗ with spectral radius strictly less than r�Q�, such that Gh′ leads to G′
2s

(only if s > 0) but not to G′
2s+2 (only if s < r). G′

2s+1 may be empty, in which
case the corresponding matrices are not present in the above matrix, and, if
not, r�QG′

2s+1� < r�Q�; and (ii) for every s in 	1�2� � � � � r
, G′
2s is in 	Gh
h∈I,

r�QG′
2s
� = r�Q� and G′

2s does not lead to
⋃r

s′=s+1G
′
2s′ ;

(c) The operator tQ on l1t (resp., Q on l∞t ) has at least a nonnegative eigen-
vector associated with the eigenvalue r�Q�. For every such eigenvector v (resp.,
u), there is s (resp., s′′) in 	1�2� � � � � r
 such that vi = 0 for every i in

⋃2r+1
s′=2s+1G

′
s′

(resp., ui = 0 for every i in
⋃2s′′−1

s′=1 G′
s′ ) and �vi�i∈G′

2s
(resp., �ui�i∈G′

2s′′
) is an eigen-

vector of the operator tQG′
2s
(resp., QG′

2s′′
) on l1G′

2s� t
(resp., l∞G′

2s′′ � t
) associated with

the eigenvalue r�Q�.

Proof. First, from (2.II) and Gel’fand’s theorem, r�Q� > 0. We now sup-
pose that the index set I is finite. We can then write Q the following way,
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possibly by reordering I:

Q =




QG1 0 � � � 0

QG2→G1 QG2

� � �
���

���
���

� � � 0
QGκ→G1 QGκ→G2 · · · QGκ


 �

Then, for every n in N,

Qn =




Qn
G1

0 � � � 0
��� Qn

G2

� � �
���

���
���

� � � 0
��� � � � � � � Qn

Gκ


 �

which, together with the fact that the entries of Q are nonnegative, implies
r�Q� ≥ maxh∈I rh. Furthermore, due to r�Q� > 0 and the quasi compactness
of tQ on l1t (Proposition 5.3), from Theorem 3 in Sasser (1964), there exists a
nonnegative eigenvector v (resp., u) of tQ (resp., Q) in l1t (resp., l

∞
t ) associated

with the eigenvalue r�Q�. Then, let us denote by k the smallest element in I
such that there is j in Gk with uj > 0. Due to the shape of Q, �uj�j∈Gk

is a
right eigenvector ofQGk

associated with the eigenvalue r�Q�. Acting similarly
with v, we find (c) and, from the above, rk = r�Q�. By regrouping the sets Gh

such that rh < r�Q�, and by keeping alone the sets Gh with rh = r�Q�, we
easily find the shape of Q asserted in (b).
Now suppose that I is infinite, for example I = N∗, in which case Q has

the following shape:

Q =




QG1 QG1→G2 · · · QG1→Gh
· · ·

QG2→G1 QG2

� � �
��� · · ·

���
���

� � � QGh−1→Gh

� � �

QGh→G1 QGh→G2 · · · QGh

� � �

���
���

���
���

� � �



�

Let us denote for every h in I = N∗, Fh = ⋃h
h′=1Gh′ and Hh = G∗ − Fh.

Given the properties of the sets 	Gh
h∈I, we cannot with a positive probability
leave and then return to Fh more than h− 1 times. Then, denoting for n ≥ 2
QFh�Hh

�n� = ∑n−2
n′=0QFh→Hh

Qn′
Hh
QHh→Fh

Qn−2−n′
Fh

, we get for every n ≥ 2,

�Qn�Fh
=

h−1∑
r=0

∑
n0����� nr

n0≥0� nr=n�
ns+2≤ns+1� s∈	0����� r−1


Q
n0
Fh
QFh�Hh

�n1 − n0� · · ·QFh�Hh
�nr − nr−1��(5.1)
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with, for every n ≥ 2,∥∥QFh�Hh
�n�∥∥∞� t

≤ ∥∥QFh→Hh

∥∥
∞� t

∥∥QHh→Fh

∥∥
∞� t

×
n−2∑
ν=0

∥∥Qν
Fh

∥∥
∞� t

∥∥QHh

∥∥n−2−ν
∞� t

�
(5.2)

Let us first prove that for every h in I either r�QFh
� ≥ r�Q� or r�QHh

� ≥ r�Q�.
Indeed, from Gel’fand’s theorem, for every ε′ > 0, there is Kh�ε′ > 0 such that∥∥Qn

Fh

∥∥
∞� t

≤ Kh�ε′ �r�QFh
� + ε′�n

and ∥∥Qn
Hh

∥∥
∞� t

≤ Kh�ε′ �r�QHh
� + ε′�n� n ∈ N�

which involves due to (5.2),∥∥QFh�Hh
�n�∥∥∞� t

≤ ∥∥QFh�Hh

∥∥
∞� t

∥∥QHh�Fh

∥∥
∞� t

×K2
h� ε′

[
sup

{
r
(
QFh

)� r(QHh

)}+ ε′
]n−2

�

Then due to (5.1) and to similar results concerning �Qn�Hh→Fh
, �Qn�Hh

and
�Qn�Fh→Hh

, and since 	�n0� � � � � nr��n0 ≥ 0� nr = n�ns + 2 ≤ ns+1� s ∈ 	0� � � � �
r − 1

 has �n − r�!/�r!�n − 2r�!� elements, we get that for every h in I and
ε′ > 0, there is K′

h� ε′ > 0 such that∥∥Qn
∥∥
∞� t

≤ K′
h� ε′n

h
[
sup

{
r
(
QFh

)� r(QHh

)}+ ε′
]n
� n ∈ N�

We deduce from this last inequality and from Gel’fand’s theorem that either
r�QFh

� ≥ r�Q� or r�QHh
� ≥ r�Q�.

We then choose h such that �QHh
�∞� t < r�QFh

�. Such an h exists due to
the previous result and since (1) there is h′ with r�QFh′ � > 0 due to (2.III), (2)�r�QFh′ ��h′∈N∗ is nondecreasing, and (3) from (3.I), limh→∞ �QHh

�∞� t < r�Q�.
For such a value of h, the above results clearly imply r�QFh

� ≥ r�Q�. Since,
from the part of this proof devoted to the case where I is finite, r�QFh

� =
maxh′∈	1�2�����h
 rh′ ≤ r�Q�, we get r�Q� = r�QFh

� > 0, for every h such that
�QHh

�∞� t < r�QFh
�. Now, by (3.I), we get first, lim suph→∞ rh ≤

lim suph→∞ �QGh
�∞� t < r�Q� and second, there is K in N∗ such that h ≥

K implies r�QFh
� = suph′∈N∗ rh′ = maxh′∈N∗ rh′ . Consequently, r�Q� =

maxh∈N∗ rh > 0 and maxh∈N∗ rh is reached for at most a finite number of h,
which we denote by k1� k2� � � � � kr� ordered so that for every i in 	1�2� � � � � r−
1
, Gki

does not lead to ∪j=i+1Gkj
. Let us denote for every s in 	1�2� � � � � r
 G′

2s

= Gks
. Defining G′

2s+1 as in the statement of Proposition 5.4(b), we can then
write the matrix Q as in (b).
Applying the above arguments to the spaceG′

2s+1, it follows that r�QG′
2s+1� =

maxh∈N∗/Gh∈G′
2s+1 rh < r�Q�. Relying on this shape of the matrix Q and on

r�Q� > 0, (c) is a consequence of Theorem 3 in Sasser (1964).
We finally prove r�Q� < 1. Let us consider the vector e whose entries all

equal one, and a nonnegative eigenvector v of tQ in l1t associated with the
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eigenvalue r�Q�. From tQv = r�Q�v and e ∈ l∞t , which results from (2.II), we
have

Pb

(
Zn ∈ G∗) = te tQnb = r�Q�n�

where b = v/�e� v� is a probability distribution on G∗. Whence r�Q� ≤ 1, which
implies, due to (3.I), lim supt�i�→∞ �i�mt < 1. But this last inequality itself
involves, by Proposition 3.1, limn→∞Pb�Zn ∈ G∗� = 0 and, thus, r�Q� < 1.

Remark. Proposition 5.4 in particular implies that, under (2.I) to
(2.IV), r�Q� ≥ 1 or lim supt�i�→∞ �i�mt ≥ 1 entails that, if G∗ is infinite,
lim supt�i�→∞ �i�mt ≥ r�Q�.

6. Proof of Theorem 3.1. Under (3.II), we denote by k the unique ele-
ment of I such that r�QGk

� = r�Q�. We also denote e = �1�i∈G∗ , for every j in
G∗ ej the probability distribution in both l∞t and l1t , such that �ej�j = 1,
and M = 1/ inf j∈G∗ t�j�, where t is the map introduced in (2.II). Thanks
to (2.II), M is finite and e is in l∞t . Adding assumption (3.II), the results
in Proposition 5.4 are supplemented as follows.

Lemma 6.1. Assume (2.I), (2.II), (2.III), (2.IV), (3.I) and (3.II). Then�
(a) r�Q� is the only peripheral eigenvalue of the operator tQ on l1t . We can

write in a unique way

tQn = r�Q�nv tu+ tSn� n ≥ 1�(6.1)

where r1� t�tS� < r�Q�, u and v are nonnegative vectors such that v ∈ l1t , u ∈ l∞t ,∑
j∈G∗ vj = 1, tSv = 0, and Su = 0.
(b) For every h in I, either Gh does not lead to Gk (resp., Gk does not lead to

Gh) and �uj�j∈Gh
≡ 0 (resp., �vj�j∈Gh

≡ 0), or Gh leads to Gk (resp., Gk leads
to Gh) and uj > 0 for any j in Gh (resp., vj > 0 for any j in Gh).

Proof. Under the conditions of Lemma 6.1, Proposition 5.4 applies. There-
fore, r�Q� ∈ �0�1�, the operators tQ on l1t and Q on l∞t are quasi-compact
and have nonnegative eigenvectors, v and u, respectively, associated with the
eigenvalue r�Q�. Moreover, from (3.II), Q has the following shape:

Q =

 QG′

1
0 0

QG′
2→G′

1
QG′

2
0

QG′
3→G′

1
QG′

3→G′
2

QG′
3


 �

where G′
2 = Gk and r�QG′

2
� = r�Q�, and G′

1 (resp., G
′
3), if not empty, satisfies

r�QG′
1
� < r�Q� [resp., r�QG′

3
� < r�Q�].

We next prove the uniqueness of the eigenvectors u and v associated with
the eigenvalue r�Q�, as well as (b). Given the shape of the matrix Q and
r�QG′

1
� < r�Q�, for u to be an eigenvector of Q on l∞t associated with the

eigenvalue r�Q�� �uj�j∈G′
1
must be null and �uj�j∈G′

2
a right eigenvector ofQG′

2
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associated with the eigenvalue r�Q�. Since QG′
2
is irreducible and the opera-

tor QG′
2
on l∞G′

2� t
is quasi-compact, �uj�j∈G′

2
is unique up to a constant factor

and can be chosen such that for every i in G′
2, ui > 0 [see Theorem 3 in

Sasser (1964) and Theorem 5.2, page 329, in Schaefer (1974)]. Additionally,
since r∞� t�QG′

3
� < r�Q�,

(
uj

)
j∈G′

3
=

∞∑
n=0

Qn
G′
3

r�Q�n+1QG′
3→G′

2

(
uj

)
j∈G′

2
≥ 1

r�Q�QG′
3→G′

2

(
uj

)
j∈G′

2
�

Then, since uj > 0 for every j in G′
2, and since all the states in G′

3 lead
to G′

2, we get uj > 0, for any j in G′
3. We hence reach (b), together with

the uniqueness of the eigenvector u associated with the eigenvalue r�Q�. We
similarly prove equivalent results for the eigenvector v of tQ. Of course, since
uj > 0 and vj > 0 for every j in G

′
2, we get �u� v� > 0.

Now, the peripheral spectrum of tQ on l1t is the same as the one of
tQG′

2

on l1G′
2� t
. From, for example, Vere-Jones (1967), we can easily prove that the

aperiodicity of the matrix tQG′
2
implies that r�Q� is the only peripheral eigen-

value of both tQG′
2
and tQ. Let us then show that r�Q� is a simple eigenvalue

of tQ on l1t andQ on l
∞
t . First, due to the properties of quasi-compact operators,

r�Q� is an isolated eigenvalue and a pole of the resolvant. Let ω be its index
and t7 the associated spectral projection (see Section 5.1). As in the proof of
Theorem 3 in Sasser (1964), t> = 	r�Q�I− tQ
ω−1 t 7 is nonnegative and non-
null. Furthermore, by tQ t> = r�Q� t> and the uniqueness of v, there is x in l1t
such that t>x = γv with γ > 0. Then, due to t> = limρ↓r�Q�	ρ−r�Q�
ωR�ρ� tQ�
and the shape of R�ρ� tQ� for ρ > r�Q�, we get as in the proof of Theorem 4
in Sasser (1964),

�u� t>x� = �u�x� lim
ρ↓r�Q�

	ρ− r�Q�
ω−1�

which, if ω > 1, is equal to zero and contradicts �u� t>x� = γ�u� v� > 0. This
proves ω = 1. Since r�Q� is an isolated eigenvalue and a pole of index one of
the operator tQ on l1t to which corresponds a unique (up to a factor) eigenvector
v in l1t , it is a simple eigenvalue of the operators

tQ on l1t and Q on l∞t . The
rest of the proof of Theorem 4 in Sasser (1964) also holds, and we get (a). ✷

Proof of Theorem 3.1. Under the conditions of Theorem 3.1, Lemma 6.1
yields

tQn = r�Q�nv tu+ tSn� n ∈ N�

where, since r�tS� < r�Q�, there is ε ∈ �0�1� such that limn→∞ r�Q�−n×
�1 − ε�−n�tSn�1� t = 0. Moreover, �u�π� > 0 since π is in Ck. Assertion (a) in
Theorem 3.1 is then easily proved based on the above spectral decomposition
and on

1−Pπ�Zn ∈ G0� = te tQnπ�



ASYMPTOTIC BEHAVIOR OF ABSORBING MARKOV CHAINS 277

Recall ��y�x�� ≤ �y�∞� t�x�1� t. We additionally set ϕj = uj, ϕ
′
j�n� = r�Q�−n×

te tSnej, µj = �u�π�vj, µ′
j�n� = r�Q�−n tej

tSnπ, and χ = �u�π�. Then,
of course, ϕ = 	ϕj
j∈G∗ = u and ϕ′�n� = r�Q�−nSne are in l∞G∗� t, while
µ = �u�π�v and µ′�n� = r�Q�−n tSnπ are in l1t .
(b) For n′′ ≥ 0, we now study the l1t - difference between the vectors απ�n�n′′�

with components

απ�j�n�n′′� =
te tQn′′

ej
tej

tQnπ
te tQn+n′′π

=

(
1− p

�n′′�
j�0

)
r�Q�n[µj + µ′

j�n�
]

r�Q�n+n′′χ+ te tSn+n′′π

and

α′
π�n′′� =

{�1− p
�n′′�
j�0 �µj

r�Q�n′′χ

}
j∈G∗

�

apparently the limit of απ�n�n′′� when n tends to infinity. Since 0 ≤ p
�n′′�
i�0 =∑

j∈G0 p
�n′′�
i� j ≤ 1, i ∈ G∗, we get

�απ�n�n′′� − α′
π�n′′��1� t ≤

∥∥r�Q�nµ∥∥
1� t

∣∣∣∣ 1
r�Q�n+n′′χ

− 1
te tQn+n′′π

∣∣∣∣
+

∥∥tSn
∥∥
1� t�π�1� t

te tQn+n′′π

≤
∥∥tSn

∥∥
1� t�π�1� t

r�Q�n+n′′

×
1+ �µ�1� t

r�Q�n′′χ�e�∞� t

∥∥tSn′′∥∥
1� t

χ− r�Q�−n−n′′ �e�∞� t

∥∥tSn+n′′∥∥
1� t�π�1� t

�

Given �e�∞� t = M < ∞ and limn→∞ r�Q�−n�1− ε�−n�tSn�1� t = 0, we get
�απ�n�n′′� − α′

π�n′′��1� t = o��1− ε�n��
We prove the result about 	απ�j�n�−n′′�
 with the same methods.
Now considering n′′ only in N∗,

δπ�j�n�n′′� = p
�n′′�
j�0

tej
tQnπ∑

i∈G∗ p
�n′′�
i�0

tej
tQnπ

= p
�n′′�
j�0 µj + p

�n′′�
j�0 µ

′
j�n�∑

i∈G∗ p
�n′′�
i�0 µi +

∑
i∈G∗ p

�n′′�
i�0 µ′

i�n�
�

Since tQµ = r�Q�µ (Lemma 6.1), we get∑
i∈G∗

p
�n′′�
i�0 µi =

∑
i∈G∗

(
1− ∑

i′∈G∗
p

�n′′�
i� i′

)
µi = χ− r�Q�n′′

χ > 0�

Relying on
∥∥∑

i∈G∗ p
�n′′�
i�0 ei

∥∥
∞� t

≤ M < ∞ and 0 ≤ p
�n′′�
i�0 ≤ 1, i ∈ G∗, we obtain

the convergence of δπ�n�n′′� as that of απ�n�n′′�.
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(c) From

τπ�j�n� =
r�Q�n ∑n

v=1	µj + µ′
j�v�
	ϕj + ϕ′

j�n− v�

n�r�Q�nχ+ tetSnπ� �

we infer that τπ�j�n� will tend to �ϕjµj/χ� = ujvj when n tends to infinity.
Actually first, since u ∈ l∞t and v ∈ l1t , �ujvj�j∈G∗ is in l1. Second, denoting

Cn =
n∑

ν=1

∑
j∈G∗

	�ϕjµ
′
j�ν�� + �µjϕ

′
j�n− ν�� + �µ′

j�ν�ϕ′
j�n− ν��
�

we get

∑
j∈G∗

�τπ�j�n� − ujvj� ≤
n−1Cn + χ−1r�Q�−n�te tSnπ�

χ− r�Q�−n�te tSnπ� �

But, r�Q�−n�te tS−nπ� ≤ r�Q�−n�e�∞� t�tS−n�1� t�π�1� t and
Cn ≤ ∑n

ν=1
{�ϕ�∞� t�µ′�ν��1� t + �ϕ′�n− ν��∞� t�µ�1� t

+�ϕ′�n− ν��∞� t�µ′�ν��1� t
}
�

where

�µ′�ν��1� t ≤ r�Q�−ν�tSν�1� t�π�1� t
and

�ϕ′�ν��∞� t ≤ r�Q�−ν�tSν�1� t�e�∞� t�

From

lim
n→∞ r�Q�−n�1− ε�−n�tSn�1� t = 0�

it then follows that �Cn�n∈N is a bounded sequence. Together with χ = �u�π� >
0, this shows

∑
j∈G∗ �τπ�j�n� − ujvj� = O�1/n�.

We obtain the last part of (c) as the previous result, by writing

απ�j�n�n′� = µjϕj + µ′
j�n�ϕj + µjϕ

′
j�n′� + µ′

j�n�ϕ′
j�n′�

χ+ r�Q�−n−n′ te tSn+n′π
�

We now show the first part of (c). From the convergence of 	τπ�j�n�
, we
get,

lim
n→∞

∣∣Eπ�bj�n�
∣∣Zn ∈ G∗� − ujvj

∣∣ = 0� j ∈ G∗�

where bj�n� = ∑n
ν=1 γj�ν�/n with γj�ν� = 1	Zν=j
. As Reddingius (1971), we

then study Varπ�bj�n��Zn ∈ G∗�, which can be written as

Varπ�bj�n��Zn ∈ G∗� = 1
n2

n∑
ν=1
Varπ�γj�ν��Zn ∈ G∗�

+ 2
n2

n−1∑
ν=1

n∑
ι=ν+1

Covπ�γj�ν�� γj�ι��Zn ∈ G∗��
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First, Varπ�γj�ν��Zn ∈ G∗� ≤ 1 implies

lim
n→∞

1
n2

n∑
ν=1
Varπ�γj�ν��Zn ∈ G∗� = 0�

Second, denoting by

χπ�j�ν� n� = Eπ�γj�ν��Zn ∈ G∗� = Pπ�Zν = j�Zn ∈ G∗��
we obtain

Covπ�γj�ν�� γj�ι��Zn ∈ G∗�
= χπ�j�v�n�χπ�j�ι� n� Pπ�Zν �= j�Zι �= j�Zn ∈ G∗�
+ · · · + 	1− χπ�j�ν� n�
	1− χπ�j�ι� n�
 Pπ�Zν = j�Zι = j�Zn ∈ G∗�
− · · · − 	1− χπ�j�ν� n�
 χπ�j�ι� n� Pπ�Zν = j�Zι �= j�Zn ∈ G∗�
− · · · − χπ�j�ν� n� 	1− χπ�j�ι� n�
 Pπ�Zν �= j�Zι = j�Zn ∈ G∗��

Now, as above, there is Kπ�j ∈ �0�∞� such that, if we denote κπ�j�n� =
Kπ�j�1− ε�n,

�Pπ�Zι �= j�Zν �= j�Zn ∈ G∗� − 1+ ujvj� ≤ κπ�j�min�ι− ν�n− ι���
�Pπ�Zι �= j�Zν = j�Zn ∈ G∗� − 1+ ujvj� ≤ κπ�j�min�ι− ν�n− ι���

�Pπ�Zι = j�Zv �= j�Zn ∈ G∗� − ujvj� ≤ κπ�j�min�ι− ν�n− ι��
and

�Pπ�Zι = j�Zν = j�Zn ∈ G∗� − ujvj� ≤ κπ�j�min�ι− ν�n− ι���
Since, for instance,

Pπ�Zι �= j�Zν �= j�Zn ∈ G∗�
= Pπ�Zι �= j�Zν �= j�Zn ∈ G∗�	1− χπ�j�ν� n�
�

we then obtain

Covπ�γj�ν�� γj�ι��Zn ∈ G∗�
= ξπ�j�ι� ν� n� + 	χπ�j�ι� n��1− ujvj�

− �1− χπ�j�ι� n��ujvj
�χπ�j�ν� n�	1− χπ�j�ν� n�

− 	1− χπ�j�ν� n�
χπ�j�ν� n��

where �ξπ�j�ι� νn�� ≤ 4κπ�j�min�ι − ν�n − ι��. Because the last term of the
above equation is null, we get

�Covπ�γj�ν�� γj�ι��Zn ∈ G∗�� ≤ 4κπ�j�min�ι− ν�n− ι���
Then, using exactly the same arguments as in page 74 of Reddingius (1971),
we reach

lim
n→∞Varπ�bj�n��Zn ∈ G∗� = 0�
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This implies that bj�n� conditional on Zn ∈ G∗ tends to ujvj in mean square,
from which we easily deduce that it converges to ujvj in probability,
that is,

lim
n→∞Pπ��bj�n� − ujvj� > α�Zn ∈ G∗� = 0 for any α > 0�

This result holds for every j in G∗. We now prove that this implies the first
result in (c); that is,

lim
n→∞Pπ

[ ∑
j∈G∗

�bj�n� − ujvj� > α�Zn ∈ G∗
]
= 0 for any α > 0�

which is not obvious when G∗ is infinite. First, notice that, conditional on
Zn ∈ G∗, both 	bj�n�
j∈G∗ and 	ujvj
j∈G∗ are probability distributions. Fixing
α ∈ �0�1�, there is therefore a finite subset G′ = 	i1� i2� � � � � ig
 of G∗ such
that ∑

j∈G∗−G′
ujvj <

α

4
�

for which

Pπ

[ ∑
j∈G′

�bj�n� − ujvj� >
α

4

∣∣Zn ∈ G∗
]

≤
g∑

s=1
Pπ

[
�bis�n� − uis

vis � >
α

4g

∣∣Zn ∈ G∗
]
�

From the above, we get

lim
n→∞Pπ

[ ∑
j∈G′

�bj�n� − ujvj� >
α

4

∣∣∣Zn ∈ G∗
]
= 0�

Now, still conditional on Zn ∈ G∗, if
∑

j∈G′ �bj�n�−ujvj� ≤ α/4, it results from∑
j∈G∗−G′ ujvj < α/4 that

1− α

2
≤ ∑

j∈G′
bj�n� ≤ 1 and

∑
j∈G∗

�bj�n� − ujvj� ≤ α�

We hence reach

lim
n→∞Pπ

[ ∑
j∈G∗

�bj�n� − ujvj� > α
∣∣∣Zn ∈ G∗

]

≤ lim
n→∞pπ

[ ∑
i∈G′

�bj�n� − ujvj� >
α

4

∣∣∣Zn ∈ G∗
]
= 0�

which proves the first part of (c). ✷
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7. Final remarks. According to Seneta and Vere-Jones (1966), the spec-
tral theory, upon which this paper heavily relied, “would give more detailed
information about a somewhat narrower class of problems” than iterated func-
tion techniques. In view of the above results, this remark is both true and
false.
On the one hand, the results in Sections 3 and 4, which generalize the

results known for BGW branching processes [see Athreya and Ney (1972)
and Asmussen and Hering (1983)] and absorbing Markov chains having a
R-positive irreducible matrix Q [see Seneta and Vere-Jones (1966) and
Buiculescu (1975)] to more general Markov chains under supplementary con-
ditions [essentially (3.I) and (3.II)] are more restrictive than previous results.
They indeed apply to “a somewhat narrower class of problems,” in the case
of these two kinds of absorbing Markov chains but also of BGW branching
processes in a random environment [see Athreya and Karlin (1971)] and mul-
titype BGW branching processes [see Joffe and Spitzer (1967) and Buiculescu
(1975), Gosselin (1997, 1998b)]. For instance, considering BGW branching pro-
cesses, the present results are not as general as classical ones since they fur-
ther require

∑
k∈N k2pk < ∞ (Section 4.3).

On the other hand, the main advantage of the present results is that they
generalize the results of Section IV.3.2 in Lebreton (1981) about the existence
of a Yaglom limit for some population-size-dependent BGW branching pro-
cesses, to more general population-size-dependent BGW branching processes
(Section 4) and to models in which generalizing assumptions are made simul-
taneously [see Gosselin (1998b)].
Spectral techniques also allow the matrix Q to be reducible and yield very

interesting results, such as the speeds of the convergence in Theorem 3.1
and the convergence in probability conditional on nonextinction at time n of
the proportion of previous time steps spent in the different states j, 	bj�n�
.
This last result is a new result for infinite absorbing Markov chains which
has a stronger potential to be applied to a unique realization of �Zn� that
remains nonextinct long enough than the other convergences in distribution
in Theorem 3.1.
We hope that the Lyapunov-type conditions required for the use of spectral

techniques will be wide enough for practical applications in population extinc-
tion modelling. But this is not only a hope: this was the aim of this work.
Indeed, the main difficulty in such applications will be to find a map t such
that conditions (2.II), (2.IV), (3.I) and (3.II) are satisfied. But, contrary to, for
example, Seneta and Vere-Jones (1966), the conditions for our results to hold
[i.e., (2.I) to (3.II)] are explicit and practical, at least if Q is irreducible and
if we seek a map t such that limt�i�→∞ �i�mt = 0 instead of (3.I) [see Gosselin
(1997, 1998b)].
This makes the present results resemble the results by Ferrari, Kesten

and Martı́nez (1996) and Kesten (1995), even if the respective sufficient con-
ditions do not seem to overlap. Indeed, Ferrari, Kesten and Martinez (1996)
developed results for cellular automata, a framework that differs so much
from ours that both series of results are barely comparable at the moment.
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Kesten (1995) requires, among other conditions, the existence of N < ∞ and
δ > 0 such that limi∈G∗ sup1≤k≤N p

�k�
i� i ≥ δ, a condition not generally fulfilled

by Markov chains used to model biological population extinction, which usu-
ally satisfy limt�i�→∞ sup1≤k≤N p

�k�
i� i = 0 for every N. We think the conditions

of this paper (2.I) to (3.II) are more relevant to model biological population
extinctions [see Section VI in Gosselin (1997)].
Finally, additional results and comments of the above results can be found

in Sections III.4, III.5, III.6, III.7, VI and Appendix 7 in Gosselin (1997)
and in Gosselin (1998a,b). Especially, results concerning the convergence of
most of the quantities in (3.1) are available when assumption (3.II) is replaced
by:

(3 III) There is only one k in I such that r�Q� = r�QGk
� and QGk

is not
aperiodic.

or by:
(3.IV) There are r different k in I such that r�QGk

� = maxh∈I r�QGh
� = r�Q�,

where r is in N∗ − 	1
.
and

(3.V) For every k in I such that r�QGk
� = r�Q�, the matrix QGk

is aperiodic.

Under (3.III), the absorbing Markov chain conditional on nonextinction
embraces a periodic asymptotic behavior, while under (3.IV) and (3.V) the
Markov chains behave asymptotically as the finite absorbing Markov chains
studied by Mandl (1959) [see Gosselin (1998a)]. In this last case, the limits
more often depend on the initial probability distribution π and the conver-
gences are generally slower than in Theorem 3.1.
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